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Objectives: This study aims to evaluate digital mammography (DM), digital breast
tomosynthesis (DBT), dynamic contrast-enhanced (DCE), and diffusion-weighted (DW)
MRI, individually and combined, for the values in the diagnosis of breast cancer, and
propose a visualized clinical-radiomics nomogram for potential clinical uses.

Methods: A total of 120 patients were enrolled between September 2017 and July 2018,
all underwent preoperative DM, DBT, DCE, and DWI scans. Radiomics features were
extracted and selected using the least absolute shrinkage and selection operator (LASSO)
regression. A radiomics nomogram was constructed integrating the radiomics signature
and important clinical predictors, and assessed with the receiver operating characteristic
(ROC) curve, calibration curve, and decision curve analysis (DCA).

Results: The radiomics signature derived from DBT plus DM generated a lower area
under the ROC curve (AUC) and sensitivity, but a higher specificity compared with
that from DCE plus DWI. The nomogram integrating the combined radiomics signature,
age, and menstruation status achieved the best diagnostic performance in the
training (AUCs, nomogram vs. combined radiomics signature vs. clinical model,
0.975 vs. 0.964 vs. 0.782) and validation (AUCs, nomogram vs. combined radiomics
signature vs. clinical model, 0.983 vs. 0.978 vs. 0.680) cohorts. DCA confirmed the
potential clinical usefulness of the nomogram.

Conclusions: The DBT plus DM provided a lower AUC and sensitivity, but a higher
specificity than DCE plus DWI for detecting breast cancer. The proposed clinical-
radiomics nomogram has diagnostic advantages over each modality, and can be
considered as an efficient tool for breast cancer screening.
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INTRODUCTION

Breast cancer has been a major concern and the second leading
cause of cancer death among women (1). The prevalence of
breast cancer has increased in the recent years, mainly due to the
implementation of an early screening mammography (2).
Although there is still no effective way to prevent breast
cancer, studies have shown that early detection and treatment
can increase the chance of full recovery for the patients (3).

Digital mammography (DM) using 2D technique, as a widely
used tool for detecting breast cancer, has a serious limitation that
the visibility of lesions may be decreased since they are frequently
obscured by dense fibroglandular and other normal tissues
within the breast (4), which often leads to a missed diagnosis
or misdiagnosis (5). To address this issue, digital breast
tomosynthesis (DBT) rotates the X-ray tubes in a limited
angle, thus allowing an improved identification of anomalies
obscured by normal tissues (6, 7). Therefore, the DBT is
commonly considered to be capable of decreasing the recall
rates and increasing the detection rates for breast cancer
compared with DM (8). Magnetic resonance imaging (MRI), as
another popular tool for breast screening, has been demonstrated
to be very sensitive in detecting breast cancer (9). While, the
relative low specificity of MRI screening may lead to a high rate
of overtreatment (10). Besides, the high examination fees of MRI
also hinder the clinical application in early breast screening.

In the clinical practice, the diagnosis of breast cancer based on
DM, DBT, or MRI mainly relies on visual inspections of the
morphological changes of breast lesions, including size, shape,
and gray level changes, and, thus, require experienced clinicians
to make decisions. Previous reports have compared the diagnostic
capabilities of DM with DBT (11, 12) and mammography with MRI
(13, 14), all based on subjective visual examinations and the lack of
quantified assessments. Recently, the radiomics-based computer
aided diagnosis (CAD) has received increasing attention due to its
quantitative advantages (15, 16). By using automated data
characterization algorithms, the radiomics can extract and select
discriminative and quantified features from a region of interest,
which were shown to reflect biological information regarding the
tumor and were highly correlated with disease status (17).
Subsequent analysis, including statistics, machine learning
classifiers, and nomogram can give associations between imaging
features and the underlying pathophysiology (18). Radiomics-based
studies on breast cancer have been proposed for predicting the
axillary lymph node metastasis (19-23), molecular subtypes (24—
28), tumor grades (29-31), and treatment responses (32-37). Some
recent studies also conducted a radiomics-based quantified analysis
for the diagnosis of breast cancer based on DM (38, 39), DBT (40,
41), and MRI (42, 43) separately, and demonstrated improvements
of the diagnostic performance using radiomics compared with
visual examinations by radiologists. A recent effort evaluated
T2W, DCE, and DWI separately and in combination, but ignored
the clinical values of mammography screening, and lack of
correlating their findings with clinical evaluation, which may limit
the clinical applicability (44).

