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Background: A wide variety of benign and malignant processes can manifest as non-
mass enhancement (NME) in breast MRI. Compared to mass lesions, there are no distinct
features that can be used for differential diagnosis. The purpose is to use the BI-RADS
descriptors and models developed using radiomics and deep learning to distinguish
benign from malignant NME lesions.

Materials and Methods: A total of 150 patients with 104 malignant and 46 benign NME
were analyzed. Three radiologists performed reading for morphological distribution and
internal enhancement using the 5th BI-RADS lexicon. For each case, the 3D tumor mask
was generated using Fuzzy-C-Means segmentation. Three DCE parametric maps related
to wash-in, maximum, and wash-out were generated, and PyRadiomics was applied to
extract features. The radiomics model was built using five machine learning algorithms.
ResNet50 was implemented using three parametric maps as input. Approximately 70% of
earlier cases were used for training, and 30% of later cases were held out for testing.

Results: The diagnostic BI-RADS in the original MRI report showed that 104/104
malignant and 36/46 benign lesions had a BI-RADS score of 4A–5. For category
reading, the kappa coefficient was 0.83 for morphological distribution (excellent) and
0.52 for internal enhancement (moderate). Segmental and Regional distribution were the
most prominent for the malignant group, and focal distribution for the benign group. Eight
radiomics features were selected by support vector machine (SVM). Among the five
machine learning algorithms, SVM yielded the highest accuracy of 80.4% in training and
77.5% in testing datasets. ResNet50 had a better diagnostic performance, 91.5% in
training and 83.3% in testing datasets.
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Conclusion: Diagnosis of NME was challenging, and the BI-RADS scores and
descriptors showed a substantial overlap. Radiomics and deep learning may provide a
useful CAD tool to aid in diagnosis.
Keywords: breast neoplasms, computer-assisted diagnosis, deep learning, machine learning, magnetic
resonance imaging
INTRODUCTION

Breast MRI is an important modality for the detection and
characterization of lesions. It has become a clinical examination
routinely used with mammography and ultrasound for diagnosis
of breast cancer (1, 2). Dynamic contrast-enhancement MRI
(DCE-MRI) is a well-established imaging method to evaluate the
vascular properties, which can be used for distinguishing benign
from malignant lesions (3, 4). In cases that mammography and
ultrasound show equivocal results, MRI can provide important
information for guiding the next procedure, such as biopsy or
short-term follow-up (2). According to Breast Imaging Reporting
and Data System (BI-RADS) (5), breast lesions onMRI are divided
into three categories, i.e., focus, mass, and non-mass enhancement
(NME). While mass lesions can be easily detected by all imaging
modalities and diagnosed with a high accuracy, the diagnosis of
NME lesions are more challenging (6). On mammography, since
there is no mass effect, the diagnosis has to rely on the distribution
of tissue density and/or micro-calcifications. On MRI, NME may
show strong enhancements and can be reliably detected as
suspicious when it is asymmetric between bilateral breasts.
However, to further designate the detected NME as likely to be
malignant or benign is more difficult, and machine learning-based
computer-aided diagnosis (CAD) may provide a feasible tool (6).

Breast MRI abnormalities are usually interpreted by
radiologists based on the evaluation of morphological features
and DCE kinetic patterns with the assistance of DCE-specific
display software, which is subjective and varies with radiologists’
experience (7). For NME, the fifth edition of BI-RADS has
further revised the categories for morphological distribution
and internal enhancement pattern. However, while some
descriptors were strongly associated with malignancy, there
was a substantial overlap between malignant and benign
lesions, and it is difficult to make an accurate diagnosis (8–12).
This problem was well recognized, and several CAD methods
have been developed, specifically considering the different
imaging features for mass and NME, respectively (13, 14).

In recent years, radiomics and machine learning have been
extensively applied in the medical field. Radiomics analysis can
extract many features from images and convert them into
quantifiable data. Subsequently, machine learning algorithms
can be applied to select important features to build models,
e.g., for making a differential diagnosis (15–17). Deep learning
using convolutional neural network (CNN) is also emerging
rapidly, and it has been shown as a feasible method for diagnosis
without using pre-defined feature extraction algorithms. ResNet
is a commonly selected deep learning network for analysis of MR
images, and it has been shown to be capable of diagnosing mass
2

lesions with a high accuracy (16, 17), but studies dedicated to the
diagnosis of NME were rarely reported.

