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Memory T cells include T memory stem cells (TSCM) and central memory T cells (TCM).
Compared with effector memory T cells (TEM) and effector T cells (TEFF), they have better
durability and anti-tumor immunity. Recent studies have shown that although TSCM has
excellent self-renewal ability and versatility, if it is often exposed to antigens and
inflammatory signals, TSCM will behave as a variety of inhibitory receptors such as PD-1,
TIM-3 and LAG-3 expression, and metabolic changes from oxidative phosphorylation to
glycolysis. These changes can lead to the exhaustion of T cells. Cumulative evidence in
animal experiments shows that it is the least differentiated cell in the memory T lymphocyte
system and is a central participant in many physiological and pathological processes in
humans. It has a good clinical application prospect, so it is more and more important to
study the factors affecting the formation of TSCM. This article summarizes and prospects
the phenotypic and functional characteristics of TSCM, the regulation mechanism of
formation, and its application in treatment of clinical diseases.
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INTRODUCTION

Immunotherapy has become one of the most promising strategies in cancer treatment, and has
shown good efficacy in clinical trials (1). In particular, chimeric antigen receptor-engineered T cells
(CAR-T) can specifically and effectively kill tumor cells, bringing new hopes for the treatment of
patients with malignant tumors (2–7). However, whether it is traditional immune cell therapy or
new CAR-T cells and T-cell receptor T cells (TCR-T) therapy, all are based on terminally
differentiated effector T (TTE) cells, making it difficult to exert long-lasting anti-tumor effects in
the body (8). Adoptive T cell therapy (ACT) is the in vitro expansion and reinfusion of tumor-
reactive T cells, and is a potential treatment method for the treatment of advanced cancer (9–14). In
infections and cancers, T lymphocytes expand and differentiate into effector cells and memory cells
that clear pathogens. These cells can survive for a long time and ensure that they have a protective
effect against pathogens when they are re-attacked by antigens (15). Human T lymphocytes are
generally divided into naive T cell (TN), central memory T cell (TCM), effector memory T cell (TEM)
and effector T cell (TEFF). In 2005, in the study of graft versus host disease (GVHD) in mice, a group
of special memory T cell subsets with super proliferation and differentiation ability was observed for
the first time. It produces persistent graft-versus-host disease, which the researchers named “stem
like memory T cells” (TSCM) (16). Studies have shown that adoptively infused young T cells can
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self-renew and differentiate in mice, having the ability to survive
for a long time, and exhibit significantly better anti-tumor
capabilities than TTE cells. The progressive differentiation of T
lymphocytes leads to a gradual loss of function and therapeutic
potential. These studies suggest that poorly differentiated
immune cells may have more application potential in clinical
treatment (17–21).

TSCM cells have great potential in overcoming the limitations of
current T cell-based immunotherapy (22–24). In mouse tumor
models and human hematopoietic stem cell transplantation
(HSCT) patients, TSCM cells have higher antitumor activity and
survival rate. However, the proportion of TSCM cells in peripheral
blood is low, which limits its application in immunotherapy. In
this review, we summarize the latest findings, and discuss in depth
the phenotype, function, differentiation mechanism and clinical
application of memory T cells. It is hoped that using the
therapeutic potential of TSCM cells for adoptive immunotherapy
provides new ideas. The conceptual work and key discoveries that
formed this field of investigation are shown in Figure 1 (25–38),
which mainly summarizes the main discoveries in the process of
TSCM cell research in recent years and the new research on the
occurrence and development of diseases, some of which are
introduced in articles.
PHENOTYPIC AND FUNCTIONAL
CHARACTERISTICS OF MEMORY
T CELLS

TSCM is a T cell subset with self-renewal ability and
pluripotency potential. This group of memory T cells can
Frontiers in Oncology | www.frontiersin.org 2
play the role of acquired immune function in the process of
the body’s fight against viruses or tumors (36, 39). T cell
populations are classified by some surface markers, and
distinguished according to their functions and sources, and
the production of their effector cytokines. Memory T cells can
be divided into TCM and TEM. TEM cells and TCM cells circulate
in the blood and target the secondary lymphoid tissues. The
degree of differentiation of TCM cells is lower than that of TEM

and effector cells, and its telomeres are found to be longer, and
the expression of perforin, granzyme and other effector
molecules is lower (40). In addition, the TSCM pool should be
limited to lymph nodes and secondary lymphoid organs, which
are T cells that have antigen experience. The current research
results also show that TCM has the function of T memory stem
cells. TCM has stronger immune replacement ability and
stronger survival ability in vivo than TEM cells. TSCM is
developed from naive T cells in a resting state. It is a group
of cells between TN and TCM. It also has the characteristics of
TN cells and memory T cells (TM), and then differentiates into
TCM and TEM. Good et al. (41) used single-cell mass cytometry
to track the proliferation history of T cells. By analyzing the
changes in phenotype and protein expression of T cells at
different times and in different division states, it assisted in
confirming the T cell differentiation theory: TN ! TSCM !
TCM! TEM. It is worth noting that only naive T cells and TSCM