To our knowledge, direct and quantified comparisons among
MD, DBT, and MRI have not been reported. Therefore, the

present study aims to widen the understanding of mammography
and MRI in breast cancer screening by directly and quantitatively
comparing the diagnostic efficiency of each modality individually
and in combination. Besides, this study aims to propose a visualized
clinical-radiomics nomogram based on the optimal imaging
combination and important clinical factors for early assessment
of suspected breast lesions.

MATERIAL AND METHODS

Patients

This retrospective analysis of breast DM, DBT, and MRI data was
approved by the Institutional Research Ethics Board of our institute
(Approval No. 2013010). The informed consent requirement was
waived. A total of 120 patients [mean age + standard deviation (SD),
48.81 + 10.83] were enrolled between September 2017 and July 2018
in our hospital. The number of the patients harboring pathologically
confirmed benign or malignant lesions were 50 and 70, respectively.
Inclusion criteria were as follows: (i) older than 18 years;
(ii) underwent DM, DBT, and MRI screening before surgery; and
(iii) underwent surgical resection with pathological confirmation.
Exclusion criteria were: (i) combined with other tumor diseases;
(ii) during menstruation, pregnancy, or lactation periods; (iii)
history of breast surgery, radiotherapy, or chemotherapy, as well
as breast implants; and (iv) having artifacts in the images. All
patients were randomly divided into training and validation cohorts
at a 2:1 ratio using stratified sampling. Clinical factors including age,
family history of breast cancer, history of biopsy, and menstruation
status were obtained from the electronic medical record system of
our hospital.

Digital Mammography, Digital Breast
Tomosynthesis, and Magnetic Resonance
Imaging Acquisitions

Preoperative DM and DBT examinations were performed by a
radiographer with 10 years of work experience using a DBT scanner
(Hologic Selenia Dimensions, Hologic, USA). The obtained images
of the compressed breast were reconstructed with a 1-mm
intersection spacing to give a three-dimensional view of the
tissue, slice by slice, and suitably spaced. The number of the slices
depends on the compressed breast thickness. The following
parameters were used to perform the DBT scanning: The voltage
range of the X-ray tubes: 20.0-49.0 kV (step: 1.0 kV), nominal
power: 3.0 kW, current time range: 300-400 mAs, scanning
time < 4.0 s, reconstruction time: 2.0-5.0 s, and pixel size: 70 wm.
The obtained DBT images were interpreted on a Hologic breast
computer-aided diagnosis (CAD) workstation (SecureViewDx;
Hologic) equipped with two 5-megapixel monitors.

Preoperative MRI scans were performed using a 1.5-T MRI
scanner (HDx, GE Healthcare). The axial diffusion-weighted
imaging was used with the following parameters: the b-value:
800 s/mm?, repetition time (TR)/echo time (TE)/inversion time
(TT): 5,000 ms/64 ms/0 ms, flip angle: 90°, slice thickness: 6 mm,
slice gap: 7.5 mm, field of view: 240 mm, matrix size: 128 x 128.
The axially vibrant sequence (a 3D T1-weighted imaging
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technique covering bilateral breasts conventional scans or
dynamic enhanced scans to obtain axial or sagittal images with
high signal-to-noise ratio and high resolution) with the following
parameters: TR/TE/TI: 6.2 ms/3.0 ms/13 ms; flip angle: 10°; slice
thickness: 3.2 mmy; slice gap: 3.2 mm, 48 slices per volume; field
of view: 360 mm; matrix size: 350 x 350. The contrast agent was
injected intravenously (0.1 mmol/kg of Gd-DTPA-MBA,
Omniscan, GE Healthcare), followed by a 20-mL saline flush,
both at the rate of 3 ml/s. After the intravenous injection,
continuous non-interval scans were performed in eight phases,
with a scan time for each phase of 43 seconds. All scanned images
were stored in the Picture Archiving and Communication System
(PACS) in our hospital in a Digital Imaging and Communications
in Medicine (DICOM) format. The details about their scan
parameters are shown in Supplementary Tables S1, S2.

