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Jon-Vidar Gaustad* and Einar K. Rofstad
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Intratumor heterogeneity is associated with aggressive disease and poor survival rates in
several types of cancer. A novel method for assessing intratumor heterogeneity in medical
images, named the spatial gradient method, has been developed in our laboratory. In this
study, we measure intratumor heterogeneity in K" maps derived by dynamic contrast-
enhanced magnetic resonance imaging using the spatial gradient method, and we
compare the performance of the novel method with that of histogram analyses and
texture analyses using the Haralick method. K™ maps of 58 untreated and sunitinib-
treated pancreatic ductal adenocaricoma (PDAC) xenografts from two PDAC models
were investigated. Intratumor heterogeneity parameters derived by the spatial gradient
method were sensitive to tumor line differences as well as sunitinib-induced changes in
intratumor heterogeneity. Furthermore, the parameters provided additional information to
the median value and were not severely affected by imaging noise. The parameters
derived by histogram analyses were insensitive to spatial heterogeneity and were strongly
correlated to the median value, and the Haralick features were severely influenced by
imaging noise and did not differentiate between untreated and sunitinib-treated tumors.
The spatial gradient method was superior to histogram analyses and Haralick features for
assessing intratumor heterogeneity in K™ maps of untreated and sunitinib-treated
PDAC xenografts, and can possibly be used to assess intratumor heterogeneity in
other medical images and to evaluate effects of other treatments as well.

Keywords: intratumor heterogeneity, DCE-MRI, spatial gradient method, histogram analysis, Haralick features,
sunitinib, pancreatic ductal adenocarcinoma
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INTRODUCTION

Advanced tumors can show substantial variation in structure and
function within individual lesions (1, 2). This intratumor
heterogeneity arises through complex genetic, epigenetic, and
protein modifications in response to a heterogeneous
environmental pressure, and it allows tumors to develop
significant adaptive capability (3). Consequently, intratumor
heterogeneity is believed to be an important cause of treatment
resistance, and has been shown to be associated with aggressive
disease and poor prognosis in several types of cancer (1-3).

The abnormal tumor vasculature plays a key role in
establishing the heterogeneous environmental pressure (4). The
vascular abnormalities include heterogeneous vessel density,
aberrant vessel diameters, and tortuous and elongated vessels,
and these collectively impair blood flow and oxygen supply (4-
6). Most tumors thus develop regions with hypoxic tissue, and
the same tumors can also show regions with highly elevated
vessel density (vascular hot spots). Interestingly, both tumor
hypoxia and high vessel density in vascular hot spots has been
associated with increased incidence of metastases and poor
prognosis (7, 8).

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) has been used to determine the location and size
of tumor lesions, and have also been used to characterize the
tumor microenvironment by providing functional information
such as tumor blood flow, vessel permeability, and tumor
hypoxia (9, 10). This information has been used for diagnosis
and prognosis, and by repeating imaging sessions, longitudinal
information on disease development as well as effects of
treatments have been obtained (10, 11). DCE-MRI-derived
parametric images contain spatial information, but most of the
studies have only reported average or median values (1, 12). In
doing so, information about the intratumor heterogeneity and
the spatial complexity of the tumors has been discarded.

However, some studies have quantified intratumor heterogeneity
in parametric DCE-MR images, and the most commonly used
methods are based on histogram analyses or texture analyses using
the Haralick method (13). The histogram analyses are relatively
straight forward and can provide important information on the
range of values (13-16), but do not consider the spatial location of
the voxels (1). The Haralick method is based on calculating a co-
occurrence matrix from which up to 13 Haralick features can be
extracted (17, 18). The Haralick features consider the spatial
location of voxels, but the biological interpretation of the features
is unclear and it is not obvious how the features are influenced by
imaging noise.

An ideal method for quantifying intratumor heterogeneity should
be objective and calculate parameters from individual voxel values.
The method should provide additional information to the median
value, and should not be confounded by imaging noise.
Furthermore, the method should be able to quantify intratumor
heterogeneity parameters in both untreated and treated tumors, and
should be sensitive to treatment-induced changes.

