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Improvement of understanding of the safety profile and biological significance of
antidiabetic agents in breast cancer (BC) progression may shed new light on minimizing
the unexpected side effect of antidiabetic reagents in diabetic patients with BC. Our recent
finding showed that Saxagliptin (Sax) and Sitagliptin (Sit), two common antidiabetic
dipeptidyl peptidase-4 inhibitors (DPP-4i) compounds, promoted murine BC 4T1
metastasis via a ROS-NRF2-HO-1 axis in nonobese diabetic—severe combined
immunodeficiency (NOD-SCID) mice. However, the potential role of DPP-4i in BC
progression under immune-competent status remains largely unknown. Herein, we
extended our investigation and revealed that Sax and Sit also accelerated murine BC
4T1 metastasis in orthotopic, syngeneic, and immune-competent BALB/c mice.
Mechanically, we found that DPP-4i not only activated ROS-NRF2-HO-1 axis but also
triggered reactive oxygen species (ROS)-dependent nuclear factor kappa B (NF-kB)
activation and its downstream metastasis-associated gene levels in vitro and in vivo, while
NF-xB inhibition significantly abrogated DPP-4i-driven BC metastasis in vitro. Meanwhile,
inhibition of NRF2-HO-1 activation attenuated DPP-4i-driven NF-kB activation, while
NRF2 activator ALA enhanced NF-kB activation, indicating an essential role of ROS-
NRF2-HO-1 axis in DPP-4i-driven NF-xB activation. Furthermore, we also found that
DPP-4j increased tumor-infiltrating CD45, MPO, F4/80, CD4, and Foxp3-positive cells
and myeloid-derived suppressor cells (MDSCs), and decreased CD8-positive
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DPP-4i Reprograms BC Tumor Microenvironment

lymphocytes in metastatic sites, but did not significantly alter cell viability, apoptosis,
differentiation, and suppressive activation of 4T1-induced splenic MDSCs. Moreover, we
revealed that DPP-4i triggered ROS-NF-kB-dependent NLRP3 inflammasome activation
in BC cells, leading to increase in inflammation cytokines such as interleukin (IL)-6, tumor
necrosis factor alpha (TNF-a), vascular endothelial growth factor (VEGF), intercellular cell
adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), IL-1B and
IL-33, and MDSCs inductors granulocyte-macrophage colony-stimulating factor (GM-
CSF), G-CSF, and M-CSF, which play a crucial role in the remodeling of tumor immune-
suppressive microenvironment. Thus, our findings suggest that antidiabetic DPP-4i
reprograms tumor microenvironment that facilitates murine BC metastasis by
interaction with BC cells via a ROS-NRF2-HO-1-NF-kB-NLRP3 axis. This finding not
only provides a mechanistic insight into the oncogenic ROS-NRF2-HO-1 in DPP-4i-
driven BC progression but also offers novel insights relevant for the improvement of tumor
microenvironment to alleviate DPP-4i-induced BC metastasis.

Keywords: DPP-4 inhibitors, breast cancer, NF-kB, NLRP3 inflammasome, metastasis, tumor microenvironment

INTRODUCTION

Accumulating evidence indicates that diabetes enhances the
incidence of human cancers including breast cancer (BC) (1).
Long-term exposure of antidiabetic reagents may have
unexpected effects on diabetic patients with BC. Thus, better
understanding of the safety profile and biological significance of
antidiabetic agents in BC progression is essential to minimize the
side effect of antidiabetic agents in BC bearing-diabetic patients
(2). Dipeptidyl peptidase-4 inhibitors (DPP-4i), as one of
common antidiabetic reagents, are currently recommended for
the first-line hypoglycemic treatment of type 2 diabetes mellitus
(T2DM). Emerging evidence recently reported an unpredictable
adverse effect of DPP-4i in cancer progression (3-6). Our latest
finding also revealed that Saxagliptin (Sax) and Sitagliptin (Sit),
two common antidiabetic DPP-4i reagents, facilitated murine
4T1 BC cells metastasis in immune-deficient nonobese diabetic—
severe combined immunodeficiency (NOD-SCID) mice (7).
However, the risky effect of DPP-4i on BC progression under
immune-competent status remains largely unknown.

The concept of cancer immunoediting offers a novel insight
into the crosstalk between tumor cells and immune system
during the cancer progression (8, 9). Tumor microenvironment,
including tumor immune microenvironment, has been
recognized as a complex milieu where tumor cells interact
with immune cells via numerous biochemical and physical
signals that are crucial for cancer progression (10, 11). Tumor
cells, as a major orchestrator of tumor microenvironment, have
been shown to reprogram tumor microenvironment by
producing cytokines and even inducing or recruiting the
immunosuppressive cells such as regulatory T (Treg) cells or
myeloid-derived suppressor cells (MDSCs) during cancer
progression (7-13). Although recent data suggest a potential
role of DPP-4 inhibition in CXCL10-mediated lymphocyte
trafficking in melanoma B16F10-bearing mice (12), very little

information is available for the potential effect of DPP-4i on tumor
immune microenvironment, especially on tumor-infiltrating
immune-suppressive cells in BC progression.

In the present study, we utilized the orthotopic and syngeneic
murine 4T1 BC metastasis model in immune-competent
BALB/C mice, a well-known mice model to effectively mobilize
MDSCs, to characterize the effect of Sax and Sit on BC metastasis
under immune-competent conditions. Then, we further
investigated whether and how DPP-4i can reprogram tumor
microenvironment during the BC metastasis.

MATERIALS AND METHODS

Cell Culture and Reagents

Murine BC 4T1 cell line was maintained and cultured as
our previous reports (7, 13). Sax (0, 0.2, and 0.4 puM) and
Sit (0, 0.6, and 1.2 uM) (MCE, Houston, USA), NRF2
specific inhibitor ML-385 (0, 5, and 10 uM) (MCE, Houston,
USA), Heme oxygenase 1 (HO-1) specific inhibitor HO-1-IN-1
hydrochloride (0, 5, and 10 uM) (MCE, Houston, USA), reactive
oxygen species (ROS) scavenger N-acetylcysteine (NAC)
(0, 2.5, and 5 mM) (AbMole, Houston, USA), and NRF2
activator alpha-lipoic acid (ALA) (0, 40, and 60 uM)
(Dandong Yichuang Co, China) were used as described
previously (7). pNF-kB-TA-luc reporter plasmids were
obtained from Beyotime, Jiangsu, China, as described
previously (14). Granulocyte-macrophage colony-stimulating
factor (GM-CSF) was purchased from PeproTech, Cranbury,
USA. NLRP3 inhibitor MCC950 (0, 5, and 10 uM)
(MCE, Houston, USA), caspase-1 inhibitor VX-765 (0, 10,
and 20 puM) (AbMole, Houston, USA), and nuclear
factor kappa B (NF-xB) specific inhibitor BAY 11-7082 (0, 2,
and 4 uM) (Selleck, Houston, USA) were used in this study.
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For pharmacological intervention assays, 4T1 cells were
pretreated with Sax (0.4 uM) or Sit (1.2 uM) for 16 h and then
cotreated with indicated inhibitors or activators for additional 4-
6 h unless otherwise specified. All chemical reagents were
purchased from Sigma-Aldrich (St. Louis, MO, USA) unless
otherwise indicated.

