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Objective: To report the first use of a novel projected augmented reality (AR) system in
open sinonasal tumor resections in preclinical models and to compare the AR approach
with an advanced intraoperative navigation (IN) system.

Methods: Four tumor models were created. Five head and neck surgeons participated in
the study performing virtual osteotomies. Unguided, AR, IN, and AR + IN simulations were
performed. Statistical comparisons between approaches were obtained. Intratumoral cut
rate was the main outcome. The groups were also compared in terms of percentage of
intratumoral, close, adequate, and excessive distances from the tumor. Information on a
wearable gaze tracker headset and NASA Task Load Index questionnaire results were
analyzed as well.

Results: A total of 335 cuts were simulated. Intratumoral cuts were observed in 20.7%,
9.4%, 1.2,% and 0% of the unguided, AR, IN, and AR + IN simulations, respectively
(p < 0.0001). The AR was superior than the unguided approach in univariate and
multivariate models. The percentage of time looking at the screen during the
procedures was 55.5% for the unguided approaches and 0%, 78.5%, and 61.8% in
AR, IN, and AR + IN, respectively (p < 0.001). The combined approach significantly
reduced the screen time compared with the IN procedure alone.

Conclusion:We reported the use of a novel AR system for oncological resections in open
sinonasal approaches, with improved margin delineation compared with unguided
techniques. AR improved the gaze-toggling drawback of IN. Further refinements of the
AR system are needed before translating our experience to clinical practice.

Keywords: augmented reality, intraoperative navigation, surgical margins, sinonasal tumors, surgical
margin delineation
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INTRODUCTION

The complex anatomy and close proximity of critical structures
in the sinonasal region represent a major challenge for surgeons
when treating advanced tumors in this location, and incomplete
resections are not uncommon, both in open and endoscopic
approaches (1, 2). Intraoperative navigation (IN) has been
proposed as a potential strategy to improve surgical margins
(3). IN enables co-registration of computed tomography (CT)
and/or magnetic resonance imaging (MRI) studies with surgical
instruments. As a result, real-time feedback of instrument
location is provided in order to help the surgeon during
the operation.

Our group has recently published an advanced IN system for
open sinonasal approaches during the resection of locally
aggressive cancers (4). This technology not only allows the
surgeon to locate a registered instrument or pointer tool in two
dimensions but also introduces planar cutting tool capabilities
along with three-dimensional (3D) volume rendering. Therefore,
the surgeon can anticipate the direction of the cutting instrument
in 3D planes with respect to the tumor and improve accuracy of
margin delineation. Still, one key drawback of all IN systems is
that the information is displayed outside the surgical field, and
therefore surgeons are forced to switch their gaze between the
actual procedure and the navigation monitor, which can impact
safety and efficiency.

Augmented reality (AR) uses visual inputs to enhance the
user’s natural vision and therefore can integrate navigation
information onto the surgical field (5). This feature can
potentially address the gaze-toggling drawback of IN and at
the same time provide valuable information to the surgeon, for
example, facilitating tumor localization and delineation. Reports
of AR in otolaryngology–head and neck surgery are scarce, and
most of them come from endoscopic sinus surgery (6), transoral
robotic surgery (7), and otology (8, 9). Nevertheless, open
sinonasal procedures also represent an adequate indication for
AR. The rigid structure of the sinonasal region facilitates the co-
registration processes required for AR, and the high rates of
incomplete resections in advanced sinonasal tumors could be
improved with the use of this technology.

The objective of this study was to report the first use of a novel
AR system in open sinonasal tumor resections in preclinical
models and to compare an AR approach with an advanced IN
navigation system.
MATERIALS AND METHODS

Tumor Models
Two artificial skulls (Sawbones®) and a moldable material
(Play-Doh®) mixed with acrylic glue were employed to build
four locally advanced sinonasal tumor models (Figure 1A).
Tumor surfaces were disguised with tape. Five different areas
to be osteotomized were delineated: palatal osteotomy (Pa),
fronto-maxillary junction (FMJ), latero-inferior orbital rim
(LIOR), zygomatic arch (Zy), and pterygomaxillary junction
(PMJ) (Figure 1B).
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Image Acquisition and Tumor Contouring
Cone-beam computed tomography (CBCT) scans acquired 3D
images of the skull models (9). Tumors showed higher x-ray
attenuation than the artificial bone (Figure 1C). Tumor
contouring was performed semiautomatically (10). First, a
global threshold was applied to provide a quick, coarse
segmentation, and then manual refinement was used to
smooth the segmentation (Figure 1D).