Breast Lesion Segmentation

Regions of interest (ROIs) were manually segmented slice by
slice for each patient using the ITK-SNAP software (version
3.6.0) by a radiologist with 12 years of working experience
according to the breast imaging reporting and data system (BI-
RADS). The radiologist was blinded to the pathological results
for the patients. The ROIs included the breast lesions and edges,
exporting as a compressed package in an NII format for
further analysis.

Radiomics Feature Extraction

Radiomics features including 18 first-order statistical, 13 shape-
based, and 74 textual features were extracted based on the
segmented ROIs using the Pyradiomics package in Python 3.6
(https://pyradiomics.readthedocs.io/en/). The texture feature
category consists of the gray level cooccurence matrix
(GLCM), gray level run length matrix (GLRLM), gray level size
zone matrix (GLSZM), neighboring gray tone difference matrix
(NGTDM), and gray level dependence matrix (GLDM) features.
The first-order and texture features were also calculated from the
original images that were filtered with eight types of filters:
logarithm, square, gradient, exponential, laplacian of Gaussian,
wavelet, and localbinarypattern2D (45). Detailed descriptions of
the features and calculation protocols can be found in a previous
report (46).

Feature Selection

To obtain reliable and discriminative features, 30 patients were
randomly selected to perform the intraclass correlation
coefficient (ICC) analysis (47), 15 from the training group and
15 from the validation group. The ROIs were double-blind
segmented by another radiologist with 8 years of working
experience. Features with ICC > 0.75 were retained, then
further selected by the Mann-Whitney U test. Features with
P < 0.05 were considered significant variables between the benign
and malignant groups. Finally, the least absolute shrinkage and
selection operator (LASSO) logistic regression was used to

identify the most discriminative features with a 10-fold cross-
validation for selecting the parameter lambda using the “glmnet”
package in R language v3.6 (available from URL: https://www.r-
project.org) (48).

Development of the Radiomics Signature,
Clinical Model, and Nomogram

The radiomics signature formula was calculated for each patient by a
linear combination of the selected features weighted by the respective
LASSO coefticients. The logistic regression was used to identify the
discriminative clinical predictors. A clinical model was established
using the multivariate logistic regression with the Akaike’s
Information Criterion (AIC) as the stopping rule (49). A radiomics
nomogram for differentiating benign and malignant lesions was
constructed incorporating the radiomics signature and the most
important clinical factors using the “rms” package in R v.3.6.

Statistical Analysis

The Mann-Whitney U-test, t-test, Chi-Square test, and Shapiro-
Wilk test were performed on continuous and discrete variables,
respectively. All hypothesis tests were two-sided. The ROC curve
analysis was performed to evaluate the diagnostic performance of
each model, with the area under the ROC curve (AUC),
accuracy, sensitivity, and specificity calculated as comparison
metrics. The optimal cutoff value was obtained on the ROC curve
with the maximum Youden index (50). ROC curves were
evaluated with the DeLong test using the “pROC” package in
R. Calibration curves were plotted to assess the calibration of the
model-predicted results with truth values. The decision curve
analysis (DCA) (51) was performed using the “rmda” package to
assess the potential clinical usefulness of the models.

RESULTS

Patient Characteristics

The clinical characteristics of the patients were statistically
analyzed and shown in Table 1. The age and menstruation
status were significantly different between the benign and
malignant groups (P < 0.05). No statistical difference was
observed in the types of family history and history of biopsy. A
clinical model was built integrating the age and menstruation
status for detecting malignant lesions.