Cell Migration and Cell Invasion Assays

Cell migration and cell invasion assays were performed in 24-
well non-coated or Matrigel-coated Transwell chambers [8-pm
pore size, Corning, NY, USA as described previously (6, 7, 14,
15)]. Briefly, 4.5 x 10* cells (for cell migration) or 1 x 10° cells
(for cell invasion) were seeded in the upper chamber with 200 pl
of serum-free medium, and 800 pl medium supplemented with
10% fetal bovine serum (FBS) was used as a chemoattractant in
the bottom chamber, and then treated with Sax (0, 0.2, and 0.4
uM) or Sit (0, 0.6, and 1.2 uM) for 24 h. Migration or invasion
cells were then fixed and stained with Crystal Violet Staining
Solution (Beyotime, Haimen, China). For pharmacological
intervention in this assay, 4T1 cells were cotreated with Sax
(0.4 pM) or Sit (1.2 pM) and indicated reagents for 24 h. The
images of the migrated or invaded cells were captured, and cell
number was counted in 5-10 random fields for each group and
summarized as mean + standard deviation (SD) for
statistical analysis.

Spontaneous Orthotopic and Syngeneic
4T1 BC Metastasis Mouse Models

NOD-SCID mice (6-8 weeks, female, SPF degree, 22 + 3 g) were
purchased from Beijing HFK Bioscience Co. (Beijing, China).
Wild-type BALB/c mice (6-8 weeks, female, SPF degree, 22 +
3 g) were purchased from Animal Center of Chongqing medical
University (Chongqing, China). All mice were housed and
maintained under specific pathogen-free (SPF) conditions as
described previously (7, 14, 15). Spontaneous orthotopic BC
metastasis models in NOD-SCID or BALB/c mice were
established as previously described (7, 13). In brief, 4T1 cells
(1 x 10°) in 100 ul phosphate-buffered saline (PBS) were
subcutaneously injected into in the left mammary fat pad of
NOD-SCID or BALB/c mice. After 3-5 days, 4T1-bearing NOD-
SCID mice were randomly divided into two groups to receive
0.9% NaCl or Sax (15 mg/kg) via oral gavage daily (n = 3-5 mice/
group) for 2 weeks as our described previously (7), while 4T1-
bearing BALB/c mice were randomly divided into three groups
to receive 0.9% NaCl, Sax (15 mg/kg), or Sit (120 mg/kg) via oral
gavage daily (n = 3-5 mice/group) for 2 weeks. For ALA
intervention in vivo, 4T1-bearing NOD-SCID mice were
randomly divided into two groups to receive intraperitoneal
(i.p.) administration of 0.9% NaCl or ALA (80 mg/kg in 0.9%
NaCl) three times per week (n = 3-5 mice/group) for 2 weeks as
described previously (7). At the end of experiments, mice were
sacrificed, and peripheral blood, spleen, and liver and lung
tissues were harvested for further analysis. All procedures were
approved by the Institutional Animal Care and Use Committee
of Children’s Hospital of of Chongqing Medical University.

Reactive Oxygen Species Detection
Intracellular ROS and mitochondrial ROS (mROS) were
measured by flow cytometry as described previously (7, 15).
Briefly, Sax- or Sit-treated cells were stained with
dihydroethidium (DHE,10 uM) (Sigma-Aldrich) for 30 min at
37°C and were resuspended in ice-cold PBS for intracellular ROS
analysis by flow cytometry. For mROS detection, Sax- or Sit-
treated cells were stained with MitoSoX Red probe (5.0 uM,
Thermo Fisher Scientific) for 20 min at 37°C. After washing with
PBS, mROS were analyzed by flow cytometry.

RNA Isolation and Quantitative

Real-Time PCR

RNA isolation and quantitative real-time PCR (qRT-PCR) were
performed as described previously (7, 14, 15). Briefly, total RNA
was isolated from cells using Tripure Isolation Reagent (Roche,
Mannheim, Germany). One microgram of total RNA was reverse
transcribed into complementary DNA (cDNA) using the
PrimeScript' " RT reagent Kit with gDNA Eraser (Takara,
Japan), and qRT-PCR was performed with QuantiNova SYBR
Green PCR Kit (Qiagen, Germany) on CFX Connect' ™' Real-Time
System (BIO-RAD) according to the manufacturer’s instructions.
The relative gene expressions were normalized to the housekeeping
B-actin gene and calculated using the 27" method. The details of
the primers are listed in Supplementary Table S1.

Western Blotting

4T1 cells were treated with indicated reagents and then subject to
Western blotting analysis as described previously (7, 13-18). In
brief, protein lysates extracted using radioimmunoprecipitation
assay (RIPA) buffer (Beyotime, Haimen, China) were resolved by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) by blotting onto polyvinylidene fluoride (PVDEF)
membranes, blocked in QuickBlock™ Blocking Buffer
(Beyotime, Haimen, China), and followed by primary antibody
incubation at 4°C overnight. After washing with TBST buffer,
blots were incubated with horseradish peroxidase-conjugated
secondary antibodies for 1.0 h, washed with TBST three times,
and detected with the enhanced chemiluminescence (ECL)
system. All antibodies used in this study are listed in
Supplementary Table S2.

Luciferase Reporter Gene Assays

Luciferase reporter gene assay was performed as described
previously (7, 14, 15). Briefly, cells (1 x 10* cells per well) were
seeded in 96-well plates and then transfected with the pNF-kB-
TA-luc vectors (90 ng) and pRL-TK Renilla plasmids (10 ng)
(Promega, Madison, USA) using X-tremeGENE HP DNA
Transfection Reagent (Roche, Germany). After transfection 16-
18 h, indicated reagents were added for additional 24 h
incubation, and the Firefly and Renilla luciferase activities were
quantified using the Dual-Glo® Luciferase Assay System
(Promega, Madison, USA). The relative luciferase (Luc) activity
was present as the fold change of in Firefly luciferase activity after
normalization to the Renilla luciferase activity.
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MDSCs Purification, Cell Culture, and
Detection of Cell Differentiation

CD11b*Gr-1" MDSCs were isolated from splenic cells of 4T1-
bearing BALB/c mice using myeloid-derived suppressor cell
isolation kit (Miltenyi, Germany) according to the
manufacturer’s instructions. Purified MDSCs were co-cultured
with Sax (0, 0.2, and 0.4 uM) or Sit (0, 0.6, and 1.2 uM) in the
presence of GM-CSF (10 ng/ml) for 72-96 h. MDSCs
differentiation in vitro was evaluated by analyzing monocytic
(Mo)-MDSCs (Ly6ChiLy6G’) and granulocytic (G)-MDSCs
(Ly6C°Ly6G") using flow cytometry. For in vivo analysis, cell
percentages of MDSCs in peripheral blood mononuclear cells
(PBMCs) and splenic cells were evaluated by gating on CD11b"
and Gr-1" population using flow cytometry. MDSCs
differentiation in vivo was evaluated by analyzing Mo-MDSCs
and G-MDSCs in PBMCs or splenic cells after gating on CD11b"
population using flow cytometry. Fluorescence-conjugated
antibodies for flow cytometry are listed in Supplementary
Table S3.

Cell Viability and Cell Apoptosis Assays

Cell viability and cell apoptosis were performed as described
previously (14). Briefly, purified MDSCs (1 x 10%/well, 96-well
plate) were co-cultured with Sax (0, 0.2, and 0.4 uM) or Sit (0,
0.6, and 1.2 uM) in the presence of GM-CSF (10 ng/ml) for 24-
96 h and then subject to cell viability or cell apoptosis analysis.
Cell viability (co-cultured for 24-96 h) was measured using the
enhanced Cell Counting Kit-8 (CCK-8) (Beyotime, Jiangsu,
China), and cell apoptosis (co-cultured for 72-96 h) was
performed by flow cytometry using Annexin V-PE/7-AAD
Apoptosis Kit (KeyGEN Biotech, Nanjing, China) according to
the manufacturer’s instructions.

Flow Cytometry

All flow cytometry analysis were performed on a FACS Calibur
flow cytometer (BD Bioscience) and data analyzed with FlowJo
software (Tree Star, Ashland, OR) as described previously (6,
13-15).