Advanced Intraoperative Navigation System
An in-housenavigation softwarepackage,GTx-Eyes, processedand
displayed the CBCT images (11). This software has been proven
useful in a breadth of surgical oncology subspecialties (12–15), and
the technical aspects are described elsewhere (16). Tumor and
margin segmentations were superimposed on triplanar views and
also shownas3Dsurface renderings (Figure 2A). Tool trackingwas
achieved by a stereoscopic infrared camera. Image-to-tracker
registration was obtained by paired-point matching of predrilled
divots in the skull by means of a tracked pointer. A four-sphere
reference toolwas drilled to the skull. A fiducial registration error of
≤1 mm was deemed acceptable. A three-sphere reference was
attached to an osteotome and calibrated. This advanced IN
system allows visualization of the entire trajectory of the cutting
instrument with respect to the tumor in 3D views (Figures 2B–D,
Supplementary Video).

Augmented Reality System
The AR system was composed of a portable high-definition
projector (PicoPro, Celluon Inc., Federal Way, WA, USA), a
stereoscopic infrared camera (Polaris Spectra, NDI, Waterloo,
ON, Canada), a USB 2.0M pixel generic camera (ICANWebcam
2MP, China), and a laptop computer (M4500, Precision laptop,
Dell, Round Rock, TX, USA). A custom-made 3D printed case
was fabricated to anchor a four-sphere reference tool and contain
the other elements of the AR system (Figure 3). The technical
details of this system including the kinematic transformation,
reference system, and conventional image-to-tracker registration
method have also been described elsewhere (17).

TheAR systemwas registered into a single coordinate systemby
pairing correspondent landmarks using fiducial markers
identifiable in both the images and projection surface (Figure 4).
GTx-Eyes provided the 3D surface rendering of the tumors, which
were projected by the AR system onto the skulls. The virtual tumor
was delineated with CBCT imaging through ITK-SNAP software
(ref below). The optical sensor mounted to the projector case
facilitated real-time tracking of the AR device to allow the
projector and/or skull to be repositioned during tasks without
compromising projection accuracy (Supplementary Video), with
a registration error <1 mm. This approach facilitated identification
of the tumors and in consequence guided the virtual cuts of the
participants (Supplementary Figure S1).

Gaze-Tracking System
A wearable gaze tracker headset was developed to continuously
monitor and locate the user’s gaze (e.g., surgical field vs.
navigation monitor) during surgical tasks. This headset was
used solely for gaze-tracking and did not project any
November 2021 | Volume 11 | Article 723509
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information. The eye tracker (Pupil Labs, Berlin, Germany)
consists of two cameras: one trained on the eye and the other,
a “world camera”, recording the individual’s field of view.
A series of computer vision algorithms are applied to the input
from the eye camera to reliably detect the pupil throughout the
eye’s range of motion. A calibration step provides a triangulating
mapping function between the pupil and world cameras, which
enables the user’s gaze to be precisely tracked (Figures 5A–D).

Simulations
Five head and neck fellowship-trained surgeons with 3–5 years of
experience in oncologic ablations from the Department of
Otolaryngology–Head and Neck Surgery of the University
Health Network participated in the simulations.

Surgeons were instructed to position the osteotome between
the delineated areas of the different osteotomy sites in a
sequential order (Pa-FMJ-LIOR-Zy-PMJ) and to provide a
1-cm margin from the tumor along the plane trajectory.
Frontiers in Oncology | www.frontiersin.org 3
Instead of cutting the skulls, virtual cuts were performed in
order to allow the reutilization of the models. This involved
recording the osteotome position and orientation in the
navigation software after the surgeon placed the osteotome in a
certain direction and provided confirmation of obtaining the
proposed cut. The analysis was performed on the virtual cutting
trajectory after all the simulations were completed.

