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Lower-grade glioma (LGG) is characterized by genetic and transcriptional heterogeneity,
and a dismal prognosis. Iron metabolism is considered central for glioma tumorigenesis,
tumor progression and tumor microenvironment, although key iron metabolism-related
genes are unclear. Here we developed and validated an iron metabolism-related gene
signature LGG prognosis. RNA-sequence and clinicopathological data from The Cancer
Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) were downloaded.
Prognostic iron metabolism-related genes were screened and used to construct a risk-
score model via differential gene expression analysis, univariate Cox analysis, and the
Least Absolute Shrinkage and Selection Operator (LASSO)-regression algorithm. All LGG
patients were stratified into high- and low-risk groups, based on the risk score. The
prognostic significance of the risk-score model in the TCGA and CGGA cohorts was
evaluated with Kaplan-Meier (KM) survival and receiver operating characteristic (ROC)
curve analysis. Risk- score distributions in subgroups were stratified by age, gender, the
World Health Organization (WHO) grade, isocitrate dehydrogenase 1 (IDH1) mutation
status, the O6

‐methylguanine‐DNA methyl‐transferase (MGMT) promoter-methylation
status, and the 1p/19q co-deletion status. Furthermore, a nomogram model with a risk
score was developed, and its predictive performance was validated with the TCGA and
CGGA cohorts. Additionally, the gene set enrichment analysis (GSEA) identified signaling
pathways and pathological processes enriched in the high-risk group. Finally, immune
infiltration and immune checkpoint analysis were utilized to investigate the tumor
microenvironment characteristics related to the risk score. We identified a prognostic
15-gene iron metabolism-related signature and constructed a risk-score model. High risk
scores were associated with an age of > 40, wild-type IDH1, a WHO grade of III, an
unmethylated MGMT promoter, and 1p/19q non-codeletion. ROC analysis indicated that
the risk-score model accurately predicted 1-, 3-, and 5-year overall survival rates of LGG
patients in the both TCGA and CGGA cohorts. KM analysis showed that the high-risk
group had a much lower overall survival than the low-risk group (P < 0.0001). The
nomogram model showed a strong ability to predict the overall survival of LGG patients in
the TCGA and CGGA cohorts. GSEA analysis indicated that inflammatory responses,
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tumor-associated pathways, and pathological processes were enriched in high-risk
group. Moreover, a high risk score correlated with the infiltration immune cells (dendritic
cells, macrophages, CD4+ T cells, and B cells) and expression of immune checkpoint
(PD1, PDL1, TIM3, and CD48). Our prognostic model was based on iron metabolism-
related genes in LGG, can potentially aid in LGG prognosis, and provides potential targets
against gliomas.
Keywords: iron metabolism, lower-grade glioma, prognosis, tumor microenvironment, bioinformatics
INTRODUCTION

Diffuse gliomas represent the most common type of primary tumor
originating in the central nervous system. Oligodendrocytomas and
astrocytomas, corresponding to World Health Organization
(WHO) grade II and grade III tumors, are defined as lower-
grade gliomas (LGGs) (1). The median overall survival (OS) time
of patients with WHO II and III gliomas is 78.1 months and 37.6
months, respectively (2). Despite advances in diagnostic and
treatment methods, LGG may progress into high-grade glioma in
some patients, leading to reduced therapeutic responses and a
poorer disease prognosis. Therefore, exploring the underlying
molecular mechanisms and prognostic indicators is still urgently
required for patients with LGG.

Iron, an essential dietary element, participates in both biological
and pathological processes. In contrast to normal cells, many
tumor cells become dependent on iron in order to grow faster
and, thus, are more susceptible to iron depletion. This
phenomenon is known as iron addiction (3). Data from previous
studies showed that tumor cells can increase intracellular iron levels
by modulating expression of the transferrin receptor, ferroportin,
and ferritin (4–8). Dysregulation of iron metabolism-related genes
promotes tumor cell proliferation, invasion, and metastasis (9).
Iron accumulation, as well as iron-catalytic reactive oxygen/
nitrogen species and aldehydes, can cause DNA-strand breaks
and tumorigenesis (9, 10). Iron also participates in several types
of cell death (11), especially ferroptosis (3).