The objective of this study was to implement radiomics and
deep learning using ResNet50 to build diagnostic models for
distinguishing malignant from benign NME on MRI. Three
radiologists performed reading to give morphological
distribution and internal enhancement pattern based on the
BI-RADS lexicon. The diagnostic implication of the BI-RADS
descriptors and the performance of radiomics and deep learning
models were reported.
MATERIALS AND METHODS

Patients
This was a retrospective study approved by the Institutional
Review Board, and informed consent was waived. The NME was
a lesion showing enhancement in an area that did not meet the
definition for a mass (i.e., space-occupying lesions with distinct
shapes and margins). The cases were selected from consecutive
patients receiving breast MRI for diagnosis from January 2017 to
December 2019, as centrally reviewed and determined by a
radiologist (JZ) with 12 years of experience. The inclusion
criteria were patients presenting non-mass enhancement
lesions, who had histopathologically confirmed diagnosis via
biopsy or surgery. All benign lesions in this study showed MR
contrast enhancements and were confirmed histologically, not
determined by follow-up. A total of 175 NME were identified.
The exclusion criteria were patients receiving any prior
treatment (N = 14), or with poor image quality and severe
motion artifacts (N = 11). Finally, a total of 150 patients,
including 104 with malignant cancers (mean age 49 ± 11,
range 22 to 71 years old), and 46 patients with benign lesions
(mean age 45 ± 12, range 23 to 80 years old), were included in the
analysis. The mean 1-D tumor size (the maximum tumor size
measured on the DCE-MRI) was 4.3 ± 2.0 cm (range 0.7 to
10.2 cm) in the malignant group and 2.3 ± 1.9 cm (range 0.5 to
7.3 cm) in the benign group. The histopathological types and
the diagnostic BI-RADS score reported in the MRI report are
listed in Table 1.

MRI Protocol
Breast MRI was performed using a GE 3.0T system with an eight-
channel breast coil. DCE-MRI was acquired using the three-
dimensional volume imaging for breast assessment (VIBRANT)
sequence in axial view to cover both breasts, with TR = 5 ms;
TE = 2 ms; FA = 10°; slice thickness = 1.2 mm without gap;
FOV = 34 × 34 cm2; and matrix size = 416 × 416. The DCE-MRI
November 2021 | Volume 11 | Article 728224
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series consisted of six frames: one pre-contrast (F1) and five post-
contrast (F2–F6). The contrast agent, gadopentetate
dimeglumine (Magnevist; Bayer Schering Pharma), at a dosage
of 0.1 mmol/kg, was intravenously injected after the pre-contrast
Frontiers in Oncology | www.frontiersin.org 3
frame was acquired, followed by 20 ml saline flush. The injection
rate was 2.5 ml/s using a power injector, so the injection of the
contrast medium and saline could be completed in 20 s. The
acquisition time for each DCE frame was 1 min 32 s. The k-space
was sampled using the rectilinear trajectory, with the central line
acquired in the middle at 46 s.

BI-RADS Reading for NME Descriptors
The morphological distribution and internal enhancement
pattern were read independently by three radiologists (JZ, HL,
and ZC, with 12, 7, and 6 years of experience interpreting breast
MRI), according to the 5th BI-RADS lexicon for NME lesions.
They were blind to the histopathological results, other imaging
findings (mammography and/or ultrasound, if any), and clinical
diagnosis. The BI-RADS category for the morphological
distribution included Focal, Linear, Segmental, Regional,
Multiple, and Diffuse; and that for the internal enhancement
pattern included Homogeneous, Heterogeneous, Clumped, and
Clustered ring. Reference images showing each of the
morphological distribution and internal enhancement pattern,
following examples in Lunkiewicz et al. (12), were prepared and
shown to the readers for training, before they were confident to
start the reading. Six case examples illustrating these descriptors
are shown in Figure 1.