cells can reconstruct the heterogeneity of the entire memory T
cell subset. At present, malignant tumors are one of the
important diseases threatening human health, and there is
no effective method to treat them. Due to their own
characteristics, TSCM cells have shown their strong potential
for tumor therapy.
FIGURE 1 | Key discoveries on TSCM cells. GVHD, graft versus host disease; TSCM cells, T memory stem cells; HTLV-1, human T cell lymphotropic virus type 1; HIV-1,
human immunodeficiency virus type 1; CAR-T, chimeric antigen receptor-engineered T cells; AML, acute myeloid leukemia; HSCT, hematopoietic stem cell transplantation.
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According to the different expressions of cell surface
chemokine receptor (CCR7) and lymph node homing
molecules (CD62L), memory T cells are divided into TCM

and TEM. TCM highly expresses CCR7 and CD62L, homing to
secondary lymphoid organs, but low expression in TEM, which
preferentially transports to peripheral tissues and mediates
rapid effector functions. TSCM cells express naive cell
phenotypes (CD45RA, CD62L, CCR7, CD95, CD27, CD122),
and are characterized by rapid response to antigens, expression
of a variety of effector molecules, and generation of memory
effector cells. CD45RA+ is closely related to its memory ability.
Naive cells express two molecules CD27 and CD45RA at the
same time. Memory and effector cells only express CD27 or
CD45RA respectively. TSCM cells highly express IL-2, IFN-g,
TNF-a, Bcl- 2. IL-7 and other molecules related to early
differentiation of T cells, low expression of CD57 and other
molecules related to T cell senescence, showing stronger
degranulation ability and the ability to produce inflammatory
cytokines. Recent studies have found that by detecting the
expression of CD122 or CXCR3 in healthy people by flow
cytometry, the TSCM CD122hi-expressing subset demonstrate
greater proliferation, greater multipotency and enhanced
polyfunctionality with higher frequencies of triple positive
(TNF-a, IL-2, IFN-g) cytokine-producing cells upon exposure
to recall antigen. The cell proliferation and multifunctional
cytokine production of the TSCM CXCR3lo population are also
significantly increased (42). Loss of CXCR3 promotes stem-like
memory precursor differentiation (43). According to these
surface markers, TSCM cells can be accurately distinguished.
TSCM cells represent a subset of minimally differentiated
T cells, which are characterized by phenotypic and
functional characteristics that connect naive and conventional
memory cells.

The above mainly describes the surface markers of human T
cell subsets. In addition to the specific T cell receptor (TCR), both
human and murine TSCM express common markers of memory
T cells (mouse CD62L, human CCR7, human CD45RO), and
anti-apoptotic marker molecules (Bcl- 2), the cytokine receptor
markers related to survival and proliferation CD122 (co-receptor
of IL-2, IL-7 and IL-15) and CD127 (IL-7 receptor), stem cell
marker (Sca-1). Human and murine T cell subsets are defined by
different phenotypes (16, 27) (Table 1).
Frontiers in Oncology | www.frontiersin.org 3
DEVELOPMENT OF TSCM CELLS

Manipulation to Produce TSCM Cells
in (Ex) Vivo
The relative scarcity of circulating TSCM cells limits their use in
tumor therapy, which has led to manufacturing protocols that
expand this cell type in vitro. As an important participant in the
function of T cells, cytokines play an important role in the
maintenance and expansion of TSCM subset. Recently reported
related cytokines that can promote TSCM expansion are shown
in Figure 2. A large number of studies have shown that adding
different cytokines to the immune cell culture system can make
it differentiate into memory or effector T cells (44–47). gc-
cytokine IL-2, as a T cell growth factor, is still the most common
cytokine used to expand therapeutic T cell products for patients
(29, 48–50). gc-cytokine IL-2, as a T cell growth factor, is still
the most common cytokine used to expand therapeutic T cell
products for patients. However, high IL-2 levels reduced the
overall production of early memory T cells by reducing central
memory T cells and augmenting effectors. The number of early
memory T cells in the T cell subset could be increased by simply
reducing the amount of IL-2 (51). In the in vitro expansion
process, repeated use of IL-2 to stimulate T cells would also
cause T cell depletion and reduced T cell persistence (52). IL-7
could also promote the proliferation of TSCM cells by down-
regulating the expression of programmed cell death protein 1
(PD-1) and Foxp3, and promoted the ability of CD4+ T cells to
produce IFN-g, IL-2, TNF-a and granzyme B. The involvement
of STAT5 in IL-7-induced polyfunctionality, this the
polyfunctional phenotype driven by IL-7 is associated with
increased histone acetylation effector gene promoters and
reveals previously unknown characteristics of IL-7 (53–56).
The current study, CAR-T cells expanded in IL-15 (CAR-T/
IL-15) preserved a less-differentiated TSCM phenotype, defined
by expression of CD62L+CD45RA+CCR7+, as compared to cells
cultured in IL-2 (CAR-T/IL-2). What’s more, CAR-T/IL-15
cells exhibited reduced expression of exhaustion markers,
higher anti-apoptotic properties, and increased proliferative
capacity when it was attacked by antigens (57). The combined
use of IL-7 and IL-15 can preserve the TSCM phenotype and
enhance the effectiveness of CAR-T cells (11, 29, 58–61). IL-21
was critical for the long-term maintenance and functionality of
TABLE 1 | Phenotypic markers of memory T cells.