Evaluation of Diagnostic Performance of
Digital Mammography, Digital Breast
Tomosynthesis, and Magnetic

Resonance Imaging

Diagnostic performance of the radiomics signature derived from
the DM, DBT, DCE, and DWI individually and in combination
were assessed (Table 2). Figure 1 shows the ROC curves of each
radiomics signature. The results indicated that the DCE generated
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TABLE 1 | >Statistical analysis results of clinical characteristics.

Characteristic Training cohort

Benign (n = 33) Malignant (n = 46)

P Validation cohort P

Benign (n = 17) Malignant (n = 24)

Age (years) 0.008 0.009
<40 10 (30.3) 4 (8.7) 6 (35.2) 2 (8.3
40-49 14 (42.4) 19 (41.3) 8 (47.1) 9 (37.5)
50-59 8(24.2) 11 (28.9) 3(17.6) 4 (16.7)
>=60 1(3.0) 12 (26.1) 0 (0.0 9 (37.5)
Family history of breast cancer, n (%) 0.693 1.000
+ 2(6.1) (10.9) 2(11.8) 2 (8.3
- 31(938.9) (89.1) 15(88.2) 2 (91.7)
History of biopsy, n (%) 0.171 1.000
+ 2 (6.1) 0 (0.0 1(89.7) 14.2)
- 31(938.9) 46 (1.0) 16 (10.3) 3 (95.8)
Menstruation status, n (%) 0.001 0.002
+ 6 (76.8) 20 (49.3 1(89.7) 13 (30.3)
- 27 (23.2) 26 (50.7 16 (10.3) 11 (69.7)
BI-RADS (DM plus DBT), n (%) <0.001 <0.001
0,1,2,3 8(24.2) 0 (0.0 6 (35.3) 14.2)
4A, 4B, 4C 24 (72.7) 32 (69.6) 11 (64.7) 15 (62.5)
5,6 1(3.0) 14 (30.4) 0 (0.0 8(33.3)
BI-RADS (MRI), n (%) <0.001
1,2,3 8 (54.5) 0 (0.0 8 (47.1) 0 (0.0
4,5 15 (45.5) 46 (100.0) 9 (562.9) 24 (100.0)
BI-RADS, breast imaging reporting and data system; DM, digital mammography; DBT, digital breast tomosynthesis; MRI, magnetic resonance imaging.
TABLE 2 | Diagnostic performance of each modality used alone and in combination.
Cohort AUC(95%CI) ACC (95%Cl) SEN SPE PPV NPV
DM alone Training Cohort 0.727 (0.612-0.842) 0.696 (0.583-0.795) 0.739 0.636 0.739 0.636
Validation Cohort 0.694 (0.524-0.863) 0.707 (0.545-0.839) 0.750 0.647 0.750 0.647
DBT alone Training Cohort 0.850 (0.766-0.940) 0.798 (0.692-0.880) 0.804 0.788 0.841 0.743
Validation Cohort 0.830 (0.698-0.968) 0.781 (0.624-0.894) 0.708 0.882 0.895 0.682
DWI MRI Training Cohort 0.858 (0.775-0.942) 0.810 (0.706-0.890) 0.913 0.667 0.793 0.846
Validation Cohort 0.831 (0.696-0.966) 0.781 (0.624-0.894) 0.750 0.824 0.857 0.700
DCE MRI Training Cohort 0.879 (0.978-0.960) 0.861 (0.765-0.928) 0.957 0.727 0.830 0.923
Validation Cohort 0.855 (0.727-0.984) 0.829 (0.674-0.929) 0.833 0.824 0.870 0.778
DM plus DBT Training Cohort 0.909 (0.842-0.976) 0.861 (0765-0.928) 0.826 0.909 0.927 0.790
Validation Cohort 0.880 (0.779-0.981) 0.805 (0.651-0.912) 0.708 0.941 0.944 0.700
DWI plus DCE Training Cohort 0.930 (0.877-0.982) 0.873 (0.780-0.938) 0.891 0.849 0.891 0.849
Validation Cohort 0.885 (0.768-1.000) 0.878 (0.738-0.959) 0.875 0.882 0.913 0.833