Tumor Segmentation
The radiologist who centrally reviewed and determined NME
lesions (JZ) performed the segmentation. For each case, the
location and the slice range that contained the tumor were
decided, and then the tumor ROI was automatically segmented
on contrast-enhanced maps by using the fuzzy-C-means (FCM)
FIGURE 1 | Case examples of morphological distribution and internal enhancement pattern evaluated based on the 5th BI-RADS lexicon. (A) Forty-seven-year-old
diagnosed with adenosis, showing focal distribution and homogeneous enhancement. (B) Forty-one-year-old diagnosed with ductal carcinoma in situ (DCIS),
showing segmental distribution and heterogeneous enhancement. (C) Forty-three-year-old diagnosed with invasive ductal cancer (IDC), showing segmental
distribution and clustered ring enhancement. (D) Thirty-six-year-old diagnosed with inflammation, showing regional distribution and heterogeneous enhancement.
(E) Fifty-one-year-old diagnosed with IDC, showing regional distribution and clumped enhancement. (F) Fifty-two-year-old diagnosed with DCIS, showing multiple
distributions and clumped enhancement. In these six cases, all three readers give consistent BI-RADS category results.
TABLE 1 | The pathological types and diagnostic BI-RADS scores in malignant
and benign groups.

Groups Case Number
(%)

Pathological Type Malignant Total N = 104
Invasive Ductal Cancer† 56 (53.8%)
Ductal Carcinoma In Situ‡ 44 (42.3%)
Other Invasive Cancer 4 (3.8%)
Benign Total N = 46
Adenosis (Fibrocystic Changes) 28 (60.9%)
Inflammation 7 (15.2%)
Adenosis + Intraductal
Papilloma

5 (10.9%)

Adenosis + Fibroadenoma 3 (6.5%)
Fibroadenoma 2 (4.3%)
Adenosis + Inflammation 1 (2.2%)

Diagnostic BI-RADS
Score

Malignant Total N = 104
BI-RADS 4A 8 (7.7%)
BI-RADS 4B 17 (16.3%)
BI-RADS 4C 26 (25.0%)
BI-RADS 5 53 (51.0%)
Benign Total N = 46
BI-RADS 3 10 (21.7%)
BI-RADS 4A 14 (30.4%)
BI-RADS 4B 16 (34.8%)
BI-RADS 4C 4 (8.7%)
BI-RADS 5 2 (4.3%)
†Main pathology is IDC, may have presence of DCIS or invasive lobular cancer.
‡Main pathology is DCIS, may contain micro invasion of IDC.
November 2021 | Volume 11 | Article 728224
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clustering algorithm with 3D connected-component labeling, as
described previously (13, 17, 18). In 45 randomly selected cases,
the lesion location and range information were provided to
another radiologist (YZ, 6 years of experience) to perform
segmentation, and the obtained radiomics features from these
two sets of ROI’s were compared to test the feature
reproducibility by using the intra-class coefficient (ICC).

Radiomics Analysis
Three heuristic DCE parametric maps defined below were
generated: Wash-in Signal Enhancement (SE) Map = [(F2 − F1)/
Frontiers in Oncology | www.frontiersin.org 4
F1]; Maximum SE Map = [(F3 − F1)/F1]; Wash-out Slope Map =
[(F6 − F3)/F3], following the methods previously developed for
diagnosis of mass lesions on breast MRI (17). These three maps
could reveal important features associated with the wash-in and
wash-out phases in the DCE period. Examples from two
malignant lesions are shown in Figures 2, 3, and one benign
lesion is shown in Figure 4. The 3D tumor mask was interpolated
to have isotropic voxel resolution. The radiomics analysis was
performed using PyRadiomics, an open-source radiomics library
written in Python (19).On each parametricmap, 107 featureswere
extracted, so there were a total of 321 parameters from threemaps.
FIGURE 2 | A 41-year-old patient with ductal carcinoma in situ (DCIS). (A) F1 pre-contrast image. (B) F2 post-contrast image. (C–I): The zoom-in smallest
bounding box containing the tumor. (C) F1 pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image, showing a comparable
enhancement as in F3. (G) The wash-in signal enhancement map F2–F1. (H) The maximum F3–F1 signal enhancement map. (I) The wash-out F6–F3 map. (J) The
DCE time course shows a plateau pattern, after reaching the maximum in F3.
FIGURE 3 | A 63-year-old patient with invasive ductal cancer (IDC). (A) F1 pre-contrast image. (B) F2 post-contrast image. (C) F1 pre-contrast. (D) F2 post-
contrast. (E) F3 post-contrast. (F) The last F6 post-contrast image, showing wash-out DCE pattern with decreased intensity after reaching maximum in F3. (G) The
wash-in signal enhancement map F2–F1. (H) The maximum F3–F1 signal enhancement map. (I) The wash-out F6–F3 map. (J) The DCE time course shows a typical
wash-out pattern, reaching maximum in F3, followed by decreased intensity from F4 to F6.
November 2021 | Volume 11 | Article 728224
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Only 268 features showing ICC ≥ 0.8 were included in the final
analysis. The analysis flowchart is shown in Figure 5.