In our laboratory, we have developed a new method for
quantifying intratumor heterogeneity in medical images of
tumor tissue independent of cancer type. The method measures

spatial gradients in parametric images, and has been named the
spatial gradient method. The aim of this study was to evaluate the
performance of the spatial gradient method in DCE-MRI-derived
images of K™ [the volume transfer constant of the contrast agent
(19)], and to compare the method with histogram analyses and the
Haralick method. Furthermore, we chose to explore the method in
pancreatic ductal adenocarcinoma (PDAC), because patients with
PDAC have particularly poor prognosis (20-22). We used K™
maps of untreated and sunitinib-treated tumors of two pancreatic
PDAC xenograft models obtained in a previous study (23), and we
quantified heterogeneity in the K™ maps by using the spatial
gradient method, histogram analyses, and the Haralick method.

MATERIALS AND METHODS

Data Sets

K™ maps of untreated and sunitinib-treated BxPC-3 and Panc-1
PDAC xenografts from a previous study by Wegner et al. (23)
were used in the current study. Twenty-eight data sets of BxPC-3
tumors (15 untreated and 13 sunitinib-treated tumors) and thirty
data sets of Panc-1 tumors (20 untreated and 10 sunitinib-treated
tumors) were included. The PDAC models, the sunitinib
treatment, and the DCE-MRI protocol have been described in
detail previously (23). Briefly, BxPC-3 and Panc-1 tumors
(American Type Culture Collection, VA, USA) were initiated in
the left quadriceps femoris of BALB/c nu/nu mice, and were
included in the experiments when the tumors were vascularized
and had grown to a size of 200-1200 mm”. Tumor-bearing mice
were treated with 40 mg/kg/day sunitinib (LC Laboratories,
Woburn, MA, USA) or vehicle for 4 days by oral administration
using a gavage, and were subjected to DCE-MRI one day after the
last sunitinib dose.

DCE-MRI was performed on a preclinical 7-T scanner
(Bruker Biospin, Ettlingen, Germany) by using Gd-DOTA
(Dotarem, Guerbet, Paris, France) as contrast agent. The tumors
were positioned in the isocenter of the magnet and were imaged
with axial slices covering the entire volume. Dynamic T;-weighted
images were recorded at a temporal resolution of 14.8 s and a voxel
size of 0.23 x 0.23 x 1.0 mm’. Gd-DOTA concentrations were
calculated from the T;-weighted images by using T; maps
recorded before Gd-DOTA injection as detailed elsewhere (24).
For each voxel, numerical values of K™ (the volume transfer
constant of Gd-DOTA) were determined by using Tofts
generalized pharmacokinetic model (19) and the arterial input
function reported by Benjaminsen et al. (25). The mice were given
gas anesthesia (~4.0% Sevofluran in O2; Baxter, IL, USA) at a flow
rate of 0.51/min and were fixed to the bore during imaging. The
body core temperature was kept at 37°C by automated hot air flow
regulation, and the gas anesthesia was adjusted manually to
maintain a stable respiration rate.

Histogram Analyses

K" histograms were produced by including individual voxel
values of the entire tumor volume. The median, the variance, the
histogram width, and the histogram skewness were calculated
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from K" histograms by using in-house-made software
developed in Matlab (MathWorks, Natick, MA, USA). The
histogram width was defined as the range of values in the
histogram with a frequency > 10% of the maximum frequency.
The parameters variance and histogram skewness were
calculated from the values within the same range.