H&E Staining and Immunohistochemistry
H&E and immunohistochemistry (IHC) staining were
performed as described previously (6, 7, 13-18). Briefly, liver
or lung metastatic tissues were fixed with 10% buffered formalin
and embedded in paraffin, and tissue sections (4 um) were used
for H&E staining. IHC staining was performed using Elivision
plus Polyer HRP IHC Kit (Maixin, Fujian, China) and DAB kit
(ZSGB-Bio, Beijing, China) according to the manufacturer’s
instructions. All antibodies are listed in Supplementary
Table S2.

Immunofluorescence

Indirect or direct immunofluorescence (IF) staining was
performed in paraffin-embedded liver or lung metastatic tissue
sections (4 pm) as described previously (6, 14, 15). In brief, tissue
sections were blocked with QuickBlock'" Blocking Buffer
(Beyotime, Haimen, China) for 15 min at room temperature.

Then, indirect IF staining was performed to detect CD45, CD4,
CD8, MPO, and CD11b by incubating with primary antibodies
at 4°C overnight, followed by incubation for 1-2 h at room
temperature with AF555- or AF647-conjugated secondary
antibody (Bioss, Beijing, China). Direct IF double staining was
performed to detect CD11b/F4/80 and CD11b/Gr-1 by
incubating with fluorescence-conjugated primary antibodies at
4°C overnight. Nuclei were counterstained with 4',6-diamidino-
2-phenylindole (DAPI). Images were captured using a Nikon
AIR Confocal Laser Microscope (Nikon, Minato, Japan), and
data were measured by a NIS elements AR analysis software
version 5.21. All antibodies are listed in Supplementary
Table S3.

Statistics

Statistical analysis was carried out with the GraphPad Prism 7.0
(GraphPad Software) as previously described (7, 13-19). All data
were expressed as means *+ SD. The significance of difference
between groups was determined by unpaired two-tailed
Student’s t-test or one-way analysis of variance (ANOVA). The
value of p < 0.05 was considered statistically significant.

RESULTS

DPP-4i (Sax and Sit) Facilitates 4T1 BC
Cells Metastasis in Imnmune-Competent
BALB/c Mice

To understand the potential role of DPP-4i in BC metastasis, we
investigated the effect of Sax and Sit, two DPP-4i compounds, on
BC metastasis in vitro and in vivo. We found that Sax and Sit
markedly promoted cell migration and cell invasion of BC cells
(Figures 1A, B), consistent with our previous finding (7).
Meanwhile, metastasis-associated proteins MMP-2, MMP-9
and vascular endothelial growth factor (VEGF) were also
significantly enhanced after DPP-4i treatment (Figure 1C),
consistent with their messenger RNA (mRNA) levels upon
DPP-4i treatment (7). These results indicate that DPP-4i
promotes BC metastasis in vitro.

Given an oncogenic role of Sax in immune-deficient NOD-
SCID mice (7), we sought to know whether DPP-4i could
accelerate 4T1 BC metastasis in immune-competent BALB/c
mice. As shown in Figures 1D, E, we observed that treatment
of Sax and Sit significantly enhanced lung and liver metastasis
of BC cells in vivo as shown in HE and IHC staining for
micro-metastasis marker vimentin. Moreover, metastasis-
associated MMP-2, MMP-9, and VEGF expressions were
further detected by IHC staining in lung and liver micro-
metastasis nodes (Figures 1F-H). These results suggest that
DPP-4i facilitates spontaneous metastasis of BC cells in
immune-competent BALB/c mice.

DPP-4i Induces ROS-Dependent

NF-kB Activation in BC Cells

Since DPP-4i-induced MMP-2, MMP-9, and VEGF were
identified as NF-xB-responsive targets (7, 14), we further
sought to know whether NF-xB activation is involved in DPP-
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FIGURE 1 | DPP-4i (Sax and Sit) promotes murine breast cancer metastasis in immune-competent BALB/c mice. (A, B) DPP-4i (Sax and Sit) facilitates BC cells
metastasis in vitro. The metastatic ability of 4T1 cells was evaluated by (A) cell migration and (B) cell invasion assays upon treatment of Sax (0, 0.2, and 0.4 uM) or
Sit (0, 0.6, and 1.2 uM) for 24 h. Migration or invasion cells were counted in 5-10 random fields (200x magnification). (C) DPP-4i increases metastasis-associated
gene levels. Metastasis-associated MMP-2, MMP-9 and VEGF levels were detected by Western blotting in DPP-4i-treated 4T1 cells. B-Actin gene was as a loading
control. (D, E) DPP-4i accelerates BC lung and liver metastasis in vivo. 4T1 cells (1.0 x 10°) in 100 ul PBS buffer were injected into in the left mammary fat pad of
female BALB/c mice. Postinjection 3-5 days, mice were randomly allocated to three groups (n = 3-5 mice/group) and then treated with 0.9% NaCl (control), Sax (15
mag/kg), or Sit (120 mg/kg) via oral gavage daily. After 2 weeks, lung and liver tissues were collected, and metastatic nodes were analyzed by (D) H&E staining and
(E) IHC staining for vimentin. (F-H) DPP-4i enhances metastasis-associated gene expression in vivo. MMP-9, MMP-2, and VEGF were detected by IHC staining in
lung and liver metastatic tissues. Data are presented as mean + SD of three independent experiments. Representative images are shown. Scale bar: 200 um (low
magnification); 50 um (high magnification). *p < 0.05, **p < 0.01, and **p < 0.001 between the indicated groups determined by the one-way analysis of variance (ANOVA).

4i-induced BC metastasis. In vitro, we found that DPP-4i
treatment significantly increased NF-xB-p65 (p65) and
phosphorated p65-ser536 (p-p65) expression (Figure 2A) and
NF-kB transcriptional activation (Figure 2B). Meanwhile, NF-
kB-responsive IL-6, tumor necrosis factor alpha (TNF-a),
intercellular cell adhesion molecule 1 (ICAM-1), and vascular
cell adhesion molecule 1 (VCAM-1) cytokines were also
significantly upregulated upon DPP-4i treatment (Figure 2C).

Furthermore, we found that DPP-4i significantly altered p-
IKKo/B, IKKo, p-IKBa, and IKBo levels (Figure 2D),
indicating that DPP-4i-induced NF-xB activation is IKK/IKBo.
dependent. In complementary 4T1-bearing BALB/c mice, we
further observed increased levels of p65, p-p65, and NF-kB-
responsive IL-6, TNF-a, ICAM-1, and VCAM-1 in lung and
liver metastasis tissues after DPP-4i treatment (Figures 2E, F).
Moreover, in 4T1-bearing NOD-SCID mice, we also observed
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that Sax treatment also enhanced IL-6, TNF-o, ICAM-1, and
VCAM-1 levels in lung and liver metastasis tissues
(Supplementary Figure S1). Thus, these data suggest that
DPP-4i triggers aberrant NF-xB activation in vitro and in vivo.