Four procedures were performed: 1) Unguided using axial,
sagittal, coronal images; 2) Guided -AR-; 3) Guided -IN-; and
4) Guided -AR and IN-. This last group was possible, as both
systems are contained in the same platform software and can be
used simultaneously. Analysis of cutting planes was performed
using MATLAB software. An area of 4 cm × 2 cm (1 cm on both
sides with respect to the longitudinal axis) along the longitudinal
axis of the cut was isolated from each plane. The minimal distance
with respect to the tumor surface was calculated for each point
making up the isolated area and reproduced as a distribution of
distances shown as a 4 cm× 2 cmcolor scaled image.Distance from
FIGURE 1 | Tumor models, image acquisition, and tumor contouring. (A) Artificial skulls with moldable material simulating advanced sinonasal tumors. (B) Final
tumor model, with the tumors covered with white tape. The areas to be osteotomized are delineated with visible tape and marked with numbers. A four-sphere
reference tool drilled to the skull to co-register the intraoperative navigation. (C) Higher attenuation of the artificial tumor models in the cone-beam computed
tomography (CBCT) images. (D) Three-dimensional (3D) contouring of the left tumor.
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the tumor surface was classified as “intratumoral” when ≤0 mm,
“close”when>0mmand≤5mm, “adequate”when>5mmand≤15
mm, and “excessive” when >15 mm. The percentages of points at
intratumoral, close, adequate, and excessive distances were
calculated for each simulation plane.

The gaze-tracking system was calibrated to each participant,
and it was used in all the simulations. The eye-tracking data were
analyzed to identify each time point the participants switched
their gaze between the navigation monitor and the surgical field.
The metric reported is the percentage of total study time spent
looking at the navigation monitor.

Finally, a NASA Task Load Index (NASA-TLX) questionnaire
that measures the workload of a task was completed by the
participants to evaluate the different approaches (18). This
questionnaire is widely used and validated and rates the perceived
workload to assess a task, system, or other aspects of performance
(19–21). It has been employed to assess the workload of new
technologies during surgical procedures (22). The total workload
is divided into six subjective subscales, which assess mental,
physical, and temporal demand, performance, effort, and
frustration. Scores range between very low and very high.

Statistical Analysis
Statistical analysis was run through XLSTAT® (Addinsoft®,
New York). Simulations were grouped into four categories:
unguided, AR, IN, and AR + IN. Rate of intratumoral virtual
Frontiers in Oncology | www.frontiersin.org 4
cuts was the main outcome and was assessed with the Fisher’s
exact test. Multivariable analysis adjusting for surgeon and
tumor was performed through logistic regression analysis. The
groups were also compared in terms of percentage of
intratumoral, close, adequate, and excessive distances from the
tumor and duration of the simulations through the bilateral
Kruskal–Wallis test and Steel–Dwass–Critchlow–Fligner post-
hoc test. The Kruskal–Wallis test was also employed to analyze
the gaze-tracking outcomes and the NASA-TLX scores. Level of
significance was set at 0.05 for all statistical tests.
RESULTS

Intratumoral Cuts
A total of 335 cuts were simulated. Intratumoral cuts were
observed in 20.7%, 9.4%, 1.2%, and 0% of the unguided, AR,
IN, and AR + IN simulations, respectively (p < 0.0001).
Univariate analysis comparing different procedures with AR
showed that this technology improved margins with respect to
unguided simulations. The advanced IN approach reduced the
intratumoral cut rates compared with AR, and the combination
of AR and IN did not significantly decrease the intratumoral cut
rate compared with IN alone (p = 0.51). These differences were
also seen in a multivariate model adjusted for tumor and
surgeon (Table 1).
FIGURE 2 | Advanced intraoperative navigation system. (A) Setup of the system, depicting the triplanar cutting views and the three-dimensional (3D) rendering of the
tumor on the screen. The skull and the cutting instrument (in this case an osteotome) are referenced to be tracked and co-registered. (B–D) The system allows users to
visualize cutting trajectories of the instrument with respect to the tumor. (B) Cutting of the latero-inferior orbital rim, (C) pterygomaxillary junction, and (D) palate.
November 2021 | Volume 11 | Article 723509