Subset Phenotype (Human) Phenotype (Mice) Characteristics

TN CD45RA+,CD45RO-,CCR7+,CD62L+,CD127+,CD122+,CD27+,CD44-,CD28+,CD43-,CD95-,
CD57-,CD58-,CD11a-,(IL-7Ra)+,CXCR3-,(IL-2Rb)-

CD44-, CD62L+, CCR7+, CXCR5-,
CXCR3-

Multidirectional
differentiation ability

TSCM CD45RA+,CD45RO-,CCR7+,CD62L+,CD127+,CD122+,CD27+,CD44+/-,CD28+, CD43-,
CD95+,CD57-,CD58+,CD11a+,(IL-7Ra)+,CXCR3+,(IL-2Rb)+

CD44-, CD62L-,(Sca-1)+,CD122+,
(Bcl-2)+,CCR5+,CXCR3+

Self-renewal capacity
and multipotency

TCM CD45RA-,CD45RO+,CCR7+,CD62L+,CD127+,CD122+,CD27+,CD44+,CD28+, CD43-,CD95+,
CD57-,CD58+,CD11a+,(IL-7Ra)+,CXCR3+,(IL-2Rb)+

CD44+, CD62L+, CCR7+ Long-lasting immune
memory

TEM CD45RA-,CD45RO+,CCR7-,CD62L-,CD127+,CD122+,CD27+/-,CD44+,CD28+/-,CD43+/-,
CD95+,CD57+/-,CD58+,CD11a+,(IL-7Ra)+/-, CXCR3+,(IL-2Rb)+

CD44+, CD62L-, CCR7- Immediate effector
function

TTE CD45RA-,CD45RO-,CCR7-,CD62L-,CD127+,CD122-,CD27-,CD44-,CD28-,CD43+,CD95+,
CD57+,CD58+,CD11a+,(IL-7Ra)-,CXCR3-,(IL-2Rb)+

CD44-, CD62L+ Terminally differentiated
effector T cells
September 2021 | Vo
“+” positive expression; “−” negative expression; TN, naive T cell; TSCM, stem cell memory T cell; TCM, central memory T cell; TEM, effector memory T cell; TTE, terminal effector T cell.
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CD8+T cells and the control of chronic lymphocytic
choriomeningitis virus (LCWV) infection in mice. In the
process of chronic infection, cell-autonomous IL-21 receptor
(IL-21R)–dependent signaling by CD8+ T cells was required for
sustained cell proliferation and cytokine production (62, 63).
IL-21 also can promote the generation of TSCM cells. It activates
the Janus kinase signal transducer and activator of transcription
3 pathway by upregulating signal transducer and activator of
transcription 3 phosphorylation and thereby promoting the
expression of T-bet and suppressor of cytokine signaling 1,
while decreasing the expression of eomesodermin (Eomes) and
GATA binding protein 3 (64). In the absence of IL-10, IL-21 or
STAT3, virus-specific CD8+ T cells (VSTs) maintain the
terminal effect (TE) differentiation state and couldn’t mature
into self-renewing TCM cells. The maturation of protective
memory T cells and memory CD8+ T cell precursors was an
active process that depended on the IL-10-IL-21-STAT3 signal
(64, 65). Whether the formation of TSCM depends on this
pathway still needs further research, but it provides new ideas
for subsequent research. Lactate dehydrogenase (LDH)
inhibition combined with IL-21 could increase the formation
of TSCM cells, thereby producing more profound antitumor
responses and prolonging the survival time of the host (66). In
addition, a new study found that by fusion of IL-21 to anti-PD-
1 antibody, IL-21 can target tumor-reactive T cells to promote
TSCM production. PD-1Ab21 therapy has shown greater
antitumor effects in established tumor-bearing mice (67). At
present, a large number of experiments have confirmed that
these cytokines can promote the production of TSCM and have
potential antitumor effects. However, the mechanism of using
Frontiers in Oncology | www.frontiersin.org 4
cytokines, drugs and checkpoint blockade to promote the
differentiation of memory T cells remains to be studied.

Oxidative Metabolic Pathway of TSCM Cells
The naive T cells in the circulation are quiescent and have low
metabolic requirements. They mainly use oxidative
phosphorylation (OXPHOS) to produce ATP (53, 68).
Generally speaking, differentiated T cells use glycolysis to
proliferate, while memory T cells tend to use fatty acid
oxidation (FAO)-dependent oxidative phosphorylation
(OXPHOS) to produce ATP, which helps to perform long-
lasting antitumor response in the tumor microenvironment
(69–74). In the tumor microenvironment, tumor cells inhibit
the metabolic reprogramming of T cells by competitively using
glycolysis, so that the formation of memory T cells is inhibited
(75, 76). It is reported that important transcription factors and
cytokines, as well as MEKi and other inhibitors in the process of
T cell differentiation, induce the generation of TSCM by
regulating T cell-related metabolic enzymes (77–79) (Figure 3).