Given the aberrant ROS in DPP-4i-treated BC cells (7), we
further investigated whether ROS inhibition could reverse DPP-
4i-driven NF-kB activation in BC cells. As shown in Figure 2G,
we found that ROS scavenger NAC significantly reversed DPP-
4i-induced p-IKKo/, IKKa, p-IKBa, and IKBa expressions and
p65 and p-p65 levels. Furthermore, NF-kB transcriptional
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FIGURE 2 | DPP-4i triggers aberrant NF-kB activation via a ROS-dependent manner. (A-D) DPP-4i induces aberrant NF-kB activation of 4T1 cells in vitro. 4T1 cells
were treated with Sax (0, 0.2, and 0.4 uM) or Sit (0, 0.6, and 1.2 uM) for 24 h. (A) Total p65, p-p65, (C) NF-kB-responsive proteins, and (D) p-IKKo/B, IKKa,
p-IKBo., and IKBa levels were detected by Western blotting, and (B) NF-kB transcriptional activation was analyzed by luciferase reporter assay. (E, F) DPP-4i
enhances aberrant NF-kB activation of 4T1 cells in vivo. 4T1-bearing BALB/c mice were treated with or without DPP-4i. (E) Total p65, p-p65, and (F) NF-kB-
responsive proteins were detected in lung and liver metastatic tissues by IHC staining. (G-1) ROS scavenger abrogates DPP-4i-driven NF-kB activation in vitro. 4T1
cells were co-treated with Sax (0.4 uM) or Sit (1.2 uM) and NAC (0, 2.5, and 5 mM), respectively. (G) Total p65, p-p65, p-IKKo/B, IKKa,, p-IKBa, and IKBa and

() NF-xB-responsive proteins were detected by Western blotting. (H) NF-kB transcriptional activation was analyzed by luciferase reporter assay. B-Actin was as a
loading control. Data are presented as mean + SD of three independent experiments. Representative images are shown. Scale bars: 50 um. *p < 0.05, **p < 0.01
and **p < 0.001 between the indicated groups determined the one-way analysis of variance (ANOVA).

activation and NF-kB-responsive targets levels were
significantly attenuated after NAC treatment in DPP-4i-treated
BC cells (Figures 2H, I). Collectively, these data indicate that
DPP-4i induces aberrant NF-kB activation in BC cells via a ROS-
dependent manner.

Inhibition of ROS-NF-kB Activation
Abrogates DPP-4i-Driven BC Metastasis

Next, we investigated whether ROS-NF-kB activation is critical
to DPP-4i-induced BC metastasis. Using ROS scavenger NAC,

Frontiers in Oncology | www.frontiersin.org

September 2021 | Volume 11 | Article 728047


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Lietal

DPP-4i Reprograms BC Tumor Microenvironment

we found that ROS inhibition significantly abrogated DPP-4i-
driven BC cell migration and invasion with a dose-dependent
manner (Supplementary Figure S2), consistent with our
previous finding (7), suggesting an oncogenic role of ROS in
DPP-4i-driven BC metastasis. To further define the role of NF-
KB activation in DPP-4i-driven BC metastasis, we used BAY 11-
7082, a specific NF-xB inhibitor to explore whether
pharmaceutical NF-xB inhibition could reverse DPP-4i-driven
BC metastasis. As shown in Figure 3A, we found that NF-xB
inhibition significantly attenuated p65 and p-p65 levels and NF-
kB-responsive and metastasis-associated proteins in DPP-4i-
treated BC cells (Figures 3B, C). Notably, DPP-4i-driven cell

migration and invasion were also significantly abrogated by NF-
kB inhibition with a dose-dependent manner (Figures 3D, E),
indicating an essential role of NF-kB activation in DPP-4i-driven
BC metastases in vitro. Therefore, these results suggest that DPP-
4i drives BC metastasis via ROS-NF-kB activation.

Oncogenic NRF2-HO-1 Activation Is
Essential for DPP-4i-Driven ROS-
Dependent NF-xB Activation in BC Cells
Given the oncogenic roles of NRF2-HO-1 and NF-kB activations
in DPP-4i-driven BC metastasis (7), we sought to explore the
possible link between NRF2-HO-1 and NF-kxB activations in
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FIGURE 3 | Blockage of NF-kB activation reverses DPP-4i-driven metastasis in vitro. (A=C) NF-kB inhibitor reverses DPP-4i-driven NF-xB activation. 4T1 cells were
co-treated with Sax (0.4 uM) or Sit (1.2 uM) and NF-&B inhibitor BAY 11-7082 (0, 2, and 4 uM), respectively. (A) Total p65 and p-p65 expressions and (B, C) NF-
kB-responsive genes were detected by Western blotting. (D, E) NF-kB blockage attenuates DPP-4i-driven cell migration and invasion in vitro. 4T1 cells were subject
to (D) cell migration and (E) cell invasion upon co-treatment with Sax (0.4 uM) or Sit (1.2 uM) and BAY 11-7082 (0, 0.1, and 0.25 uM) for 24 h. Migration or invasion
cells were counted in 5-10 random fields. Data are presented as mean + SD of three independent experiments. Representative images are shown. *p < 0.05,

**p < 0.01, and **p < 0.001 between the indicated groups determined by unpaired Student’s t-test or the one-way analysis of variance (ANOVA).
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DPP-4i-driven BC metastasis. First, we used NRF2 inhibitor
ML-385 to investigate whether NRF2 could regulate NF-xB
activation in DPP-4i-treated BC cells. We observed that ML-
385-mediated NRF2 inhibition significantly reversed p-IKKo./p,
IKKo, p-IKBa, and IKBo and p65 and p-p65 expressions
(Figure 4A). Furthermore, NRF2 inhibition also attenuated
DPP-4i-induced NF-xB transcriptional activation and NF-kB-
responsive genes expression (Figures 4B, C), suggesting that
DPP-4i-driven NRF2 activation contributes to ROS-dependent
NEF-xB activation. Next, we applied HO-1 inhibitor to investigate
the role of HO-1 activation in DPP-4i-driven NF-xB activation
in BC cells. We observed that the HO-1 inhibitor significantly

attenuated the DPP-4i-driven p-IKKo/B, IKKo, p-IKBo, and
IKBo, and p65 and p-p65 expressions (Figure 4D). Furthermore,
DPP-4i-driven NF-kB transcriptional activation and NF-kB-
responsive targets expression were also markedly abrogated
(Figures 4E, F). Thus, these data indicate that NRF2-HO-1
activation contributes to ROS-mediated NF-xB activation in
DPP-4i-treated BC cells in vitro.

Given the aberrant NRF2 activation in metastasis tissues of
Sax-treated 4T1-bearing NOD-SCID mice (7), we investigated
whether DPP-4i also could promote NRF2 activation in 4T1-
bearing BALB/c mice. As shown in Supplementary Figure S3,
we found that Sax or Sit treatment also enhanced NRF2-HO-1
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FIGURE 4 | Inhibition of NRF2-HO-1 activation abrogates DPP-4i-driven NF-kB activation. (A-C) NRF2 blockage abrogates DPP-4i-induced NF-kB activation. 4T1
cells were co-treated with Sax (0.4 uM) or Sit (1.2 uM) and NRF2 inhibitor ML-385 (0, 5, and 10 uM), respectively. (A) The expression of p-65, p-p65, and NF-kB
regulatory proteins was detected by Western blotting. (B) NF-«B transcriptional activation was analyzed by luciferase reporter assay, and (C) NF-xB-responsive
targets were detected by Western blotting. (D-F) HO-1 inhibition attenuates DPP-4i-induced NF-kB activation. 4T1 cells were co-treated with Sax (0.4 uM) or Sit
(1.2 uM) and HO-1 inhibitor (0, 5, and 10 uM), respectively. (D) The expression of p-65, p-p65, and NF-kB regulatory proteins was detected by Western blotting.
(E) NF-xB transcriptional activation was analyzed by luciferase reporter gene assay. (F) NF-xB-responsive targets were detected by Western blotting. B-Actin was a
loading control. Data are presented as mean + SD of three independent experiments. Representative images are shown. *p < 0.05, **p < 0.01, and **p < 0.001
between the indicated groups determined by the one-way analysis of variance (ANOVA).
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activation in lung and liver metastasis tissues of 4T1-bearing
BALB/c mice, suggesting that DPP-4i-induced NRF2-HO-1
activation is independent on immune status of 4T1-bearing
mice model. Next, we used NRF2 activator ALA to test
whether pharmaceutical NRF2 activation could promote
NE-xB activation in vitro and in vivo. In vitro, we observed
that ALA treatment significantly enhanced p65 and p-p65 levels
and NF-kB transcriptional activation in BC cells (Figures 5A, B).
Meanwhile, p-IKKa/f, IKKo., p-IKBo., and IKBo., and NF-kB-