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sahovaler et al. Augmented Reality in Sinonasal Cancers
Distribution of Points Forming
Simulation Planes
The percentage of points forming the simulation planes was also
registered. We observed that only the advanced IN system and the
combined approach significantly decreased the percentage of
intratumoral (p < 0.0001) and close margin points (p = 0.008)
comparedwith theunguidedresections (SupplementaryTableS1).

Duration of Simulations and Gaze-
Tracking Results
Mean total duration of the simulation was 215 s for unguided
procedures and 117, 134, and 120 s in the AR, IN, and AR + IN,
respectively. Participants required significantly more time to
Frontiers in Oncology | www.frontiersin.org 5
perform the unguided simulations compared to the AR- and
IN-guided ones (p = 0.004). There were no differences between
the AR-, IN-, and AR + IN-guided procedures. The percentage
of time looking at the screen during the procedures was 55.5%
for the unguided approaches and 0%, 78.5%, and 61.8% in AR,
IN, and AR + IN, respectively (p < 0.001). Adding the AR
technology to the combined approach significantly reduced the
screen time compared with the advanced IN procedures alone
(Supplementary Table S2).
NASA-TLX Scores
We found no differences in scores between the unguided and the
AR procedures, and both of them exhibited a high degree of
mental demand, effort, and frustration. Combining AR to IN
showed a significant improvement on the previous scores
(Supplementary Graph 1 and Supplementary Table S3).
DISCUSSION

In this study, we observed that both advanced IN and AR
technologies improved margin delineation compared with
unguided procedures. Advanced IN was better for margin
delineation than AR but required gaze-toggling between the
surgical field and the navigation monitor, whereas AR allowed the
surgeon to focus only on the surgicalfield. The combination of both
technologies partially improved the flaws on margins and staring
outside the surgical field of the AR and IN techniques, respectively.
The integration of AR and IN also improved Mental Demand,
Performance, Effort, and Frustration domains in the NASA-
TLX questionnaires.

Margin control is among themost important prognostic factors
and the only surgeon-controlled variable in head and neck cancer,
and efforts have been centered around obtaining clearmargins after
tumor resections. Nevertheless, positive surgical margins represent
amajor issue, even in the hand of experienced surgeons. In a report
from the largest tertiary referral head and neck cancer center in the
Netherlands, 39%outof69resectionsofadvancedmaxillary tumors
(>T3) were incomplete, being posterior and superior margins the
most commonly involved (23). In a bi-institutional study from the
ClevelandClinic and theUCSanFrancisco (24), 24%out of 75post-
maxillectomy patients had positivemargins in definitive pathology.
Positive margins were associated with a 2-fold increase of risk of
death, and in multivariate analysis after controlling for age, nodal
stage, and surgical treatment, margins were independently
associated with survival (25). Moreover, it has been reported that
intraoperative frozen sections (which are probably the only
intraoperative resource to evaluate adequacy of the resection)
have only 40% sensitivity in open sinonasal approaches (26).

Currently, IN is employed in many centers in endoscopic
sinonasal procedures (27–29). By point-tracking an instrument
and locating it on two dimensions in triplanar views, IN has shown
an increase in accuracy anda reduction inoperative time, impacting
favorably surgical outcomes and complications. Utilization of IN in
open procedures to resectmalignant tumors has been less reported,
but promising results were obtained in margin status in small
FIGURE 3 | Augmented reality system mounted and projecting.
TABLE 1 | Intratumoral cuts analysis.