The sequential feature selection was performed by
constructing multiple support vector machine (SVM) classifiers
(20). In this process, SVM with Gaussian kernel was used as the
objective function to test the performance of a subset of features
using 10-fold cross-validation. In the beginning, an empty
candidate set was presented, and features were sequentially
added. In each iteration, the training process was repeated
1,000 times to explore the robustness of each feature. After
each iteration, the feature that led to the best performance was
added to the candidate set. When the addition of features no
longer met the criterion, the selection process stopped. We used
10−6 as the termination tolerance for the objective function value.

After features were selected by SVM, several machine learning
algorithms were applied to build the classification models,
including SVM with the Gaussian kernel, Decision Tree, K-
Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA),
and Naïve Bayes (21–23). The diagnostic performance was
evaluated using 10-fold cross-validation in the training dataset,
Frontiers in Oncology | www.frontiersin.org 5
and then the developed final model was applied to the held-out
testing dataset. The cases were separated into training and testing
sets according to the time of acquisition, earlier 70% of cases (72
malignant and 33 benign) for training and later 30% (32
malignant and 13 benign) held out for testing. Because the
ratio between the number of malignant and benign lesions was
approximately 2:1, the class weights of benign and malignant
images were assigned as 2:1 for the feature selection process and
classification models, so the results would not be biased by the
higher number of malignant cases.

Deep-Learning Analysis
Deep learning was performed using ResNet50 (24), following the
procedures previously applied to diagnose mass lesions (17).
Detailed methods about the network architecture and training/
validation were reported there. Three DCE parametric maps
were used as inputs. All pixels in one map were normalized to
have mean = 0 and standard deviation = 1. The smallest
bounding box encasing the lesion was resampled to 75 × 75
pixels as the input image. In deep learning, data augmentation
FIGURE 4 | A 40-year-old patient with benign adenosis. (A) F1 pre-contrast image. (B) The F2 post-contrast image. (C) F1 pre-contrast. (D) F2 post-contrast. (E) F3
post-contrast. (F) The last F6 post-contrast image, showing persistent enhancement with increased intensity over time. (G) The wash-in signal enhancement map F2–F1.
(H) The F3–F1 signal enhancement map. (I) The wash-out F6–F3 map. (J) The DCE time course shows a persistent enhancement pattern from F1 to F6.
FIGURE 5 | The flowchart of the radiomics analysis procedures. The tumor is first segmented on F2–F1 subtraction image using the FCM algorithm, and then the
tumor ROI is mapped to three generated DCE parametric maps. On each map, 107 parameters are extracted using PyRadiomics. They are used for feature
selection by SVM, and then for building classification models using five different machine learning algorithms.
November 2021 | Volume 11 | Article 728224
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was needed, which was done by using random affine
transformations, including translation, scaling, and rotation.
Each malignant slice was augmented 20 times and each benign
slice was augmented 40 times to balance the cases. For training,
the Adam optimizer was used and set to 0.001 (25). The batch
size was set as 64. To prevent the overfitting, L2 regularization
and early stopping were used. In the training dataset, 10-fold
cross-validation was used to evaluate the performance, and then
the developed final model was applied to the held-out testing
dataset. Deep learning was performed using each slice as an
independent input. After the slice-based analysis was completed,
the highest probability among all slices of a lesion was assigned to
that lesion to give a final lesion-based diagnosis using the
probability threshold of ≥0.5 as malignant and <0.5 as benign.