responsive genes expressions were also increased upon ALA
treatment in vitro (Figures 5C, D). Moreover, in 4T1-bearing
NOD-SCID mice, p65 and p-p65 expression and NF-xB-
responsive protein levels were also enhanced after ALA
treatment in lung and liver metastasis tissues (Figures 5E-G),
indicating that pharmaceutical NRF2 activation promotes NF-xB
activation in vivo. Together, these data suggest that NRF2-HO-1
activation plays a critical role in DPP-4i-driven ROS-dependent
NEF-kB activation of BC cells.
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FIGURE 5 | Pharmaceutical NRF2 activation promotes NF-kB activation in vitro and in vivo. (A, B) NRF2 activator ALA promotes NF-kB activation in BC cells.
(A) 4T1 cells were treated with ALA (0, 40, and 60 uM), and p-65 and p-p65 expressions were detected by Western blotting. (B) NF-«B transcriptional activation
was analyzed by luciferase reporter gene assay. (C, D) ALA enhances NF-kB-associated proteins expression in vitro. 4T1 cells were treated with ALA (0, 40, and 60
uM) for 4-6 h. (C) NF-kB regulatory proteins and (D) NF-kB-responsive targets were detected by Western blotting. B-Actin was a loading control. (E-G) ALA
induces NF-kB activation and its downstream targets expression in vivo. 4T1-bearing NOD-SCID mice were treated with ALA (80 mg/kg) via intraperitoneal (i.p.)
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respectively. Data are presented as mean + SD of three independent experiments. Scale bar: 50 um. Representative images are shown. *p < 0.05, ** p < 0.01, and
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DPP-4i Promotes the Recruitment of
Tumor-Infiltrating Inflammatory and
Immunosuppressive Cells in
Metastatic Sites

Given a critical role of tumor-infiltrating T cells in the prediction
of clinical outcomes in BC patients (13), we further investigated
the effect of DPP-4i on tumor-infiltrating immune cells in
metastatic sites. Therefore, we analyzed the expression of
immune-cell-associated markers in metastatic tissues including
pan-leukocyte marker CD45, neutrophil marker MPO,
macrophage markers CD11b, F4/80, and T cell markers CD4
and CD8 (14). We observed that DPP-4i significantly promoted
the infiltration of CD45", MPO™, and CD11b*/F4/80" cells in

lung and liver metastasis sites (Supplementary Figure S4).
Furthermore, we also observed an increase in CD4" cells but a
decrease in CD8" T cells in lung and liver metastasis sites
(Figures 6A, B), indicating that DPP-4i may induce tumor-
immunosuppressive microenvironment in metastatic sites.

To further define whether DPP-4i is involved in the infiltration
of immunosuppressive cells in metastatic sites (7-13), we further
investigated the effect of DPP-4i on the infiltration of Treg cells and
MDSCs in metastasis sites of 4T1-bearing BALB/c mice and
observed a significant increase in tumor-infiltrating Foxp3™ cells
in metastasis sites (Figure 6C), indicating that immunosuppressive
Treg cells may be responsible for the increased tumor-infiltrating
CD4" T cells after DPP-4i treatment. Furthermore, we also observed
that tumor-infiltrating MDSCs were also increased in lung and liver
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FIGURE 6 | DPP-4i promotes tumor-infiltrating immune-suppressive cells in metastasis sites of BALB/c mice. (A, B) DPP-4i enhances CD4+ T cells but decreases
CD8+ T cells in lung and liver metastatic tissues. 4T1-bearing BALB/c mice were treated with Sax (15 mg/kg) or Sit (120 mg/kg) via oral gavage daily, and (A) CD4+
T cells and (B) CD8+ T cells were detected by indirect IF staining in lung and liver metastatic tissues. (C) DPP-4i promotes Foxp3+ cells infiltration in metastatic
tissues. Foxp3+ cells were detected by IHC staining in lung and liver metastatic tissues. (D) DPP-4i promotes the infiltration of CD11b*Gr-1* MDSCs in metastatic
tissues. CD11b and Gr-1 expressions were detected by direct IF double staining in lung and liver metastatic tissues. Nuclei were counterstained with DAPI. Data are
presented as mean + SD of three independent experiments. Representative images are shown. Scale bar: 50 um. **p< 0.01, and ***p < 0.001 between the
indicated groups determined by unpaired Student’s t-test or the one-way analysis of variance (ANOVA).
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metastasis tissues of DPP-4i-treated mice (Figure 6D), indicating
that DPP-4i may promote 4T1-induced recruitment or expansion of
immunosuppressive cells in metastasis tissues.

Given MDSCs as a major immunosuppressive population in
4T1-bearing BALB/c mice (13, 20), we analyzed the effect of
DPP-4i on MDSCs proliferation and differentiation in PBMCs
and splenic cells of 4T1-bearing BALB/c mice. Interestingly, we
did not observe an obvious increase in CD11b"GR-1* MDSCs in
PBMC:s or splenic cells (Supplementary Figure S5A). Then, we
evaluated MDSCs differentiation by analyzing the percentage of
G-MDSCs and Mo-MDSCs, two major subtypes of MDSCs, but
did not find a significant alteration of MDSCs differentiation in
PBMCs and splenic cells of 4T1-bearing mice (Supplementary
Figure S5B), indicating that therapeutic ranges of DPP-4i may
not exert direct effects on biologic behavior of MDSCs in vivo. To
obtain more direct evidence, next, we set up an in vitro co-culture
system in which DPP-4i was cultured with 4T1-induced splenic
MDSCs. However, MDSCs differentiation, cell viability, and cell
apoptosis were not markedly changed after DPP-4i treatment
(Supplementary Figures S5C and S6A, B). In addition, DPP-4i
treatment did not significantly promote ROS release, NRF2
activation, and expression of suppressive molecules including
ARG-1 (Arginase-1), NCF1 (NOX components P47PP°%) CYBB
(NOX components gp91°"°%), TGF-P, and IL-10 in 4T1-induced
splenic MDSCs (Supplementary Figures S6C-E). Thus, these
data suggest that DPP-4i may induce tumor immunosuppressive
microenvironment by promoting recruitment or expansion of
tumor-infiltrating Treg and (or) MDSCs via an indirect manner.

DPP-4i Reprograms Tumor
Microenvironment by Direct Interaction
With BC Cells via ROS-NF-kB-NLRP3 Axis
Given an indirect role of DPP-4i in the remodeling of tumor
immunosuppressive microenvironment, we sought to know
whether DPP-4i could orchestrate tumor microenvironment by
direct interaction with BC cells. To this end, we first investigated
the effect of DPP-4i on NLRP3 activation, a critical
inflammasome in the remodeling of tumor microenvironment
(21, 22). We observed that DPP-4i obviously promoted NLRP3
inflammasome activation and IL-1f and IL-33 expressions in
vitro and 4T1-bearing BALB/c mice (Figures 7A, B). Similar
results were also observed in Sax-treated 4T1-bearing NOD-
SCID mice (Supplementary Figure S7). However, we did not
find that inhibition of NLRP3 inflammasome by MCC950 can
inhibit DPP-4i-driven BC cell migration and invasion in vitro
(Supplementary Figure S8), indicating that NLRP3
inflammasome may not be directly involved in BC metastasis
in vitro. Thus, these data suggest that DPP-4i can trigger NLRP3
inflammasome activation by direct interaction with BC cells,
thereby contributing to the remodeling of tumor microenvironment.
Given the aberrant activation of ROS-NRF2-HO-1-NF-kB
axis in DPP-4i-treated BC cells, we explored potential roles of
ROS-NRF2-HO-1-NF-kB axis in DPP-4i-driven NLRP3
inflammasome activation in BC cells. First, we investigated the
effect of NRF2 activation on NLRP3 activation. As shown in
Supplementary Figure S9, NRF2 activator ALA significantly