Haralick Features

Gray level co-occurrence matrices (GLCM) were calculated from
K" maps of the central axial section of each tumor using 8 gray
levels, a distance of 1 mm, and the directions 0° and 90°. The
Haralick features Contrast, Energy, Homogeneity, and Correlation
were extracted from the GLCM as described in detail by Haralick
et al. (17). A description of how the Haralick features should be
interpreted has been provided by Vribik et al. (18). Briefly,
Contrast is a measure of the variation in intensity between a
voxel and its neighbor voxels and is 0 for a perfectly homogeneous
image. Energy (also known as uniformity or the angular second
moment) measures the sum of the squared elements in the GLCM
and ranges from 0 to 1 (1 for a perfectly homogeneous image).
Homogeneity measures how close the distribution of the GLCM
elements is to the GLCM diagonal and is close to 1 when only a few
gray levels are present. Correlation measures how correlated a
voxel is to its neighbor and is 1 or -1 for a perfect positively or
negatively correlated image and 0 for a perfectly homogeneous
image. The GLCM and the Haralick features were computed by
using the functions graycomatrix and graycoprops in the Matlab
Image Processing Toolbox.

The Spatial Gradient Method

Gradients in K™ maps (AK"™" versus distance) were calculated
from peripheral ROIs and from high value ROIs in the central
axial section of each tumor. The peripheral ROIs consisted of a 3-
voxel thick doughnut in the tumor periphery, whereas the high
value ROIs consisted of the voxels with K" values greater than
the 75" percentile. For each voxel in the peripheral or the high
value RO, the difference in K™ (AK™") between the voxel and
a neighbor tumor voxel at a certain distance was measured. AK"*"
versus distance was measured in two directions (0° and 90°) and
averaged for the two directions. Curves showing PRAK™ versus
distance were produced by averaging AK"™" versus distance of all
individual voxels in the peripheral ROIs (PR denotes peripheral
ROI), and curves showing HVRAK™" versus distance were
produced by averaging AK™" versus distance of all individual
voxels in the high value ROIs (HVR denotes high value ROI).
PRAK™" at a distance of 5 mm (PRAKY2™ Yand HVRAK™™™ at a
distance of 2 mm (HVRAKY2S ) were extracted from the curves
and used as parameters for intratumor heterogeneity.

Statistical Analysis

Statistical comparisons of data were carried out by the Student’s t
test when the data complied with the conditions of normality and
equal variance. Under other conditions, comparisons were done
by nonparametric analysis using the Mann-Whitney rank sum
test. The Kolmogorov-Smirnov method was used to test for
normality, and the Levene’s test was used to test for equal
variance. Probability values of P < 0.05, determined from two-

sided tests, were considered significant. The Pearson product
moment correlation test was used to search for correlation
between parameters. Curves were fitted to the data by
regression analysis. The statistical analysis was performed by
using the SigmaStat statistical software (SPSS Science, Chicago,
IL, USA).

RESULTS

Figure 1A shows plots of Gd-DOTA concentration versus time
and the corresponding pharmacokinetic model fits for individual
voxels in representative untreated and sunitinib-treated BxPC-3
tumors and in representative untreated and sunitinib-treated
Panc-1 tumors. The figure illustrates that individual voxels
differed substantially in the uptake of Gd-DOTA, and good
model fits were obtained in voxels with both high and low
uptake. K™ maps and histograms of the representative
tumors are shown in Figure 1B. The intratumor heterogeneity
in K" was substantial in both models, and the range of K"*"
values appeared to be higher in BxPC-3 tumors than in Panc-1
tumors. Furthermore the highest K™ values were generally
found in peripheral regions in both models.

To quantify these qualitative observations and determine
ground truth, the difference between the 25™ and the 75™
K" percentile was measured and used as parameter for K"
range, and K" maps were divided in concentric ROIs to search
for radial heterogeneity (Figure 2). Untreated BxPC-3 tumors
showed a higher K™ range than untreated Panc-1 tumors
(Figure 2A; P < 0.0001). Furthermore, sunitinib-treated BxPC-3
tumors showed a lower K™ range than untreated BxPC-3
tumors (Figure 2A; P = 0.0002), whereas untreated and
sunitinib-treated Panc-1 tumors did not differ in K™ range
(Figure 2A; P > 0.05). Untreated tumors of both models showed
radial heterogeneity in K", i.e. K" was low in central tumor
regions and increased gradually towards the periphery
(Figure 2B). The radial heterogeneity was more pronounced in
untreated BxPC-3 tumors than in untreated Panc-1 tumors.
Sunitinib-treated BxPC-3 tumors showed lower K" values
than untreated BxPC-3 tumors in the peripheral ROIs
(Figure 2B; ROI #4: P =0.0054; ROI#5: P < 0.0001), whereas
the K™ values in the central ROIs did not differ between the
treatment groups (Figure 2B; ROIs #1-3: P > 0.05). This finding
implied that the sunitinib treatment affected the peripheral
regions and was ineffective in the central regions, and
consequently radial heterogeneity in K" was not observed in
sunitinib-treated BxPC-3 tumors. Untreated and sunitinib-
treated Panc-1 tumors did not differ in K™ in any of the
concentric ROIs (Figure 2B; ROIs #1-5: P > 0.05), and thus
showed similar radial heterogeneity.