INTRATUMORAL CUTS AND TYPE OF PROCEDURE

Intratumoral cut/Guidance Unguided AR IN AR+IN

No 65 77 83 84
Yes 17 8 1 0
Total 82 85 84 84
Percentage 20.7% 9.4% 1.2% 0.0%

UNIVARIATE ANALYSIS OF INTRATUMORAL CUTS
Guidance OR 95%-CI p-value
AR REF REF REF
Unguided 2.44 1.00-5.02 0.049
SN 0.16 0.03-0.97 0.046
AR+SN 0.05 0.00-0.97 0.047

MULTIVARIATE ANALYSIS OF INTRATUMORAL CUTS
Guidance Adjusted* OR 95%-CI p-value
AR REF REF REF
Unguided 2.54 1.05-6.17 0.039
SN 0.16 0.03-0.88 0.035
AR+SN 0.06 0.00-0.81 0.035
AR Augmented reality, IN intraoperative navigation, OR odds ratio, *Adjusted by tumor
model and surgeon.
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FIGURE 4 | Projection of the four sinonasal tumors using augmented reality, which enables tumor localization. The alignment points are depicted as well as the three-
dimensional (3D) reconstruction of the tumors. Pictures were taken without light for demonstration purposes, but good visualization is obtained with light as well.
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cohorts (3, 30, 31). Our group has recently published a preclinical
experience utilizing the same advanced IN system used in the
present study to assist in open sinonasal approaches (4). The
main novelty is that our advanced IN system allows surgeons not
only to track the desired instrument but also to visualize the entire
cutting trajectory of a tracked cutting tool in 3D. In our previous
experience using this technology, eight head and neck surgeons
performed 381 simulated osteotomies for the resection of seven
tumor models. The use of 3D navigation for margin delineation
significantly improvedcontrol ofmargins: unguidedcuts had18.1%
intratumoral cuts compared to 0% intratumoral cuts with 3D
navigation (p < 0.0001). Furthermore, a clinical study using this
advanced IN system for mandibulectomies demonstrated a <1.5-
mm accuracy between the planned cuts and the actual bone
resection in the post-resection imaging (15). One of the main
criticisms to the system by the surgeons in this report was the
multitasking challenge between the surgical field and the IN
monitor, which can ultimately impact not only efficiency but also
patient safety, as the surgeon has to look away from the
surgical field.

AR enhances the surgeon’s vision rather than replacing it: CT,
PET-CT, or MRI scans can be visualized in 3D and in real time,
granting “X-ray vision” to the physician (32, 33). It has recently
gained interest by computer-assisted surgery researchers, as it
integrates the imaging information onto the surgical field. This
has the potential to overcome the main drawback of the IN
technology, which stems from the frequent switching of focus
Frontiers in Oncology | www.frontiersin.org 7
from the navigation screens to the surgical field and the
translation of 2D imaging data to a 3D anatomical structure (33).
Despite having reports on AR application in the field of
otolaryngology–head and neck surgery, the majority describe the
use of AR using wearable computers (Microsoft HoloLens®,
Microsoft Corporation, Redmond) and other head-mounted
displays (HMDs), which might be cumbersome especially in long
procedures, and preclude the use of loupes/headlights. There are
literature reports aboutHMDlimitations includingheaviness of the
devices, breaches in patient privacy/information, battery life,
potential lag time secondary to preoperative image processing,
and the potential of signal interferences of wireless Internet or
Bluetooth connections that may cause intermittent data
transmission of image (34). Moreover, most reports of HMD rely
solely on the operator visual alignment between the projected
images and the anatomical area of interest (35) without any co-
registration steps between the projecting surface and theARsystem,
which can lead to errors. Lastly, there are descriptions of the use of
AR in the operating room, but they are merely descriptive and not
aimed to improve a surgical task (36) or for educational purposes
only (37).