enhanced NLRP3 inflammasome activation and IL-1f and IL-33
levels in vitro and in 4T1-bearing NOD-SCID mice, indicating a
vital role of NRF2 activation in DPP-4i-driven NLRP3 activation.
Then, we used ROS or NF-kB inhibitors to investigate the role of
ROS-NF-kB activation in DPP-4i-driven NLRP3 activation and
also found that both ROS and NF-xB inhibitions can
significantly abrogate DPP-4i-driven NLRP3 inflammasome
activation and IL-1P and IL-33 levels (Figures 7C, D),
indicating that DPP-4i-driven NLRP3 activation is ROS-NF-
kB dependent. Moreover, we explored the role of NLRP3
activation in the expression of IL-18 and IL-33 cytokines and
found that NLRP3 inhibitor MCC950 and caspase-1 inhibitor
VX-765 significantly attenuated DPP-4i-driven IL-1f and IL-33
levels (Figures 7E, F), suggesting that DPP-4i triggers ROS-NF-
kB-NLRP3 activation, leading to caspase-1-mediated processing
of IL-1P and IL-33.

It has been shown that GM-CSF, G-CSF, and M-CSF
cytokines can induce accumulation and expansion of MDSCs,
leading to the enhancement of the 4T1 BC metastasis (20, 23).
Thus, we further investigated whether these cytokines were
involved in DPP-4i-induced tumor immunosuppressive
microenvironment in BC cells. As shown in Figure 8A, we
observed that both Sax or Sit treatment markedly promoted
transcription levels of G-CSF, M-CSF, and GM-CSF in BC cells,
suggesting that DPP-4i may directly induce G-CSF, M-CSF, and
GM-CSF secretion in BC cells. Given the essential role of GM-
CSF in the recruitment and maintenance of MDSCs of tumor-
immunosuppressive microenvironment (24), we then focused on
how DPP-4i can regulate GM-CSF expression in vitro and in
vivo. Using Western blotting and IHC staining, we found that
DPP-4i significantly upregulated GM-CSF expression in vitro
and in 4T1-bearing BALB/c mice (Figures 8B, C). Meanwhile, in
4T1-bearing NOD-SCID mice, we also observed that Sax or ALA
treatments also enhanced GM-CSF levels in lung and liver
metastasis tissues (Figures 8D, E), indicating that ROS-NRF2-
HO-1-NF-kB axis play a crucial role in DPP-4i-driven GM-CSF
secretion in BC cells. To further verify these results, we used a
serial of chemical inhibitors to investigate whether ROS-NRF2-
HO-1-NF-kB inhibition could reverse DPP-4i-driven GM-CSF
secretion in BC cells. We found that no matter the ROS-NRF2-
HO-1 inhibition or NF-xB inhibition, it significantly attenuated
DPP-4i-driven GM-CSF expression in BC cells (Figures 8F-I),
suggesting an essential role of ROS-NRF2-HO-1-NF-xB axis in
DPP-4i-driven GM-CSF production in BC cells. Together, these
results suggest that DPP-4i reprograms tumor microenvironment
by interaction with BC cells via the ROS-NF-kB-NLRP3 axis.

DISCUSSION

Better understanding the role of antidiabetic DPP-4i in BC-
induced tumor microenvironment would not only offer novel
insights into its potential role in BC progression but also may
provide new strategies to alleviate the dark side of DPP-4i in
diabetic patients with BC. Here, our results presented a novel
finding that DPP-4i can reprogram tumor microenvironment
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FIGURE 7 | DPP-4i triggers NLRP3 inflammasome activation via ROS-NF-kB axis. (A) DPP-4i triggers NLRP3 inflalmmasome activation in 4T1 cells. 4T1 cells were
treated with Sax (0.4 uM) or Sit (1.2 uM) for 24 h, and NLRP3 inflammasome-associated proteins were detected by Western blotting. (B) DPP-4i enhances NLRP3
inflammasome of BC cells in vivo. 4T1-bearing BALB/c mice were treated with Sax (15 mg/kg) or Sit (120 mg/kg) via oral gavage daily. NLRP3, IL-1, and IL-33
were detected by IHC staining in lung and liver metastatic tissues. (C) ROS inhibition attenuates DPP-4i-induced NLRP3 inflammasome activation. 4T1 cells were co-
treated with Sax (0.4 uM) or Sit (1.2 uM) and NAC (0, 2.5, and 5 mM), respectively, and NLRP3 inflammasome- associated proteins were detected by Western
blotting. (D) NF-kB blockage decreases DPP-4i-triggered NLRP3 inflammasome activation. 4T1 cells were co-treated with Sax (0.4 uM) or Sit (1.2 uM) and BAY 11-
7082 (0, 2, and 4 pM) respectively, and NLRP3 inflammasome-associated proteins were detected by Western blotting. (E) Inhibition of NLRP3 activation attenuates

analysis of variance (ANOVA).

that facilitates murine breast cancer metastasis by interacting
with cancer cells via a ROS-NRF2-HO-1-NF-kB-NLRP3 axis,
providing an immune mechanistic insight into the dark side of
DPP-4i in BC progression.

Our finding demonstrates that DPP-4i promotes BC
metastasis by triggering NF-xB activation via a ROS-NRF2-

DPP-4i-triggered IL-1B and IL-33 expression. 4T1 cells were co-treated with Sax (0.4 uM) or Sit (1.2 uM) and NLRPS inhibitor MCC950 (0, 5, and 10 uM)
respectively, and IL-1p and IL-33 cytokines were detected by Western blotting. (F) Inhibition of caspase-1 activation attenuates DPP-4i-triggered IL-1 and IL-33
expression. 4T1 cells were cotreated with Sax (0.4 uM) or Sit (1.2 uM) and caspase-1 inhibitor XV-765 (0, 10, and 20 uM), respectively, and IL-13 and IL-33
cytokines were detected by Western blotting. B-Actin was a loading control. Data are presented as mean + SD of three independent experiments. Representative
images are shown. Scale bar: 50 um. *p < 0.05, **p < 0.01, and **p < 0.001 between the indicated groups determined by unpaired Student’s t-test or the one-way

HO-1-dependent manner, offering more mechanistic insights
into the oncogenic role of ROS-NRF2-HO-1 axis in DPP-4i-
driven BC metastasis. Our recent finding reveals that DPP-4i can
facilitate murine BC metastasis by oncogenic ROS-NRF2-HO-1
axis via a positive NRF2-HO-1 feedback loop (7). However, the
downstream signaling underlying ROS-NRF2-HO-1 axis
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FIGURE 8 | DPP-4i promotes the secretion of GM-CSF, G-CSF, and M-CSF via
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CSF, and M-CSF secretion in 4T1 cells. 4T1 cells were treated with Sax (0, 0.2, and 0.4 uM) or Sit (0, 0.6, and 1.2 uM) for 24 h. (A) mRNA level of GM-CSF, G-
CSF, and M-CSF was analyzed by gRT-PCR, and (B) GM-CSF protein was detected by Western blotting. (C) DPP-4i promotes GM-CSF secretion of 4T1 cells in
vivo. 4T1-bearing BALB/c mice were treated with Sax (15 mg/kg) or Sit (120 mg/kg) via oral gavage daily. GM-CSF were detected in lung and liver metastatic tissues
by IHC staining. (D, E) 4T1-bearing NOD-SCID mice were treated with Sax (15 mg/kg) via (D) oral gavage daily or ALA (80 mg/kg) via (E) intraperitoneal (i.p.)
administration, and GM-CSF expression was detected in lung and liver metastatic tissues by IHC staining. (F) ROS inhibition attenuates DPP-4i-induced GM-CSF
secretion. 4T1 cells were co-treated with Sax (0.4 uM) or Sit (1.2 uM) and NAC (0, 2.5, and 5 mM), respectively, and GM-CSF expression was detected by Western
blotting. (G, H) Inhibition of NRF2-HO-1 abrogates DPP-4i-induced GM-CSF secretion. 4T1 cells were co-treated with Sax (0.4 uM) or Sit (1.2 uM), and (G) ML-385
(0, 5, and 10 uM) or (H) HO-1 inhibitor (0, 5, and 10 uM) respectively. Then, GM-CSF expression was detected by Western blotting. (I) NF-xB blockage abrogates
DPP-4i-induced GM-CSF secretion. 4T1 cells were co-treated with Sax (0.4 uM) or Sit (1.2 uM) and BAY 11-7082 (0, 2, and 4 uM), respectively, and GM-CSF
expression was detected by Western blotting. B-Actin was used as a loading control. Representative images are shown. Data are presented as mean + SD of three
independent experiments. Scale bar: 50 um. *p < 0.05, **p < 0.01, and **p < 0.001 between the indicated groups determined by unpaired Student’s t-test or the