Parameters derived by histogram analyses are shown in
Figure 3. Untreated BxPC-3 tumors showed higher median
K™ variance K", and K" histogram width than
untreated Panc-1 tumors (Figures 3A-C; P <0.0001), and
untreated Panc-1 tumors showed higher histogram skewness
and thus more asymmetric K™ histograms than untreated
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FIGURE 1 | (A) Plots of Gd-DOTA concentration versus time and the corresponding pharmacokinetic model fits for individual voxels in representative untreated and
sunitinib-treated BxPC-3 tumors and representative untreated and sunitinib-treated Panc-1 tumors. The K™ values of the voxels are labeled in the panels.

(B) K™ maps and histograms of the representative untreated and sunitinib-treated BxPC-3 tumors and the representative untreated and sunitinib-treated Panc-1
tumors. K@ scales are given by the color bars, and median K™ values are indicated by red vertical lines in the K" histograms.
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FIGURE 2 | (A) K" range in untreated and sunitinib-treated BxPC-3 tumors and in untreated and sunitinib-treated Panc-1 tumors. The K@ range represents the
difference between the 25" and the 75™ percentile and was calculated for each tumor. Columns and bars, mean + SEM of 10-20 tumors. (B) llustration of five
concentric regions of interest (ROI #1-5) in the representative untreated BxPC-3 tumor shown in Figure 1, and median in concentric ROIs in untreated and
sunitinib-treated BxPC-3 tumors and in untreated and sunitinib-treated Panc-1 tumors. The concentric ROIs are bounded by lines drawn at distances of nR/5 from
the tumor center, where R is tumor radius and n is ROl number (#1-5). Sunitinib-treated BxPC-3 tumors showed lower K" values than untreated BxPC-3 tumors
in ROI #4 (P =0.0054) and ROI #5 (P < 0.0001), whereas the K™ values in the ROIs #1-3 did not differ between the treatment groups (P > 0.05). Untreated and
sunitinib-treated Panc-1 tumors did not differ in K" in any of the concentric ROIs (ROIs #1-5: P > 0.05). Points and bars, mean + SEM of 10-20 tumors.

Ktrans

BxPC-3 tumors (Figure 3D; P < 0.0001). Furthermore, sunitinib-
treated BxPC-3 tumors showed lower median K™, variance
K™, and K" histogram width than untreated BxPC-3 tumors
(Figures 3A-C; P < 0.002), whereas untreated and sunitinib-

treated Panc-1 tumors did not differ in median K™, variance
K™, or K" histogram width (Figures 3A-C; P > 0.05).
Untreated and sunitinib-treated tumors did not differ in K™
histogram skewness in any of the models implying that the
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treatment did not alter the shape of the K" histograms
(Figure 3D; P > 0.05). Strong correlations were found between
variance K™ and median K™", between K™" histogram
width and median K", and between K"*" histogram
skewness and median K™ for individual tumors (Figure 3E;
R* = 0.87, 0.97 and 0.58; P < 0.0001), questioning whether the
variance, the histogram width, and the histogram skewness
provided additional information to the median value.