Statistical Analysis
Statistical analyses were performed using Matlab 2019b for
Windows. For radiologists’ reading of morphological distribution
and internal enhancementpattern, the kappa coefficientwasused to
assess the inter-observer agreement. Fisher’s exact test and odds
ratio (OR) were used to compare the difference of each BI-RADS
descriptor between malignant and benign groups. The radiomics
and deep learning analysis yielded malignancy probability for each
lesion in the training dataset, whichwas used to calculate sensitivity,
specificity, and overall accuracy, and to generate the receiver
operating characteristic (ROC) curve. Lastly, the trained model
was applied to the held-out testing dataset to evaluate
the performance.
RESULTS

Pathological Types and Diagnostic
BI-RADS Scores
The characteristics of the malignant and benign groups are
shown in Table 1. The majority of malignant lesions were IDC
and DCIS, and the most common benign pathology was adenosis
(fibrocystic changes). In the MRI report, the final diagnostic BI-
RADS scores for the malignant cases were all higher than 4,
showingN = 8 (7.7%) BI-RADS 4A,N = 17 (16.3%) BI-RADS 4B,
Frontiers in Oncology | www.frontiersin.org 6
N = 26 (25.0%) BI-RADS 4C, and N = 53 (51%) BI-RADS 5. In
the benign group, most of them also had scores higher than 4,
showing N = 10 (21.7%) BI-RADS 3, N = 14 (30.4%) BI-RADS
4A, N = 16 (34.8%) BI-RADS 4B, N = 4 (8.7%) BI-RADS 4C, and
N = 2 (4.3%) BI-RADS 5. If using the BI-RADS 4A as the cutoff,
the sensitivity was 100%, but the specificity was only 21.7%.

Morphology and Internal Enhancement
BI-RADS Category
The BI-RADS category for morphology and internal
enhancement was read by three radiologists independently to
evaluate their agreement. For the morphological distribution, ĸ =
0.83, 95% confidence interval [0.81–0.84]; and for the internal
enhancement pattern, k = 0.52, 95% confidence interval [0.51–
0.53]. The agreement was excellent for the distribution, but only
moderate for the internal enhancement. When further reviewing
the pathological types that were associated with inconsistent
reading, there were no dominate types. The disagreement
occurred in all types. The senior radiologist’s results are
summarized in Table 2. Of the 104 malignant cases, Regional
distribution was the most prominent (N = 45, 43.3%), followed
by Segmental (N = 23, 22.1%). For enhancement, Heterogeneous
(N = 45, 43.3%) and Clumped (N = 39, 37.5%) were two
dominating types. Of the 46 benign lesions, Focal distribution
(N = 28, 60.9%) and Heterogenous enhancement (N = 28, 60.9%)
were the most prevalent types. These BI-RADS descriptors are
illustrated in Figure 1. The positive predicting value (PPV) and
odds ratio (OR) are calculated and listed in Table 2.

The results combining the distribution and enhancement are
shown in Table 3. Of the 104 malignant cases, the top three were
Regional/Clumped (N = 28, 26.9%), Segmental/Heterogeneous
(N = 17, 16.3%), and Focal/Heterogeneous (N = 16, 15.4%). Of
the 46 benign cases, the top three were Focal/Heterogeneous
(N = 19, 41.3%), Focal/Homogeneous (N = 7, 15.2%), and
Segmental/Homogeneous (N = 6, 13.0%).

Radiomics Analysis Using Various
Machine Learning Algorithms
A total of eight radiomics features were selected by SVM,
including (1) gray-level co-occurrence matrix (GLCM)
TABLE 2 | BI-RADS category for morphology distribution and internal enhancement pattern in malignant and benign groups.