one-way analysis of variance (ANOVA).

mediates DPP-4i-induced BC metastasis has not yet been
completely elucidated. Of note, we noted that ROS-NRF2-
HO-1 axis promoted DPP-4i-induced MMP-2, MMP-9, and
VEGEF levels (7), three well-known NF-kB-responsive targets
(14), promoting us to investigate whether NF-kB activation is
involved in DPP-4i-induced BC metastasis. Here, our data
showed that DPP-4i triggered aberrant NF-kB activation in

both immune-deficient NOD-SCID and immune-competent
BALB/C mice. Subsequently, we also revealed that ROS-NF-xB
inhibition abrogated DPP-4i-driven BC metastasis, while
abrogation of NRF2-HO-1 attenuated DPP-4i-driven ROS-
dependent NF-kB activation in BC cells. Moreover,
pharmaceutical NRF2 activation by ALA also promoted NF-«B
activation in vitro and in 4T1-bearing NOD-SCID mice. Thus,
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our results strongly suggest that aberrant NF-xB activation, as a
downstream signaling of ROS-NRF2-HO-1 axis, plays an
essential role in DPP-4i-driven BC metastasis, further
improving our understanding of the role of DPP-4i in the BC
progression. However, the regulation of DPP-4i-driven NRF2 to
NE-xB activation has not been completely demonstrated in 4T1
cells, and further study is need to dissect the more
mechanistic details.

Our present finding reveals that DPP-4i promotes tumor-
infiltrating inflammation and immune-suppressive cells in
metastatic sites, offering new strategies to develop effective
immunotherapeutic approaches to alleviate DPP-4i-driven BC
metastasis. A previous report suggested a potential role of DPP-4
inhibition in CXCL10-mediated lymphocyte trafficking in
melanoma B16F10-bearing mice (5). However, tumor-
infiltrating T cells (TILs) rather than circulating T cells were
shown to play a critical role in the prediction of clinical outcomes
of BC patients (13), promoting us to focus on tumor-infiltrating
immune cells in metastatic tissues. 4T1 cells originally from
BALB/c mice share many characteristics with naturally occurring
human BC and can metastasize to distant lung and liver
organs, providing an ideal mice model for mimicking the
metastatic and advanced stages of human BC (13). MDSCs,
as a major immunosuppressive population in 4T1-bearing
BALB/c mice (13, 20), contribute to tumor-immuno
suppressive microenvironment not only by producing a serial
of suppressive molecules such as Arg-1, NCF1, CYBB, TGEF-p,
and IL-10 (25, 26) but also by promoting recruitment and
expansion of Treg cells via TGF-f and IL-10 (26). Our current
finding revealed that DPP-4i enhanced tumor-infiltrating MPO",
CD4", F4/80", Foxp3™ cells, and MDSCs, but decreased CD8" T
lymphocytes in metastatic sites, indicating that DPP-4i may
induce tumor-immunosuppressive microenvironment by
enhancing tumor-infiltrating immune-suppressive cells.
However, our current finding showed no direct effects of DPP-
4i on cell viability, apoptosis, differentiation, and even immune-
suppressive molecule levels in 4T1-induced PBMC or splenic
MDSCs. Thus, these findings indicate that DPP-4i may induce
the recruitment or expansion of tumor-infiltrating MDSCs via
an indirect mechanism.

Our finding further highlights that DPP-4i as a potential
orchestrator may contribute to the tumor-immune-suppressive
microenvironment by direct interaction with BC cells via ROS-
NF-kB-NLRP3 axis, providing more immune mechanistic
insights into the DPP-4i-driven infiltration of immuno
suppressive cells in BC metastasis. Our finding suggest an
indirect role of DPP-4i in the recruitment of tumor-infiltrating
MDSCs, raising a possibility that DPP-4i may reprogram tumor
microenvironment by direct interaction with BC cells, thereby
promoting infiltration of immune-suppressive cells in metastatic
sites. Our previous finding revealed that NF-xB inhibition in
human gastric cancer cells inhibited tumor-infiltrating CDl1c,
F4/80, CD11b, and Gr-1-positive cells in lung and liver
metastatic tissues of BALB/c nude (nu/nu) mice (14),
indicating a critical role of NF-kB activation in the remodeling
of tumor microenvironment. Here, our finding revealed that

DPP-4i-induced NF-kB activation not only enhanced metastasis-
associated MMP-2, MMP-9, IL-6, and VEGF levels but also
increased adhesion proteins ICAM-1 and VCAM-1.
Noteworthy, among these downstream targets, VEGF was
reported to induce inflammatory neovascularization for
pathological hemangiogenesis and lymphangiogenesis by
recruiting inflammation monocytes and (or) macrophages
(14, 23), while ICAM-1 and VCAM-1, as ligands by LFA-1
and Mac-1 (CD11b) expressed in leukocytes, were also shown to
contribute to the recruitment of circulating leukocytes into the
inflammation sites (14, 21, 23). Furthermore, our finding also
showed that DPP-4i promoted NF-kB-dependent secretion of G-
CSF, M-CSF, and GM-CSF, three well-known cytokines for the
accumulation and expansion of MDSCs (20, 23), while a
combination of GM-CSF/IL-6 or other cytokines such as TGF-
B and VEGF was also shown to induce immune-suppressive
MDSCs (25, 27). Therefore, these data suggest that DPP-4i may
contribute to the modification of tumor microenvironment by
releasing a serial of adhesion or cytokines via NF-kB activation in
BC cells.

More significantly, our finding revealed that DPP-4i also
triggered NF-xB-dependent NLRP3 inflammasome activation,
leading to caspase-1-mediated processing of IL-1B and IL-33,
two critical proinflammatory cytokines for the tumor-immune-
suppressive microenvironment (21, 22). IL-1[3 has been shown to
facilitate BC tumor metastasis by multiple routes, including
modulating the immune cell milieu, promoting the recruitment
of MDSCs, and increasing adhesion molecules levels at the
metastasis sites (21). While IL-33, a novel member of the IL-1
family of cytokines, also plays a critical role in the modulation of
the metastatic immune microenvironment by facilitating
intratumoral accumulation of immunosuppressive and innate
lymphoid cells (22, 28, 29). Here, our finding showed that DPP-
4i promoted caspase-1-dependent processing of IL-1f and IL-33
by activating NF-kB-NLRP3 activation, indicating that DPP-4i
may reprogram tumor microenvironment by promoting 4T1
cells-derived IL-1B and IL-33 via NF-kB-NLRP3 pathway.
However, due to complex cell types or cytokines in tumor
microenvironment, besides MDSCs, our present finding has
not completely demonstrated the effect of DPP-4i on the
development of others tumor-immunosuppressive cells like
Treg cells, which should be further clarified in ongoing study.
Overall, these results suggest that DPP-4i can reprogram tumor
microenvironment by direct interaction with BC cells via ROS-
NF-kB-NLRP3 axis, offering novel insights relevant for the
development of effective immunotherapeutic approaches to
alleviate DPP-4i-driven BC metastasis.