Signals from TCR, costimulatory molecules, and growth
factors lead to the activation of signaling pathways that
promote transcriptional programs that are critical to effector
function (80–82). In memory T cells, cellular stress, such as
growth factor deprivation or a low ratio of ATP/AMP, will
activate AMP-activated protein kinase (AMPK) and inhibit
mTOR signaling (83). IL-15 also showed a similar function
(57, 83).

Good et al. (41, 84) have proved through a large number of
experiments that blocking the mTOR pathway by adding inhibitors
can allow T cells to differentiate towards TSCM-like cells, such as ITK
FIGURE 2 | Several strategies to induce the generation of TSCM. Activating T cells (CAR-T cells, TCR-T cells, TILs, VSTs) with anti-CD3/CD28 antibodies and co-
cultivating them with cytokines or combined with PD-1 and LDH can promote the production of TSCM cells and change the expression levels of related anti-apoptotic
proteins and metabolic molecules. In addition, the expression of TNF-a, IFN-g, IL-2 and Granzyme B also increased significantly.
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(IL-2-inducible T-cell kinase), TWS119 and BTK (Bruton’s tyrosine
kinase) inhibitors. In addition, the glycolytic function of TSCM cells
is reduced, and different inhibitors promote the in vitro generation
of TSCM-like cells with unique metabolic characteristics and retained
polyfunctionality. It is worth noting that the drug-induced TSCM
cells have superior functional characteristics and self-renewing
capacity after adoptive transfer. The research compound Akt
inhibitor VIII inhibits AKT in vitro, which can preserve the
differentiation and function of minor histocompatibility antigen
(MIHA)-specific CD8+ T cells. Moreover, transcriptome profiling
revealed that AKT-inhibited CD8+T cells clustered closely to
naturally occurring stem cell-memory CD8+ T cells. Moreover,
AKT-inhibited MiHA-specific CD8+ T cells showed increased
polyfunctionality with co-secretion of IFN-g and IL-2 upon
antigen recall (79). Glycerol channel aquaporin 9 (AQP9)
deficiency could impair the entry of glycerol into memory CD8+

T cells for fatty acid esterification and triglyceride (TAG) synthesis
and storage. While IL-7 could induce expression of the AQP9 in
virus-specific memory CD8+ T cells, but not naive cells. AQP9 is
essential for their long-term survival. TAG synthase could restore
the survival of lipid storage and memory T cells through ectopic
expression, and it was found that TAG synthase is the central
component of IL-7-mediated survival of human and mouse
memory CD8+ T cells (75). Three transcription factors, BAZ1B,
PSIP1 and TSN, could regulate the level of L-arginine and promoted
the survival of T cells. Activated T cells transform from glycolysis to
oxidative phosphorylation, which promotes the production of TSCM
with higher survival ability and has antitumor activity in mouse
models (85). Recent new studies have found that TSCM induced by
Frontiers in Oncology | www.frontiersin.org 5
Meki/2 inhibition (Meki) has a natural phenotype, self-renewal
ability, and enhanced pluripotency and proliferation. It is also
achieved by regulating metabolism without affecting T cell
receptor-mediated activation. DNA methylation analysis showed
that Meki-induced TSCM cells exhibited plasticity and loci-specific
profiles, similar to those of TSCM truly isolated from healthy donors,
and had similar characteristics to naive and TCM cells. Meki
treatment of tumor-bearing mice also showed strong immune-
mediated antitumor effects (86). These studies indicate that the
regulation of glycolysis and metabolism is the key factor in inducing
the formation of TSCM. Therefore, targeted metabolic checkpoints
canmake T cells differentiate intomemory and provide more young
T cells for immunotherapy (74, 81, 82, 86).