Features Total Number Malignant (N = 104) Benign (N = 46) PPV p-value Odds Ratio

Morphology Distribution
Focal 45 17 (16.3%) 28 (60.9%) 37.8% <0.001 0.13
Lineal 1 0 (0%) 1 (2.2%) 0% 0.308 0
Segmental 32 23 (22.1%) 9 (19.6%) 71.9% 0.833 1.17
Regional 51 45 (43.3%) 6 (13.0%) 88.2% <0.001 5.08
Multiple Regions 19 17 (16.3%) 2 (4.3%) 89.5% 0.059 4.30
Diffuse 2 2 (1.9%) 0 (0%) 100% 1.000 Inf

Internal Enhancement Pattern
Homogeneous 9 1 (1%) 8 (17.4%) 11.1% <0.001 0.40
Heterogeneous 73 45 (43.3%) 28 (60.9%) 61.6% 0.052 1.32
Clumped 44 39 (37.5%) 5 (10.9%) 88.6% <0.001 5.78
Clustered Ring 24 19 (18.3%) 5 (10.9%) 79.2% 0.340 2.07
November 202
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autocorrelation from wash-out map, (2) gray-level size zone
matrix (GLSZM) small area high gray level emphasis from
wash-in map, (3) GLCM difference entropy from wash-out
map, (4) GLCM autocorrelation from maximum SE map, (5)
gray-level run length matrix (GLRLM) short run emphasis from
maximum SE map, (6) gray-level dependence matrix (GLDM)
high gray level emphasis from maximum SE amp, (7) GLDM
dependence non-uniformity normalized from wash-in map, and
(8) GLCM joint average from wash-in map. These features were
used to build the model, and the results are summarized in
Table 4. In the training dataset, the achieved accuracy was 80.4%,
77.3%, 75.3%, 75.3%, and 71.1% for SVM, Decision Tree, KNN,
LDA, and Naïve Bayes, respectively. The ROC curves for all
models are generated and shown in Figure 6. When these models
were applied to the held-out testing dataset, the accuracy was
77.5%, 75.0%, 67.5%, 70.0%, and 62.5%, respectively.

Deep Learning Analysis Using ResNet50
For each lesion, the smallest bounding box covering the tumor
on all slices was generated, as illustrated in Figures 2–4. The
three cropped parametric maps were used as input into the
ResNet50 network. The ROC curve is shown in Figure 6.
The per-lesion diagnostic results are summarized in Table 4.
In the training dataset, sensitivity = 95.4%, specificity = 82.8%,
and accuracy = 91.5% with an AUC of 0.97. When the developed
model was applied to the held-out testing dataset, sensitivity =
Frontiers in Oncology | www.frontiersin.org 7
88.9%, specificity = 66.7%, and accuracy = 83.3%. The
performance of ResNet50 was better than all radiomics models.
DISCUSSION

The detection and diagnosis of NME have been known as a more
challenging problem compared to mass lesions, which may be
addressed by advanced machine learning methods (6). The
common histopathology that may manifest as NME includes
ductal carcinoma in situ (DCIS), invasive ductal cancer (IDC),
invasive lobular cancer (ILC), benign adenosis, fibrocystic changes,
and inflammation (12, 26). For NME, cancerous tissues were
admixed with fibrotic tissues and there were no clear boundaries.
Only enhanced benign lesions meeting the criterion of NME were
included in this study, and all of them had a diagnostic BI-RADS
score ≥ 3, with the majority of them (36/46 = 78.3%) having BI-
RADS ≥ 4. All patients received biopsies and had histologically
confirmed benign diagnoses. The results show that this is a difficult
patient population for diagnosis, which is the objective of the study
to explore the performance of advanced CAD using radiomics and
deep learning.

The specific descriptors for NME lesions revised in the 5th BI-
RADS lexicon were used. Our reading results show that regional
and segmental were the two dominating morphology types. The
two main enhancement categories were heterogeneous and
TABLE 3 | Combined morphology distribution and internal enhancement pattern in malignant and benign groups.