In summary, our study suggests that antidiabetic DPP-4i as a
potential orchestrator reprograms tumor microenvironment that
facilitates murine BC metastasis by interacting with BC cells via a
ROS-NRF2-HO-1-NF-kB-NLRP3 axis. This finding not only
provides a mechanistic insight into the oncogenic role of ROS-
NRF2-HO-1 in DPP-4i-driven BC progression but also offers
novel insights relevant for the development of effective
immunotherapeutic approaches to alleviate the dark side of
DPP-4i in BC progress.
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Supplementary Figure S1 | Sax induces aberrant NF-xB activation in NOD-
SCID mice. 4T1-bearing NOD-SCID mice were treated with or without Sax (15 mg/
kg) via oral gavage daily. IHC staining was performed to detect p65 (A), p-p65 (B)
and NF-kB-responsive proteins (C-F) in lung and liver metastatic tissues. Data are
presented as mean + SD of three independent experiments. Representative images
are shown. Scale bar: 50 um. *p < 0.05, **p < 0.01 and **p < 0.001 between the
indicated groups determined by unpaired student’s t-test.

Supplementary Figure S2 | ROS inhibition reverses DPP-4i-driven cell migration
and invasion in vitro. 4T1 cells were subject to cell migration (A) and cell invasion (B)
assays upon co-treatment with Sax (0.4 uM) or Sit (1.2 uM) and NAC (0, 2.5 mM, 5
mM) for 24h respectively. Migration or invasion cells were counted in 5-10 random
fields (200xmagnification). Data are presented as mean + SD of three independent

experiments. Representative images are shown. “p < 0.05, *p < 0.01 and **p < 0.001
between the indicated groups determined by the one-way analysis of variance (ANOVA).

Supplementary Figure S3 | DPP-4i induces aberrant NRF2-HO-1 activation in
BALB/c mice. 4T1-bearing BALB/c mice were treated with Sax (15 mg/kg) or Sit
(120 mg/kg) via oral gavage daily respectively. IHC staining was performed to detect
p-NRF2 (A), NRF2 (B) and NRF2-responsive HO-1 (C) expression in lung and liver
metastatic tissues. Data are presented as mean + SD of three independent
experiments. Representative images are shown. Scale bar: 50 um. *p < 0.05,

P < 0.01 and **p < 0.001 between the indicated groups determined by the
one-way analysis of variance (ANOVA).

Supplementary Figure S4 | DPP-4i promotes infiltration of CD45, MPO and F4/
80-positive cells in metastatic sites of 4T1-bearing BALB/c mice. 4T1-bearing
BALB/c mice were treated with Sax (15 mg/kg) or Sit (120 mg/kg) via oral gavage
daily. CD45 (A) and MPO (B) expression was detected by indirect IF staining, and
CD11b/F4/80 (C) expression was detected by direct IF double staining in lung and
liver metastatic tissues. Nuclei were counterstained with DAPI. Data are presented
as mean + SD of three independent experiments. Representative images are
shown. Scale bar:50 um. *p < 0.05, **p < 0.01 and **p < 0.001 between the
indicated groups determined by the one-way analysis of variance (ANOVA).

Supplementary Figure S5 | DPP-4i does not alter MDSCs differentiation in vitro
and in vivo. (A, B) DPP-4i does not alter MDSCs differentiation in vivo. 4T1-bearing
BALB/c mice were treated with Sax (15 mg/kg) or Sit (120 mg/kg) via oral gavage
daily. Cell percentage of CD11b*Gr-1" MDSCs in PBMCs or Splenic cells was
evaluated by flow cytometry (A). Cell percentage of Mo-MDSCs (Ly6C"Ly6G") and
G-MDSCs (LyBC°Ly6G*) in PBMCs or splenic cells was evaluated by gating on
CD11b* population using flow cytometry (B). (C) DPP-4i does not alter MDSCs
differentiation in vitro. CD11b*Gr-1* MDSCs from splenic cells of 4T1-bearing
BALB/c mice were co-cultured with Sax (0, 0.2 uM, 0.4 uM) or Sit (0, 0.6 uM, 1.2
uM) in the presence of GM-CSF (10 ng/ml) for 72-96h. MDSCs differentiation was
evaluated by analyzing Mo-MDSCs and G-MDSCs using flow cytometry. Data are
presented as mean + SD of three independent experiments. *p < 0.05, **p < 0.01
and *p < 0.001 between the indicated groups determined by the one-way analysis
of variance (ANOVA).

Supplementary Figure S6 | DPP-4i treatment does not alter cell viability,
apoptosis, ROS production, NRF2 activation and immune-suppressive molecules
in MDSCs in vitro. CD11b*Gr-1* MDSCs isolated from splenic cells of 4T1-bearing
BALB/c mice were co-cultured with Sax (0, 0.2 uM, 0.4 uM) or Sit (0, 0.6 uM, 1.2
uM) in the presence of GM-CSF (10 ng/ml) for 24-96 h. Cell viability (co-cultured for
24-96 h) was detected by CCK-8 assay (A) and cell apoptosis (co-cultured for 72-
96 h) was detected by Annexin-V-PE/7-AAD staining (B), respectively. Intracellular
ROS and mROS in DPP-4i-treated MDSCs were detected using DHE and MitoSox
staining by flow cytometry (C) respectively. The expressions of NRF2-responsive
genes (D) and immune-suppressive genes (E) were detected by gRT-PCR. B-actin
was as an internal control. Data are presented as mean + SD of three independent
experiments. *p < 0.05, **p < 0.01 and **p < 0.001 between the indicated groups
determined by the one-way analysis of variance (ANOVA).

Supplementary Figure S7 | Sax triggers NLRP3 activation of BC cells in NOD-
SCID mice. 4T1-bearing NOD-SCID mice were treated with Sax (15 mg/kg) via oral
gavage daily. IHC staining was performed to detect NLRP3 (A), IL-33 (B) and IL-13
(C) expression in lung and liver metastatic tissues. Data are presented as mean +
SD of three independent experiments. Representative images are shown. Scale
bar: 50 um. *p < 0.05, *p < 0.01 and **p < 0.001 between the indicated groups
determined by unpaired student’s t-test.

Supplementary Figure S8 | Inhibition of NLRP3 activation do not suppress BC
migration and invasion in vitro. 4T1 cells were subject to cell migration (A) and cell
invasion (B) analysis upon co-treatment of Sax (0.4 uM) or Sit (1.2 uM) and NLRP3
inhibitor MCC950 (0, 5 uM,10 uM) for 24h respectively. Migration or invasion cells
were counted in 5-10 random fields (200xmagnification). Data are presented as
mean = SD of three independent experiments. Representative images are shown.
*p <0.05, *p <0.01 and **p < 0.001 between the indicated groups determined by
the one-way analysis of variance (ANOVA).

Supplementary Figure S9 | ALA promotes NLRP3 inflammasome activation of
BC cells in vitro and in vivo. (A) NRF2 activator ALA induces NLRP3 inflammasome
activation in vitro. 4T1 cells were treated with ALA (0, 40 uM, 60 uM) for 4-6 h, and
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NLRP3 inflammasome-associated proteins were detected by western blotting. -
actin was a loading control. (B) ALA enhances NLRPS inflammasome of BC cells in
vivo. 4T1-bearing NOD-SCID mice were treated with or without ALA (80 mg/kg) via
intraperitoneal (i.p.) administration. NLRP3, IL-18 and IL-33 expressions were
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