Haralick features derived from K"*"° maps are shown in
Figure 4. Untreated Panc-1 tumors showed higher Contrast
and Energy than untreated BxPC-3 tumors (Figure 4; P <
0.0001), whereas the Haralick features Homogeneity and
Correlation did not differ between the PDAC models
(Figure 4; P > 0.05). Furthermore, none of the Haralick
features differed between untreated and sunitinib-treated
tumors (Figure 4; P > 0.05).

Finally, the spatial gradient method was used to quantify
intratumor heterogeneity in the PDAC xenografts. Figures 5A, B
illustrate the spatial gradient method when using a peripheral
ROI. Figure 5A shows K"*™ maps of the representative
untreated BxPC-3 tumor where the tumor voxels are arranged
in the original geometry and rearranged in a perfectly radial
geometry and a random geometry. K"*"* gradients were
measured from voxels in the peripheral ROI (shown in white
color in the original K™ map), and curves showing PRAK""
versus distance were produced by averaging the K**** gradients
of all voxels in the peripheral ROI. Figure 5B illustrates that the
three geometries showed different PRAK™" versus distance
curves. For the perfectly radial geometry, voxels close to the

peripheral ROI were similar to the voxels in the peripheral ROI
(AK™"* = 0), and voxels in the central regions had lower K™"°
values than the voxels in the peripheral ROI (high AK"™"). Thus
PRAK™"S started at 0 (distance = 0 mm), increased towards a
maximum in the tumor center (distance = 5.5 mm), and
decreased towards the periphery on the opposite side (distance =
11 mm). For the random geometry, some voxels had higher values
and others had lower values than the voxels in the peripheral ROI,
and, consequently, PRAK"™" was close to 0 for all distances. The
PRAK"™ versus distance curve for the original geometry was
similar to the PRAK"™" versus distance curve for the perfectly
radial geometry, but the radial trend was less pronounced and
superimposed by some variation.

Figure 5C shows PRAK"™™ versus distance curves for all
untreated and sunitinib-treated BxPC-3 tumors and for all
untreated and sunitinib-treated Panc-1 tumors included in the
study. The figure illustrates that untreated BxPC-3 tumors
showed a radial heterogeneity whereas sunitinib-treated BxPC-
3 tumors did not. Also Panc-1 tumors showed a radial
heterogeneity, and this trend was more pronounced for
untreated than for sunitinib-treated tumors. To quantify these
observations, the parameter PRAKY2S was extracted from the
curves. PRAKI2 was higher for untreated BxPC-3 tumors than
for untreated Panc-1 tumors (Figure 5D; P = 0.0050), and higher
for untreated BxPC-3 tumors than for sunitinib-treated BxPC-3
tumors (Figure 5D; P = 0.0007). Sunitinib-treated Panc-1
tumors tended to have a lower PRAKY™ than untreated Panc-
1 tumors but this difference did not reach statistical significance
(Figure 5D; P > 0.05). No correlations were found between PR
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AKY2S and median K™ for individual tumors (Figure 5E),
implying that this intratumor heterogeneity parameter provided
additional information to the median value.

K™ gradients were also measured from voxels in high value
ROIs (ie. voxels with K™ > 75" percentile). Figures 5F, G
illustrate the spatial gradient method when using high value
ROIs. Figure 5F shows the high value ROIs of the representative
BxPC-3 tumor when the tumor voxels are arranged in the
original geometry, and when the tumor voxels are rearranged
in a perfectly radial and a random geometry. Curves showing
HVRAK"™ versus distance were produced by averaging the
K" gradients of all voxels in the high value ROIs. Figure 5G
illustrates that the HVRAK"™" versus distance curves differed for
the three geometries.