DM, digital mammography; DBT, digital breast tomosynthesis;, DWI, diffusion-weighted imaging; DCE, dynamic contrast enhanced; AUC, area under the ROC curve; Cl, confidence
interval; Acc, accuracy; Sen, sensitivity; Spe, specificity; PPV, positive predictive value; NPV, negative predictive value.

the highest AUCs and sensitivities among the four modalities, but
had relatively low specificities. The diagnostic performance of
DWTI plus DCE was significantly higher than DM plus DBT in
terms of sensitivity. Besides, the DWI plus DCE yielded the highest
positive predictive values (PPV) and the lowest misdiagnosis rates.

Development of the Combined Radiomics
Signature and Nomogram

Radiomics features selected from the four modalities were
combined and further selected to generate a combined feature
set consisting of seven features, three from DBT, two from DCE,
and two from DWI. Diagnostic performance of each feature was
evaluated and is listed in Table 3. The combined radiomics
signature (combined Rad score, Supplementary $3.) integrating
the seven features and their corresponding LASSO coefficients
was built and shown as follows:

Combined Rad score
= 0.5665 — Wavelet_ HHL _ glszm _ ZonePercentage x 2.7374
+ Wavelet _ LHL _ firstorder _ Skewness x 1.4977
+ Log_sigma_3_0_mm_3D_glrlm _ ShortRunLowGrayLevelEmphasis
x 2.1381 + Wavelet _ HHLglcm _Imcl x 1.8133
+ Original _ glem _ ClusterShade x 1.4596
+ Logarithm _ glem _ InverseVariance x 1.6268
— Exponential _ glem _ MCC x 0.7365.

A radiomics nomogram was constructed integrating the
combined Rad score with the age and menstruation status
(Figure 2A). The risk of being a malignant lesion can be read
off the scale in the last row by vertically drawing a line from the
total points. Calibration curves are shown in Figures 2B, C,
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FIGURE 1 | ROC curves of the DM, DBT, DCE MRI and DWI MRI used individually and in comibination in the training (A) and validation (B) cohort.

TABLE 3 | Diagnostic performance of the selected features for the diagnosis of breast lesions.

Feature Dataset

Wavelet_HHL_glszm_ZonePercentage
Wavelet_LHL_firstorder_Skewness
Log_sigma_3_0_mm_3D_glrim_ShortRunLowGraylLevelEmphasis
Wavelet_HHLglcm_Imcl

Original_glcm_Clus-terShade

Logarithm_glcm_InverseVariance

Exponential_glcm_MCC

Training Cohort
Validation Cohort
Training Cohort
Validation Cohort
Training Cohort
Validation Cohort
Training Cohort
Validation Cohort
Training Cohort
Validation Cohort
Training Cohort
Validation Cohort
Training Cohort
Validation Cohort

Mean + SD P-value  AUC

Benign Malignant
0.006 + 0.006 0.002 + 0.002 <0.001 0.772
0.006 + 0.006 0.002 + 0.002 0.021 0.716
0.076 + 0.297 -0.147 £ 0.215 <0.001 0.737
0.040 + 0.377 -0.176 £ 0.168 0.010 0.740
0.057 + 0.028 0.037 + 0.020 <0.001 0.736
0.062 + 0.062 0.035 + 0.015 0.181 0.625
-0.099 + 0.049 -0.072 £ 0.083 <0.001 0.738
-0.085 + 0.042 -0.067 £ 0.015 0.181 0.625
-2,413.833 + 11,596.710 3,361.392 + 14,159.810 0.026 0.648
-2,950.967 + 10,227.370 5,047.669 + 1,264.26 0.013 0.730
0.161 + 0.026 0.146 + 0.022 <0.001 0.667
0.152 + 0.022 0.151 £ 0.020 <0.001 0.507
0.583 + 0.305 0.776 + 0.158 0.002 0.710
0.539 + 0.269 0.761 + 0.155 0.003 0.772