Our study reports several innovations. Tracking the AR
projector as well as the projection surface with reflecting
markers allowed us to be able to reposition the skull models and
the projector without losing accuracy (17, 38), and this is
something that was not described previously in head and neck
surgery. This is paramount in computer-assisted surgery, as it
FIGURE 5 | (A) Gaze-tracking system with the two cameras that allow it to visualize the pupils and also the participant’s view. (B) The device placed on one of the
participants. (C, D) The “world camera” showing the participant’s view, which could be either on the screen (C) or on the surgical field (D). The green dot indicates
the exact position of the gaze. A small picture-in-picture screen (upper left) shows the position of the pupil.
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allows precise projection even when movement occurs, as in real-
time situations in the operating room. Another key aspect of our
approach is the use of an external projector, which avoids the need
for heavy wearable headsets. As a clarification, the headsets used in
our study were for gaze-tracking only. The sinonasal/skull base
region rigidity represents an excellent indication for AR, as the
deformation of tissue is minimal and co-registration is facilitated.
Deformation has to be taken into consideration during soft-tissue
resections, as it is not possible to adjust the projections during AR
(7, 39). By tracking the gaze of the participants, we were able to
quantitatively measure the percentage of time that the surgeons
had to look away from the surgical field. As our results suggest,
there is significant improvement when AR is employed both alone
or in combination with IN, addressing the main disadvantages of
IN utility. Our AR system shares the same software platform as the
advanced IN system, and both approaches can be used
concurrently, allowing to evaluate the combination of both.
Finally, there is a lack of user evaluation analysis with AR, so we
utilized a validated questionnaire to investigate the differences
between approaches.

Despite being significantly superior than unguided simulations
in terms of intratumoral cut rates, there is roomfor improvement in
ourAR system.The advanced IN technology performed better than
the AR in terms of intratumoral cut rates, as well as intratumoral
and close distribution of points forming the simulation planes. This
might be explained by the challenge in finding the correct angle
between the projector and the projecting surface.We observed that
if the angle differed greatly from 90 degrees, the image can be
distorted and therefore lead to inaccuracies in surgical guidance to
the operator. For example, when performing the PMJ cuts, by
turning the skull 180 degrees, there were cases that the alignment
was lost thatmight have impacted thepositivemargin cuts.Another
important limitation is that the sense of depth can be lost in the
projections, and the image can be interpreted in 2D on the surface
rather than in 3D, especially with changes in ambient light.One last
limitation of image projection is the parallax issue (40). This
phenomenon occurs when there is a 3D space non-alignment
between the viewer and the projection perspectives. Our system
minimizes this issue by adjusting the perspective of the pico-
projector close to the surgeon’s sight. In addition, the AR system
is fully integrated into our intraoperative navigation system with
real-time tracking technology; therefore, the relocation/movement/
displacement of the projector will not affect projection accuracy,
with no need for further recalibration and registration procedure.
These limitations were also reflected on the NASA-TLX scores,
where mental demand, effort, and frustration rates for AR were
higher than those for IN and similar to those of unguided
approaches. Participants commented on the fact that when the
adequate angle of projection was lost, they had difficulties
interpreting the information from the AR system, which
negatively impacted the aforementioned domains of the NASA-
TLXquestionnaire.Aplausiblewayof improving theseflaws, and in
consequence improving the margin delineation, is to project the
cutting trajectory usingAR. Similar to the advanced IN capabilities,
the AR could further incorporate the intended cut trajectories on
the surgical field, in addition to its projection of the tumor for
Frontiers in Oncology | www.frontiersin.org 8
localization. We also acknowledge the limitations of using
preclinical models that may not perfectly replicate the conditions
of the operating room. Lastly, another limitation is the non-
randomization of the simulated cuts. This was done in order to
prevent the participant’s retained memory of the guided views if
seen prior to the unguided cuts. Still, the fact that the sequence
unguided-AR-IN-AR + INwas followed by all surgeons could have
resulted in some degree of learning effect by the participants toward
the end of the tasks.
CONCLUSION

We reported the use of AR for open sinonasal approaches and
improvedmargin delineation comparedwith unguided techniques.
The advanced IN performed better in terms of margin delineation,
but the AR improved the gaze-toggling drawback of IN. Further
research within our group is currently underway before translating
our experience to clinical practice.
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Supplementary Video | Advanced Intraoperative Navigation system
showing the entire cutting trajectory with respect to the tumor, and the
Augmented Reality system providing the exact location of the tumor. The co-
registration of the skull and the projector in the Augmented Reality system
allows the image to be accurately projected and automatically adjusted
despite movements.
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