Figure 5H shows HVRAK"™" versus distance curves for all
untreated and sunitinib-treated BxPC-3 tumors and all untreated
and sunitinib-treated Panc-1 tumors included in the study. The
parameter HVRAK}2™ was extracted from the curves to quantify
intratumor heterogeneity, and HVRAK}% was higher for
untreated BxPC-3 tumors than for untreated Panc-1 tumors
(Figure 5I; P = 0.0004). Untreated BxPC-3 tumors showed
higher HVRAKY2YS than sunitinib-treated BxPC-3 tumors
(Figure 5I; P = 0.0022), whereas untreated and sunitinib-treated
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FIGURE 4 | The Haralick features Contrast, Energy, Homogeneity, and Correlation derived from K™ maps of untreated and sunitinib-treated BxPC-3 tumors and
untreated and sunitinib-treated Panc-1 tumors. Columns and bars, mean + SEM of 10-20 tumors.

Panc-1 tumors did not differ in HVRAKY® (Figure 5L P > 0.05).
Figure 5] shows HVRAKS2S versus median K™ for individual
tumors, illustrating that the HVRAK}2:S values were not related
to the median K"*" values and thus provided additional
information to the median K™*" values.

The Haralick features and the parameters derived by the spatial
gradient method consider the spatial location of the individual
voxels. To investigate how these intratumor heterogeneity
parameters are influenced by imaging noise, random noise with
increasing amplitudes was added to K" maps after the tumor
voxels had been rearranged in a perfectly radial geometry. K"
maps rearranged in a perfectly radial geometry were used because
these only showed radial heterogeneity and no random variation,
implying that the level of noise in the maps could be controlled by
the level of random noise that was added to the maps. Figure 6A
shows K™ maps of the representative untreated BxPC-3 tumor
without added noise and with random noise with increasing
amplitudes added to the maps. The Haralick features Contrast,
Energy, Homogeneity, and Correlation were found to be strongly
influenced by the random noise. Thus the parameter values
calculated from maps with added noise differed from the values
calculated from the map without noise, and the deviations
increased with increasing noise amplitudes (Figure 6B).
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FIGURE 5 | (A) K" maps of the representative untreated BxPC-3 tumor shown in Figure 1. The K™ voxel values are shown in the original geometry and
rearranged in a perfectly radial geometry and a random geometry. A peripheral region of interest (ROI) is shown in white color, and the K" scale is given by the
color bar. (B) The K@ gradient measured from the peripheral ROl (PRAK'™" versus distance) for the untreated BxPC-3 tumor in the original, the perfectly radial,
and the random geometry. (C) PRAK"™" versus distance for untreated and sunitinib-treated BxPC-3 tumors and for untreated and sunitinib-treated Panc-1 tumors.
Points and bars, mean + SEM of 10-20 tumors. Dotted line indicate a distance of 5 mm. (D) PRAK"™"™ measured at a distance of 5 mm (PRAKY22 ) in untreated and
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distance for untreated and sunitinib-treated BxPC-3 tumors and for untreated and sunitinib-treated Panc-1 tumors. Points and bars, mean + SEM of 10-20 tumors.
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In contrast, the parameters derived by the spatial gradient
method (PRAKSS and HVRAKY ) were similar independent
of whether they were calculated from the map without noise
or whether they were calculated from maps with added
noise (Figure 6B). These observations imply that PRAKI2 and
HVRAK}2 are less influenced by random noise than the

Haralick features.

DISCUSSION

We chose to evaluate the performance of the spatial gradient
method in PDAC because PDACs are particularly aggressive and
resistant to therapy (20-22). In addition, PDACs show substantial
inter- and intratumor heterogeneity in the physiological tumor
microenvironment, suggesting that the aggressive phenotype may
be a result of highly heterogenous lesions (21, 26). The
microenvironment of PDACs is characterized by a heterogeneous
vessel distribution (21), regions with hypoxic tissue (22), and a
dense and extensive collagen-rich stroma (22). Low microvascular
density has been associated with tumor aggressiveness (27-29), and
high microvascular density in peripheral hot spots has been found
to correlate with poor prognosis, suggesting that highly
heterogeneous vascular supply worsen prognosis (21, 30). It has
also been revealed that poor outcome is associated with severe
hypoxia in the primary tumor (31, 32). Moreover, it has been
suggested that a dense and extensive stroma may cause resistance
to treatment by inhibiting the distribution of chemotherapeutic
agents (26).