Glszm, gray level size zone matrix; glrim, gray level run length matrix; glcm, gray level co-occurrence matrix; SD, standard deviation; AUC, area under the ROC curve.

indicating acceptable agreements between the nomogram-
estimated probabilities and actual outcomes of the lesions. The
45-degree blue line and the red dotted line represent an ideal
diagnosis and the performance of our nomogram, respectively.
As the red dotted line is closer to the blue line represents a better
diagnostic performance. Figures 2D, E show that the nomogram
exhibited better diagnostic capabilities compared with the
combined Rad score or the clinical model alone (AUCs in the
training cohort, nomogram vs. combined Rad score vs. clinical
model, 0.975 vs. 0.964 vs. 0.782; AUCs in the validation cohort,
nomogram vs. combined Rad score vs. clinical model, 0.978 vs.
0.983 vs. 0.690). The diagnostic performance of the combined
Rad score, clinical model and nomogram are shown in Table 4.

Figure 3 shows the results of the decision curve analysis for each
model. The nomogram exhibited a greater net benefit compared
with the combined Rad score or the clinical model. When the
threshold probability of the patient was between 0.44 and 0.68, or
over 0.78, a greater benefit can be obtained by using the nomogram,
indicating a good potential in clinical applications.

DISCUSSION

Prior to this study, there have been researches evaluating the
diagnostic capabilities of DM (32, 38, 39), DBT (40, 41), MRI
(42-44) separately for detecting breast cancer, all based on
subjective visual examinations, and lack of direct and
quantitative comparisons of different modalities. On the
contrary, this study performed comprehensive radiomics
analyses to quantitatively assess the diagnostic performance of
different modalities separately and in combination. We found
that the radiomics signature derived from DM always showed the
worst diagnostic performance in terms of AUC, sensitivity, and
specificity compared with the other individual modalities. This
may be explainable since the DM only obtains one image, which
may lead to overlapping glands, and, hence, is not sufficient to
analyze the distribution of dense and adipose tissues (52). The
result was in accordance with previous studies that also showed
the DM-based diagnosis often leads to high false negative and
false positive rates due to the fact that the lesions may be
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FIGURE 2 | Development and validation of the nomogram model integrating the combined Rad score, age and menstruation status. (A) Construction of the
nomogram; (B, C), Calibration curves of the nomogram in the training (B) and validation (C) cohort; (D, E), ROC curves of the nomogram, combined Rad score and

obscured or hidden by the overlapping fibroglandular tissues
(5, 53). The addition of DBT to DM can significantly improve the
diagnostic AUC, accuracy, specificity, PPV, and NPV, and
generate a similar sensitivity compared with the DM alone.
This was in line with some previous reports that also indicated
that breast DBT can lead to improvements in AUC and
specificity by visual assessments (54, 55). This may be because
the DBT can improve the lesion visibility by providing thin
section tomographic images and reducing the overlap of breast
tissues, and, hence, represents a clearer edge, shape, and structure
of the lesion. The addition of DBT to DM did not improve the
diagnostic sensitivity by visual assessments compared with DM
alone as reported in an earlier study (14). The discordance may
be because they performed the research with a cancer-only
population. The DCE plus DWI yielded higher AUCs and
sensitivities, but lower specificities than the DM plus DBT. The
result was partially in line with a previous literature that also
indicated that the MRI was superior to the X-ray technology in

the diagnostic AUC and sensitivity, but weaker in the specificity
(14, 56).

The DBT showed a similar diagnostic AUC, slightly increased
specificity, and lower sensitivity compared with DCE or DWI,
which was in line with a previous research that also
demonstrated the inferiority of breast DBT in the sensitivity
compared with MRI by visual examinations (14, 53, 57). This
may be explained since the DCE can reflect the neoangiogenesis
within the tumor that is associated with the growth and
progression of the malignant tumor (58). While, the DWI can
represent tissue microenvironments and membrane integrities
through depicting the diffusivity of the tissues (59). Therefore,
the MRI tends to be more sensitive than DBT or DM on tumors
with higher malignant degrees. The DCE yielded higher AUC,
accuracy, sensitivity, and specificity compared with DWI, which
may be due to the higher resolution and the use of a contrast
agent in DCE (44). We found that the addition of DBT to MRI
(DBT plus DCE plus DWI) can increase the AUC and sensitivity
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FIGURE 3 | Showed results of the decision curve analysis for each model.
The nomogram exhibited greater net benefit compared with the combined
Rad score or the clinical model. When the threshold probability of the patient
was between 0.44 and 0.68, or over 0.78, greater benefit can be obtained by
using the nomogram, indicating good potential in clinical applications.