Morphology/Internal Enhancement Total Number Malignant (N = 104) Benign (N = 46) p-value

Focal/Homogeneous 8 1 (1.0%) 7 (15.2%) <0.001
Focal/Heterogeneous 35 16 (15.4%) 19 (41.3%) <0.001
Linear/Homogeneous 1 0 (0%) 1 (2.2%) 0.308
Segmental/Homogeneous 6 0 (0%) 6 (13.0%) <0.001
Segmental/Heterogeneous 18 17 (16.3%) 1 (2.2%) 0.012
Segmental/Clumped 7 5 (4.8%) 2 (4.3%) 1.000
Segmental/Clustered ring 1 1 (1.0%) 0 (0%) 1.000
Regional/Heterogeneous 11 10 (9.6%) 1 (2.6%) 0.172
Regional/Clumped 30 28 (26.9%) 2 (4.3%) <0.001
Regional/Clustered ring 12 7 (6.7%) 5 (10.9%) 0.509
Multiple regional/Heterogeneous 2 1 (1.0%) 1 (2.2%) 0.523
Multiple regional/Clumped 6 6 (5.7%) 0 (0%) 0.181
Multiple regional/Clustered ring 11 10 (9.6%) 1 (2.2%) 0.168
Diffuse/Heterogeneous 1 1 (1.0%) 0 (0%) 1.000
Diffuse/Clustered ring 1 1 (1.0%) 0 (0%) 1.000
Nove
mber 2021 | Volume 11 | Article
TABLE 4 | Diagnostic sensitivity, specificity, and accuracy using models built by ResNet50 deep learning and radiomics with five different machine learning algorithms.

Training Dataset (10-fold cross-validation) Testing dataset

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy

ResNet50 95.4% 82.8% 91.5% 0.97 88.9% 66.7% 83.3%
Radiomics
SVM (Gaussian) 98.5% 43.8% 80.4% 0.88 92.9% 41.7% 77.5%
Decision Tree (Coarse) 84.6% 62.5% 77.3% 0.75 85.7% 50.0% 75.0%
KNN (Cosine) 90.8% 43.8% 75.3% 0.75 71.4% 58.3% 67.5%
Linear Discriminant 84.6% 56.3% 75.3% 0.73 78.6% 50.0% 70.0%
Naïve Bayes (Gaussian) 83.1% 46.9% 71.1% 0.69 57.1% 75.0% 62.5%
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clumped, but the readers could not reach a good agreement
between them, only reaching a moderate kappa value of 0.52.
NME was known to present heterogeneous enhancement.
Whether it was clumped or not was related to the degree of
heterogeneity, i.e., whether there was the presence of aggregated
bright spots, and it was subjective. There was no clear graphical
depiction similar to those illustrating morphological distribution
for readers to follow (12). Besides, even with the precise
classification of morphological distribution and enhancement
patterns, they were not related to a clear distinction between
malignant and benign lesions, as demonstrated in our results in
Tables 2, 3. For mass lesions, several prominent features, such as
spiculation and rim enhancement, were highly suggesting
malignancy, but none of the morphological or enhancement
NME features had such a high PPV, and thus, more advanced
CAD methods may be developed to help.

Motivated by the difficulty, we performed radiomics and deep
learning to analyze this dataset and compared their diagnostic
performance. The radiomics features were extracted using
PyRadiomics, and eight features were selected by SVM for
building models using five different machine learning algorithms.
The results showed that SVM with Gaussian kernel had the highest
accuracy compared to other algorithms, 80.4% in training, and
77.5% in testing datasets.With the feasibility of deep learning for the
diagnosis of breast lesions onMRI (16, 17, 27), we applied ResNet50
to this NME dataset to investigate the performance. The accuracy
was 91.5% in the training, and 83.3% in the testing datasets. Similar
to reported studies in the literature (16, 17, 28, 29), in general, deep
learning had a better diagnostic performance compared to
radiomics models (Figure 6), presumably because of the high
Frontiers in Oncology | www.frontiersin.org 8
level of flexibility not limited by the pre-defined features extracted
using certain computer algorithms.

Radiomics is based on the assumption that extracted imaging
data are the product of mechanisms occurring at a genetic and
molecular level linked to the genotypic and phenotypic
characteristics of the tissue/tumor (30). On the other hand,
deep learning uses convolutional neural networks to provide
an efficient method in imaging processing, which can be applied
to perform many clinical classification tasks (31–33). Due to
distinctively different features, it is known that the diagnosis for
mass and NME has to be done with separate computer-aided
models (13, 14). Most machine learning breast MRI CAD
studies, either done using radiomics or deep learning, did not
separate them (15, 16). To our best knowledge, so far there has
not been any machine learning-based CAD study dedicated to
systematically compare the diagnosis of NME using radiomics
and deep learning; therefore, no results could be compared
to ours.