Data sets of two PDAC models were used in the current
study, and both untreated and sunitinib-treated tumors were
investigated. The data sets were chosen because they showed
substantial variation in intratumor heterogeneity. Thus untreated
BxPC-3 tumors showed a higher range of K™ values and a more
pronounced radial heterogeneity than untreated Panc-1 tumors.
Furthermore, sunitinib-treated BxPC-3 tumors did not display
radial heterogeneity and showed a lower range of K™ values
than untreated BxPC-3 tumors, whereas sunitinib-treated Panc-1
tumors did not differ from untreated Panc-1 tumors in radial
heterogeneity or K™ range. The biology behind the differences in
K™ between BxPC-3 and Panc-1 tumors has been described
previously (23, 33, 34). Importantly, we have shown BxPC-3 and
Panc-1 tumors have several microenvironmental features in
common with human PDACs, including a histological appearance
characterized by a dense collagen-rich extracellular matrix (34, 35).
Furthermore, the numerical values of microvascular density and the
hypoxic tumor fraction of BxPC-3 and Panc-1 tumors are similar to
those reported for human PDACs (35), implying that BxPC-3 and
Panc-1 tumors should be highly relevant models for evaluating the
performance of the spatial gradient method.

The data sets were also chosen because they showed low levels
of imaging noise. DCE-MRI was performed on a state-of-the-art
7-T preclinical scanner, and MR-sequences with a relatively low
time resolution were chosen to ensure a high signal-to-noise
ratio. In addition, the tumor-bearing mice were anaesthetized
and fixed during imaging to minimize motion that could
generate imaging noise. Importantly, we demonstrated that the
level of noise in the DCE-MRI series was sufficiently low to
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produce good pharmacokinetic model fits for individual voxels
with both high and low uptake of contrast agent, in all tumor
groups. It is highly advantageous to use data sets with low levels
of imaging noise because noise can conceal small differences in
biological variation.

To evaluate novel and established methods to quantify
intratumor heterogeneity, a strategy of three steps was used.
First, parameters derived by the methods were compared with
the ground truth. Thus, we investigated whether the parameters
were able to detect tumor line differences as well as treatment-
induced changes in K™ range and the radial heterogeneity
assessed by concentric ROIs. Second, the parameters were
compared with the median K™ to evaluate whether the
parameters provided additional information to the median,
and third, the sensitivity of the parameters to imaging noise
was investigated by adding random noise to K"*" maps.

The spatial gradient method was used to measure gradients in
K™ maps, and the parameters derived from the gradient curves
were sensitive to tumor line differences as well as treatment-
induced changes. Importantly, the parameters provided additional
information to the median, and were not substantially altered
when random noise was added to the K™ maps. Spatial gradients
were measured from both peripheral and high value ROIs.
Gradients measured from peripheral ROIs are highly useful for
describing the heterogeneity in tumors with a radial geometry,
whereas gradients measured from high value ROIs may be used to
measure intratumor heterogeneity also in tumors with a more
complex geometry.

The intratumor heterogeneity parameters PRAKL? and
HVRAKYS were measured at a distance of 5 mm from the
peripheral ROIs and at a distance of 2 mm from the high value
ROIs respectively. These distances are similar to the radius and
half the radius of the tumors included in the study. In tumors
with a different size, it may be beneficial to measure at other
distances. However, the spatial gradient curves of the tumor
groups presented here differed for a large range of distances,
implying that it is not crucial to find the optimal distance to
detect tumor line differences or treatment-induced changes in
intratumor heterogeneity.

None of the parameters derived by histogram analyses
considered the spatial location of the individual voxels, and
consequently, the histogram-derived parameters were insensitive to
differences in radial heterogeneity. The variance and the histogram
width mirrored the K™ range in untreated and sunitinib-treated
tumors, but the parameters were strongly correlated to the median
K™, questioning whether the parameters provided additional
information to the median. The histogram skewness differed
between untreated BxPC-3 and Panc-1 tumors but was insensitive
to sunitinib-induced effects. Thus, the histogram analyses provided
less information on intratumor heterogeneity than the spatial
gradient method.