compared with MRI alone (DCE plus DWI). This indicated that
the DBT and MRI are complementary, their combination can
significantly improve the predictive capabilities. While, our
results were inconsistent with a previous report that showed
no improvement in the diagnostic sensitivity by combing DM,
DBT, DCE, and ultrasound (60). Since they involved ultrasound,
direct comparisons between our study and their work
was impossible.

In the clinical practice, although integrating MRI with X-rays
allows the radiologists to give judgments more easily, the
diagnosis still relies on subjective experiences. We selected a
total of seven quantitative features as the most important
predictors, three from DBT, two from DCE, and two from
DWI. There were one original and six transformed features.
The developed combined Rad score integrating these features
significantly improved the diagnostic performance compared
with any modality alone. The Original_glcm_ClusterShade
feature measures the skewness and the uniformity of the gray
level co-occurrence matrix within the tumor. A higher value of
this feature implies a greater asymmetry about the mean and a
greater heterogeneity of the lesion. We found that this feature
was bigger in the malignant lesions than in the benign lesions,
which suggests that a tumor with more asymmetry and
complexity in the tumor texture tends to be malignant. Among
the six transformed features, one belonged to the first-order and
five belonged to the textural feature class. The first-order feature
describes the distribution of voxel intensities in the image region.
While, the textural feature quantifies the complexity of a tumor
and the thickness of the texture. Our findings suggest that the
tumor heterogeneity may be closely related to breast cancer,
since textural features in the medical image often reflect tumor
heterogeneities. The results were partially in line with previous
studies that also highlighted the correlations between the textural
features and breast cancer (61, 62). Our findings may explain that
the proposed combined Rad score can significantly improve the
diagnostic performance with regard to AUC and sensitivity than
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visual assessments, since most of the identified features (6 of 7)
were derived from the transformed images that were generated
by filtering the original images with various filters, and, thus, can
hardly be understood by human.

A clinical model was built integrating age and menstruation
status, and showed a lower AUG, sensitivity, and specificity than
the combined Rad score. The nomogram incorporating the
combined Rad score with the age and menstruation status
achieved the best overall diagnostic performance compared
with the combined Rad score, clinical model, and BI-RADS
assessment. Decision curves demonstrated a better clinical
usefulness of the nomogram with more net benefits across the
majority of the range of threshold probabilities. Therefore, we
suggest that our nomogram may be considered as an effective
tool that can assist in decision making for the diagnosis of breast
cancer. To use our nomogram, radiologists need to manually
segment lesions on the DBT and MRI images for each patient,
then calculate the probability of being benign or malignant. After
that, clinicians can incorporate the nomogram-predicted
probabilities with other clinical information to give a
comprehensive decision on further examinations and treatments.

This study has limitations. First, this retrospective study had a
relatively small sample size, which may cause inherent bias.
Second, all data were obtained from a single hospital. Further
multi-center trials are warranted to confirm the present findings.
Third, our radiomic methods rely on manual segmentations of
the ROIs, which were subjective and time-consuming. Future
studies are needed to explore deep learning-based automatic
segmentation methods on breast data.

CONCLUSIONS

Our results showed that the DBT performed similar to DCE and
DWTI in terms of AUC and sensitivity, but better in specificity for
detecting malignant lesions. The DBT plus DM can provide a
lower AUC and sensitivity, but a higher specificity compared
with DCE plus DWI. The proposed nomogram achieved the best
diagnostic performance, and may help clinicians make precise
decisions regarding treatments.
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