Regarding the specific reading results, the focal distribution
and homogeneous enhancement were significant benign
predictors, while regional, multiple, and clumped enhancement
were significant malignant predictors. Diffuse distribution and
clustered ring enhancement also had high PPV, but the case
number was too small to reach a significant level. Several studies
have compared the NME descriptors analyzed using the fifth
edition of BI-RADS lexicon (8–12), and the reported results were
pretty consistent. However, since the patient population was very
different, the percentage of features and PPV could not be
directly compared. When a screening population was analyzed,
more benign cases would be included (9, 11, 12), but when a
FIGURE 6 | The ROC curves generated from the predicted per-lesion malignancy probability in the training dataset, by using ResNet50 and the five radiomics
models built using: Support Vector Machine, Decision Tree, K-Nearest Neighbor, Linear Discriminant Analysis, and Naïve Bayes.
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diagnostic population was analyzed as in our study, more
malignant cases were found (8, 10). In these studies, and
earlier studies using the previous BI-RADS lexicon, the
clumped and clustered ring enhancements were reported to
have a high PPV associated with malignancy. In our study, the
clustered ring was seen in 19/104 (18.3%) malignant patients, but
5/46 (10.9%) benign patients also showed this feature.
Interestingly, of these five patients, four patients had confirmed
inflammation, which could be very difficult to diagnose.
Particularly, inflammation tended to be larger and presented
segmental, regional, and multiple distributions, as in the case
shown in Figure 1D. Extensive fibrocystic changes were also
likely to present as NME, mimicking malignancy in visual
evaluation (34).

There were some limitations. First of all, the case number was
small, especially for radiomics and deep learning analysis.
Considering that NME was fewer than mass lesions, it was
difficult to assemble a large NME dataset that showed strong
enhancements and had pathologically confirmed diagnosis for
benign cases. That might be the main reason for the rare report
in the literature. The case number may be expanded by including
women receiving MRI for screening purposes, and adding
benign lesions determined by follow-up without biopsy.
However, mixing diagnostic and screening patients would lead
to another bias problem, and the results might greatly depend on
the composition of the analyzed patient population. Second,
three radiologists reviewed the entire dataset to give BI-RADS
category for morphology and internal enhancement, but they did
not attempt to give a final diagnostic score, or the malignant vs.
benign diagnosis. Instead, we reported the BI-RADS scores given
in the initial MRI report. In future prospective studies,
radiologists’ comprehensive reading can be done, and their
diagnostic results can be compared to those analyzed by the
radiomics or deep learning models, e.g., the model developed in
this work. Lastly, the training and testing datasets were from the
same hospital acquired using the same MR scanner. As such, the
developed models may not be applicable to datasets acquired
using a different scanner, or datasets from a different institution
acquired using a different protocol. In a recent study, we showed
that transfer learning is needed to fine-tune the models
developed for predicting the breast cancer molecular subtypes
using one dataset for a different dataset acquired from a different
hospital (35). An external independent testing dataset is needed
in the future to evaluate the performance of the developed
models for diagnosis of NME here, and further to investigate
how the model needs to be fine-tuned.

In conclusion, we assembled a breast MRI NME dataset and had
three radiologists perform reading for themorphological distribution
and internal enhancementpatternbasedonthe5thBI-RADS lexicon.
The results showed that there was a substantial overlap between the
BI-RADS features ofmalignant and benignNME lesions. Radiomics
and deep learning methods were implemented to investigate their
potential to provide a machine-learning based CAD tool, and a high
accuracy was achieved. The value of AI models in diagnostic
radiology is well recognized, mostly in providing additional
information for the radiologist, not mature yet for making a
Frontiers in Oncology | www.frontiersin.org 9
diagnostic recommendation. Given the difficulty in the diagnosis of
NME compared to mass lesions by radiologist’s reading, these tools
may have a clinical value, which is rarely reported. The diagnostic
model for NME will further complement those developed for mass
lesions to demonstrate the clinical feasibility of theAI-basedmachine
learning and deep learning algorithms for making differential
diagnosis for all types of lesions detected by breast MRI.
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