The Molecules of Exhausted T Cells
T cell exhaustion is a phenomenon widely observed in humans.
TSCM or CAR-modified TSCM expresses high levels of PD-1,
TIM-3 or CTLA-4 after infiltrating the tumor, indicating that
they have become exhausted T cells. Mostly due to T cell
exhaustion and dysfunction by continuous TCR and cytokine
stimulation. In addition, the effect of immune checkpoint
inhibitors is very dependent on endogenous T cell function.
However, they cannot reverse the exhaustion of T cells in cells
that have undergone epigenetic changes. Therefore, this limits
the long-term efficacy and wide application of cancer
immunotherapy. Therefore, an in-depth understanding of the
mechanism of T cell exhaustion is necessary for the study of
TSCM and its better clinical application. The term “ exhausted T
cells” was originally derived from a mouse model of LCMV. It is
FIGURE 3 | Influencing factors regulating oxidative metabolism of TSCM Cells. Inhibit glycolysis through different pathways and promote fatty acid oxidation (FAO)-
dependent oxidative phosphorylation (OXPHOS). AQP9, Glycerol channel aquaporin 9; AMPK, AMP-activated protein kinase; TAG, triglyceride; mTORC1, Rapamycin
Complex 1.
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now widely used to define the dysfunction state of T cells under
chronic infection or tumor-induced long-term high antigen load
stimulation (87). Enhanced and sustained T cell receptor
stimulation is a key driver of T cell exhaustion. In recent years,
the definition and identification of exhausted T cells have been
divided from phenotype to transcriptional and epigenetic levels
(88–90). Exhausted T cells are characterized by increased
expression levels of inhibitory receptors such as PD-1, LAG3,
2B4, TIM-3 and CD28, and the gradual loss of effector functions,
including impaired ability to secrete IFN-g and tumor necrosis
factor (91–95). PD-1 is mainly expressed on the surface of
activated T cells and can inhibit T cell activation and
proliferation. It is an important immunosuppressive molecule
that plays an important role in suppressing immune responses
and promoting self-tolerance (96–98). Programmed cell death
ligand 1 (PD-L1) is a transmembrane protein, which is mainly
expressed on the surface of antigen-presenting cells (APCs) such
as dendritic cells (DCs), and can also be expressed on the surface
of cancer cells and tumor infiltrating lymphocytes (TIL) (99–
102). TOX is a nuclear DNA binding protein. TOX plays an
important role in the development of thymus CD4+ T cells, NK
cells and intrinsic lymphocytes, and is critical in the
differentiation of tumor-specific T cells. Recent studies have
described the important role of TOX in the differentiation of
exhaustive CD8+ T cells and its molecular mechanism. It is
unanimously found that the high expression of TOX is related to
the high expression of a variety of inhibitory receptors (PD-1,
TIM-3, TIGIT, CTLA-4, etc.) and the low expression of TCF1
(103). So inhibiting TOX expression may hinder the exhaustion
of T cells (104–109). Many laboratories have identified a kind of
exhausted T cell precursors (TPEX), which highly express
molecules related to memory T cells, such as TCF1. TCF1 is a
transcription factor and histone deacetylase (HDAC), which is
related to the formation of T cell memory. Through single-cell
RNA sequencing (scRNA-seq) and lineage tracing, the
TCF1+Ly108+PD-1+CD8+ T cell population was identified. It
was found that PD-1 stabilized the TCF1+TeX precursor cell pool
and confirmed that PD-1 was this early stage protector of the
TCF1 population (91, 110). Exhaustion first appeared in TCF1+

precursor T cells and then spread to the antigen-specific T cell
pool. These findings will be important in the future to further
investigate the developmental relationships in the later stages of
exhaustion (111, 112).

At present, the specific mechanism of T cell exhaustion has
not been fully elucidated. T cell exhaustion may be a parallel
process with T cell differentiation. T cells at any stage of
differentiation can be induced into exhausted T cells, which
involves changes in different phenotypes and molecules.
Excessive stimulation of precursor cells may be the origin of T
cell failure. Under chronic infection or long-term tumor antigen
stimulation, memory T cells and exhausted T cell precursors
show different differentiation characteristics. Whether there is a
link between the differentiation between these two subgroups
should be a priority research area in the future. The possible
potential developmental trajectories of exhausted T cells are
shown in Figure 4.
Frontiers in Oncology | www.frontiersin.org 6
At present, drugs for T cell exhaustion are still in the
laboratory research or clinical trial stage. By reducing T cell
exhaustion to promote the self-renewal ability and
polyfunctionality of TSCM cells (Table 2). Therefore, we do not
know how to regulate the exhaustion process of T cells and
reverse the exhausted state. Is it feasible to reach a certain effector
state, and will there be side effects? Whether TSCM can be
designed to be exhaustion resistant? In general, the molecular
mechanism of TSCM cell formation is very complicated, and we
describe them as clearly as possible in the review. More and more
evidence supports the therapeutic potential of targeting
exhausted T cells (115–118). We have already begun to
understand the molecular mechanism of T cell exhaustion and
early memory formation. Transforming exhausted T cells into
rejuvenated TSCM cells is the goal of our research.
CLINICAL APPLICATION

The Antitumor Effect of TSCM
TSCM cells are the least differentiated cells located at the top of the
memory T lymphocyte hierarchy system. Compared with other
T cells, they have stronger self-renewal ability and anti-tumor
ability (84, 119, 120). As early as in previous studies, it has been
found that TSCM is considered a key determinant of immune
memory and is involved in diversification of immune memory
after allogeneic HSCT (32, 33). Play an important role in adult T-
cell leukemia (34). With the FDA approval of CAR-T cell therapy
for hematological malignancies, ACT has become a hot spot of
continuous attention (63, 121–128). The clinical application of
TSCM cells is hindered because they are relatively rare in the
circulation. According to reports, the CAR-T cell-modified TSCM