The Haralick features Contrast and Energy were higher in
Panc-1 tumors than in BxPC-3 tumors. However, these findings
were not consistent because the higher Contrast implied that
Panc-1 tumors were more heterogeneous than BxPC-3 tumors
whereas the higher Energy implied that Panc-1 tumors were

more homogeneous than BxPC-3 tumors (18). Furthermore,
none of the Haralick features were sensitive to the sunitinib-
induced effects, and we demonstrated that the Haralick features
were severely influenced by random noise. The data sets used in
the current study have low levels of imaging noise, but despite
this, the Haralick features were unable to detect tumor-line
differences and treatment-induced changes in intratumor
heterogeneity. It is thus unlikely that the Haralick features can
be used to quantify intratumor heterogeneity in DCE-MRI-
derived images of human tumors obtained in unanaesthetized
patients using standard clinical scanners where the level of
imaging noise is expected to be substantially higher than in the
data sets used here. Interestingly, the spatial gradient method was
less influenced by random noise and superior to the Haralick
features for quantifying intratumor heterogeneity in untreated
and sunitinib-treated xenografts, suggesting that the spatial
gradient method may be applied in DCE-MRI-derived images
of human tumors also.

In the current study, the spatial gradient method was used to
measure intratumor heterogeneity in K"** maps. K"™" is
generally determined by the blood perfusion and the vessel
permeability surface-area product (19, 36), but in tumors with
high vessel permeability, the uptake of small-molecular-weight
contrast agents has been shown to be limited by the blood
perfusion rather than the vessel permeability (37-39). We have
previously found strong correlations between median K**"* and
vessel density and between median K" and hypoxic fraction in
BxPC-3 and Panc-1 tumors, implying that K™ reflected blood
perfusion in these models (23, 34). The spatial gradient method
may also be used to quantify intratumor heterogeneity in other
medical images sensitive to blood perfusion and hypoxia,
including maps derived by diffusion-weighted MRI (DW-MRI),
blood oxygen level dependent MRI (BOLD), tissue oxygen level
dependent MRI (TOLD-MRI), and oxygen-enhanced MRI
(OE-MRI) (40-42), as well as images derived by dynamic
computed tomography (D-CT) and positron emission
tomography (PET) (43). The biological interpretation of
intratumor heterogeneity as well as the level of imaging noise
may differ markedly for the different imaging modalities and
should be investigated carefully in novel studies.

The spatial gradient method may also be used to assess changes
in intratumor heterogeneity induced by others treatments than
sunitinib. For treatments targeting tumor angiogenesis and tumor
vasculature such as treatments with antiangiogenic drugs or
vascular disrupting agents (44, 45), it may be beneficial to assess
intratumor heterogeneity in K™ maps. For treatments targeting
tumor cells without affecting the tumor vasculature, it may be more
beneficial to assess intratumor heterogeneity in other medical
images (1). By assessing treatment-induced changes in intratumor
heterogeneity, tumor subregions that respond differently to the
treatment may be identified. Detection of poorly responding
regions can be important because these regions may repopulate
the tumor even if the treatment completely eradicates the tumor
mass in other regions (1, 3).

In summary, the spatial gradient method presented in this
communication was sensitive to tumor line differences as well as
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treatment-induced changes in spatial heterogeneity, provided
additional information to the median value, and was not
confounded by random noise. In contrast, Haralick features
were highly sensitive to random noise and insensitive to spatial
heterogeneity even in data sets with low level of imaging noise.
Histogram analyses did not provide information on spatial
heterogeneity, but provided information on the range of K***
values. However, the parameters derived by histogram analyses
were strongly correlated to median K™" and thus did not
provide additional information to the median. In conclusion,
the spatial gradient method was superior to the Haralick method
and histogram analyses for quantifying spatial heterogeneity in
K" maps of untreated and sunitinib-treated tumors, and can
possibly be used to quantify spatial heterogeneity in other
medical images and to evaluate effects of other treatments as well.
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