was cocultured with IL-2, IL-7 or IL-15 and then injected
intravenously into tumor-bearing mice. It was found that the
CAR-T/IL-15 group have the best anti-tumor effect (57). Guan
et al. (129) prepared allogeneic antigen-specific CD8+ TSCM. It
showed a proliferation history and rapidly differentiated into
effector cells upon the E007 [the EB virus (EBV) transformed B
lymphoblastoid cell lines (LCLs)] re-stimulation. Importantly,
the prepared TSCM cells could survive for a long time and
reconstituted other T cell subsets in vivo, and could effectively
eliminate E007 cells after being transferred to LCL burden mice.
KUN et al. (120) presented a novel tumor therapeutic modality
of the cryo-thermal therapy. After 90 days of cryo-thermal
therapy, it can enhance the cytolytic function of CD8+ T cells,
induce CD8+ T cells to differentiate into TSCM, and CD4+ T cells
to differentiate into dominant CD4- CTL, Th1 and TFH subets.
Cryo-thermal therapy not only inhibits lung metastasis, but also
promotes the regression of implanted melanoma and prolongs
survival time (35, 130, 131). It was found that after antigen
chimeric modification of TSCM, CD19-specific CAR T cell
adoptive transfer has a significant antitumor effect on leukemia
and lymphoma, and the therapeutic potential seems to be related
to persistence in vivo (128, 129, 132, 133).

In SIP (an ex-vivo culture system modeled after the temporal
changes of essential cytokines in an acute infection), TIL in the
September 2021 | Volume 11 | Article 723888
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TABLE 2 | Key discoveries in the formation of induced culture TSCM.

Year Authors Discovery

2013 Nicoletta Cieri et al. IL-7 and IL-15 instructed the generation of human memory stem T cells from naïve precursors (29).
2016 Lenka V. Hurton et al. IL-15 could maintain the long-term persistence of CAR-T modified TSCM (48, 57).
2016 Godehard Scholz et al. Promote the generation of TSCM by inhibiting the mTORC1 pathway (39, 84).
2016 Alvarez-Fernandez, C

et al.
IL-21, IL-7 and IL-15 could effectively promote the generation of TSCM under short anti-CD3/CD28 costimulation (113).

2017 T aisuke Kondo et al. Coculture of activated T cells and stromal cells expressing Notch ligand could produce TSCM cells with low expression of inhibitory
receptors (89).

2017 TANJA KAARTINEN
et al.

Simply reducing the amount of IL-2 could promote the generation of TSCM (51).

2018 Charlotte M. Mousset
et al.

AKT inhibitors promoted the in vitro generation of TSCM-like CD8+ T cells with a unique metabolic profile and retained polyfunctionality
(79).

2018 Taisuke Kondo et al. The coculture of activated T cells with IL-7, IL-15 and op9-hdll1 cells could effectively generate TSCM cells (58).
2018 Yingshi Chen et al. IL-21 promoted the generation of TSCM cells more effectively than other common g-chain cytokines (64).
2020 Taisuke Kondo et al. The Notch-foxm1 axis played a key role in the metabolism of CAR-T modified TSCM (74).
2020 Dalton Hermans et al. LDH inhibition combined with IL-21 increase the formation of TSCM cells (66).
2020 Pilipow, K et al. Promote the formation of TSCM by adding antioxidants (114).
2021 Ying Li et al. IL-21 fusion anti-PD-1 antibody promoted the generation of TSCM (67).
2021 Vivek Verma et al. Meki was confirmed to induce reprogramming of CD8+ T cells into TSCM (86).
Frontie
rs in Oncology | www.fron
Op9-hdll1, op9 cells expressing notch ligand, delta-like 1; Foxm1, forkhead box m1.
FIGURE 4 | Possible developmental trajectory of exhausted T cells and the comparison and relationship with memory or effector T cells. Under continuous antigen
stimulation, T cells transform from precursor exhausted cells into terminally exhausted T cell populations, which mainly depends on the expression of the
transcription factor TCF-1, accompanied by the high expression of a variety of inhibitory receptors. The relationship between the differentiation of T cell subsets and
exhausted T cells remains to be explored. PD-1, PD ligand 1; TCF1, T cell factor-1; TIM-3, T-cell immunoglobulin domain and mucin domain protein 3; LAG-3,
lymphocyte activation gene 3; TOX, thymocyte selection-associated high-motility group (HMG) box protein.
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bone marrow of patients diagnosed with acute myeloid leukemia
(AML) was treated with similar SIP, and it was found that these
lymphocytes can be re-transformed into mutant CD45RA+

central memory T lymphocytes (TCMRA) with similar
characteristics of TSCM. The expression of pro-inflammatory
cytokines, TNF-a, IFN-g and IL-2 increased, and TCMRA also
exhibited cytotoxicity against autologous AML blast cells (134).
In addition, similar effects have been shown in the treatment of
Hodgkin’s lymphoma. It showed a survival advantage, had
higher tumor invasion and enhanced antitumor effect (133).
Tumor immunotherapy is a promising treatment method.
Transfect antigen-specific TCR gene or CAR vector to TSCM to
obtain CAR-T cells with poor differentiation and greater
proliferation ability (135–139). A clinical trial study found that
the genetically modified TSCM can survive in the body for up to
12 years and has good safety and function (140). Recent studies
have found that through integration site analysis, it is possible to
study the fate of different types of CAR-T cells in patients, and it
has been observed that TSCM plays a central role in the early anti-
leukemia response and late immune surveillance (38). This
shows that this small portion of T cells is critical to the long-
term success of CAR-T cell therapy. This new insight may help
us improve CAR-T cell therapy and find out which patients are at
higher risk of recurrence, and may benefit from stem cell
transplantation after CAR-T cell therapy.

To date, CAR-T cells have achieved remarkable results in the
treatment of hematological malignancies. However, despite
extensive research, CAR-T cells have not been so successful in
the treatment of solid tumors (141). Therefore, how to increase
the trafficking and extravasation of T cells to the tumor sites and
encourage the proliferation of T cells in the tumor is a problem
that needs to be solved urgently. TSCM have been shown to
eradicate large tumors even when limited numbers of cells were
transferred (28). Studies have found that chimeric T cells with
multiple antigens may be a new direction for the treatment of
solid tumors (71, 141, 142). At present, there are relatively few
reports on the treatment of solid tumors with CAR-T-modified
TSCM, so it is more challenging for CAR-T-modified TSCM to
target solid tumors. The future should be a priority research area.
In summary, memory T cell subsets have good clinical
application prospects in clinical antitumor immunotherapy,
and can provide personalized treatment plans for improving
the prognosis of patients (134, 143). In short, these studies
provide a strong scientific basis and practical methods for the
rapid advancement of TSCM cells in clinical trials of human
adoptive immunotherapy.
The Importance of TSCM in HIV-1
Immunotherapy and Vaccine Research
TSCM cells play a key role in the pathogenesis of human
immunodeficiency virus (HIV) infection (30, 144–146). The
exhaustion of these cells will lead to the deterioration of the
immune system and the development of AIDS. HIV-1 is an
important part of the virus reservoirs. During HIV-1 infection,
CD4+ TSCM cells are confirmed to be the longest-lived HIV-1.
Frontiers in Oncology | www.frontiersin.org 8
Virus storage is one of the factors that cause persistent HIV-1
infection (147, 148). Therefore, CD4+ TSCM cells can be used as a
new target to clear the HIV-1 virus reservoir. The virus-latent
cells are mainly concentrated in CD4+ TSCM. CD4+ TSCM

expresses lower levels of CCR5, but can still support the
production and latent infection of R5-tropic HIV-1 (149, 150).
In addition, CD4+ TSCM is highly permissible for VSV-G-HIV-1
virus infection in vitro, and expresses relatively low levels of
intracellular viral restriction factors, such as SAMHD1,
Trim5alpha, and APOBEC3G. Moreover, these restriction
factors can prevent HIV-1 from replicating in myeloid and
dendritic cells (151–153). It was found that the CD4+ TSCM of
untreated HIV-1 infected persons contained high levels of HIV-1
RNA, which all indicated the sensitivity of CD4+ TSCM cells to
HIV-1. The study also found that in patients undergoing
antiretroviral therapy (ART), CD4+ TSCM cells also have viral
DNA that can be activated. Moreover, among the subsets of
CD4+ T memory cells, the number of HIV-1 DNA in TSCM cells
is the highest. During HIV infection, T cells play an important
role in controlling virus replication. In patients receiving
inhibitory antiretroviral therapy, CD8+ TSCM with stem cell
characteristics was found to be more abundant than untreated
patients (154). In addition, prolonging the treatment time can
increase the ratio of CD8+ TSCM, and preferentially secrete IL-2
under viral stimulation, indicating that CD8+ TSCM is an
important part of the cellular immune response to HIV-1.
Able to maintain long-term, non-antigen-dependent cellular
immune memory for HIV-1, which plays a key role in HIV
control, but it seems unable to survive and proliferate during
untreated infections (149). It is worth noting that HIV-1 specific
CD8+ TSCM cells may not directly participate in the antiviral
process, but play a role by secreting IL-2 to maintain their own
proliferation and differentiation (155–157). Recent studies have
found that vaccination of the subtype C prophylactic HIV-1
vaccine candidate can induce more TSCM and antiviral.
Compared with MVA alone and placebo, it induces more
peripheral CD8+ TSCM cells and a higher level of CD8+ T cell-
mediated inhibition of the replication of different HIV-1
branches can respond to acute HIV infection or effectively
control the chronic replication of HIV (152). Recently, a cross-
sectional study of 20 cases of HIV-infected patients on treatment
alone and 20 cases of ART has revealed a new subset of CD4+ T
cells: follicular regulatory T cells (TFR). The TFR of HIV+

patients had anti-apoptotic properties, high proliferation rate
and TSCM-like properties, which leaded to the expansion of TFR,
which in turn leaded to the dysfunction of TFH. Therefore, TFR
cells may also become a new and potential therapeutic target for
the treatment of HIV infection (158). How to target TSCM

therapy to provide new ideas for the development of new
strategies for HIV-1 vaccines and immunotherapy still needs to
continue to be explored and studied.

TSCM and Autoimmune Diseases
TSCM cells provide long-term protective immunity for anti-
tumor immunity, which is probably based on reactivity to self-
antigens. Therefore, as a by-product of antitumor, TSCM-
September 2021 | Volume 11 | Article 723888
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mediated autoimmunity is inevitable (18, 159). Recent related
studies have reported that TSCM cells are associated with a variety
of autoimmune diseases. Systemic lupus erythematosus (SLE) is
a chronic connective tissue disease involving multiple organs that
occurs in young women. Compared with healthy controls, the
percentage of CD4+ and CD8+ TSCM cells in SLE patients
increased significantly. Differentiated TFH cells increase the
antibodies produced by their own B cells. TSCM cells play a
role in the pathogenesis of SLE by maintaining TFH cells (132).
Moreover, compared with healthy controls, the CD4+ TSCM of
rheumatoid arthritis (RA) patients increased significantly (160).
In the presence of IL-6, TCRs are easily activated to produce
inflammatory cytokines. TSCM cells may be a continuous source
of the pathogenicity of RA (161). In patients with immune
thrombocytopenia (ITP), the ratio of CD4+ and CD8+ T cells in
the peripheral blood is unbalanced. The percentage of CD8+ TSCM

in peripheral blood of ITP patients was significantly reduced after
glucocorticoid treatment, indicating that the imbalance of the
ratio of CD8+ TSCM may be involved in the occurrence and
development of ITP (162). In addition, the frequency of acquired
aplastic anemia (AA) CD8+ TSCM after immunosuppressive
treatment was significantly higher than that of healthy controls.
The frequency of CD8+ TSCM is also elevated in patients with
autoimmune uveitis or sickle cell disease (130). B-cell-specific
CD8+ TSCM cells with high expression of glucose transporter 1
(GLUT1) can be detected in T1D patients. WZB117, a selective
inhibitor of Gult-1, effectively inhibits TSCM cells in type 1
diabetes (T1D) patients by inhibiting glucose metabolism (53).
Long-term autoreactive or abnormally activated TSCM cells may
induce self-renewing inflammatory cell responses. Studies have
found that rapamycin (mTORC1 inhibitor) is outstanding in the
treatment of autoimmune diseases (163). The above studies
Frontiers in Oncology | www.frontiersin.org 9
indicate that TSCM may be a potential therapeutic target for
these autoimmune diseases. The possible role of TSCM cells in
other diseases with severe cellular immune response, such as
autoimmune hepatitis, thyroiditis, and certain types of
glomerulonephritis, is currently unclear, but represents a
priority research area in the future.
CONCLUSION

TSCM is a long-lived memory cell with self-renewal ability and
multi-differentiation potential. Different subsets of memory T cells
can be identified based on their surface markers, gene expression
profiles, and metabolic methods. At the same time, clinical-grade
memory T cells can be obtained through in vitro induction and
culture for cell transfer. The formation of memory T cells in the
body has been confirmed in pre-clinical trials. The genetically
modified TSCM can survive in the body for up to 12 years and has
good safety and function (140, 164). Convincing evidence in mice
and humans shows that TSCM cells are an important tool for
adoptive immunity in tumor immunotherapy (143, 162). On the
contrary, it is precisely because of their powerful immune
reconstruction ability that they play a double-edged role in
human diseases, and they are also potential therapeutic targets
for autoimmune diseases and HIV (Figure 5). However, there are
still many problems that need to be solved, elucidating the
molecular mechanism of maintaining the phenotype of TSCM

cells and the influence of epigenetic modification, how to obtain
a sufficient number of clinical grade TSCM for induction culture.
The infused TSCM cells are easily affected by the immune
microenvironment and are difficult to exert antitumor effects,
and how the TSCM cells target the tumor site to kill tumor cells is a
FIGURE 5 | Target TSCM cells to treat human diseases. TSCM cells can exacerbate human disease. Left, treat TSCM-driven diseases, such as autoimmune diseases,
HIV, etc., by blocking the production of TSCM. The expression of CCR5 promotes the infection of TSCM cells with HIV. Viral restriction factors and vaccines can target
TSCM cells to treat HIV. Blocking the mTORC1 pathway promotes the self-renewal and differentiation of TSCM. Right, TSCM cells are expanded in vitro by adding
cytokines, CAR modification, immune checkpoint blocking, and gene editing. Stars represent cells latently infected with HIV.
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problem worthy of attention at present. CAR-modified TSCM cells,
although there is good preclinical evidence that they have anti-
tumor activity, when they are intravenously infused into solid
tumor patients, they still lack persistence and efficacy (71, 133,
142). At the same time, it is worth noting that a single treatment
method cannot effectively eliminate tumor cells. Immune cell
therapy should be combined with PD-1 monoclonal antibody,
CTLA-4monoclonal antibody or radiotherapy, chemotherapy and
other treatment methods, so that patients can get better efficacy
(165). TSCM has long existed in the HIV-1 virus reservoir, so future
research is necessary to determine whether the low virus
accumulation in TSCM cells represents a significant feature of
HIV-1 infection. More effort is needed to clarify the changes
between the different states of TSCM cells in health and disease.
Although significant progress has been made in tumor therapy,
there is still a gap in our understanding of the role of TSCM cells in
autoimmunity and viral infections.
Frontiers in Oncology | www.frontiersin.org 10
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