The association between high-grade glioma and iron
metabolism has been reported previously. Jaksch-Bogensperger
et al. showed that patients with high-grade glioma have higher
serum ferritin levels (12). Glioblastoma cancer stem-like cells can
absorb iron from the microenvironment more effectively, by
upregulating their expression levels of ferritin and transferrin
receptor 1 (8). In addition, iron accumulation promotes the
proliferation of glioma cells (13). Hypoxia-induced ferritin light
chain expression is also involved in the epithelial-mesenchymal
transition (EMT) and chemoresistance of high-grade glioma
(14). Recently, some therapeutic methods targeting cellular
iron and iron-signaling pathways have been tested, including
iron chelation, treatment with curcumin or artemisinin, and
RNA interference (10). However, the toxicities and side effects of
iron chelators limit their applications in treating gliomas (15).
Therefore, there is still a need to attain a deeper understanding of
iron metabolism in LGGs.

In this study, iron metabolism-related genes were investigated.
We performed a comprehensive bioinformatics analyses based on
2

gene-expression levels, DNAmethylation, copy-number alteration
patterns, and clinical data from The Cancer Genome Atlas
(TCGA). By identifying dysregulated iron metabolism-related
genes, we constructed a risk-score system of LGG and validated
it in the TCGA and Chinese Glioma Genome Atlas (CGGA)
datasets. In addition, function analysis and gene set enrichment
analysis (GSEA) were performed between the high-risk and low-
risk groups to investigate the potential pathways and mechanisms
related to iron metabolism. Our results showed that a 15-gene
signature could be used as an independent predictor of OS in
patients with LGG.
MATERIALS AND METHODS

Assembling a Set of Iron Metabolism-
Related Genes
Iron metabolism-related genes were retrieved from gene sets
downloaded from the Molecular Signatures Database (MSigDB)
version 7.1 (16, 17), including the GO_IRON_ION_BINDING,
GO_2_IRON_2_SULFUR_CLUSTER_BINDING, GO_4_IRON_
4_SULFUR_CLUSTER_BINDING, GO_IRON_ION_IMPORT,
GO_IRON_ION_TRANSPORT, GO_IRON_COORDINATION_
ENTITY_TRANSPORT, GO_RESPONSE_TO_IRON_ION,
MODULE_540 , GO_IRON_ION_HOMEOSTASIS ,
GO_CELLULAR_IRON_ION_HOMEOSTASIS, GO_HEME_
BIOSYNTHETIC_PROCESS, HEME_BIOSYNTHETIC_
PROCES S , GO_HEME_METABOL IC_PROCES S ,
HEME_METABOLIC_PROCESS, HALLMARK_HEME_
METABOLISM, and REACTOME_IRON_UPTAKE_AND_
TRANSPORT gene sets. We also reviewed the literature and
added the previously reported genes (18, 19). After removing
overlapping genes, we obtained an iron metabolism-related gene
set containing 527 genes.
Datasets and Data Processing
Gene expression data for 523 LGG samples (TCGA) and 105
normal cerebral cortex samples (GTEx project) were downloaded
from a combined set of TCGA, TARGET, and GTEx samples in
UCSC Xena (https://tcga.xenahubs.net). Clinical information for
patients with LGG was obtained from using the “TCGAbiolinks”
package written for R (20–22). Gene expression data and
clinicopathological information for 443 patients with LGG were
retrieved fromCGGA database (http://www.cgga.org.cn/) and were
selected as a test set. Data from patients without prognostic
September 2021 | Volume 11 | Article 729103
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information were excluded from our analysis. Ultimately, we
obtained a TCGA training set containing 506 patients and a
CGGA test set with 420 patients. Ethics committee approval was
not required since all the data were available in open-access format.

Differential Analysis
First, we screened out 402 duplicate iron metabolism-related genes
that were identified in both TCGA and CGGA gene expression
matrixes. Then, differentially expressed genes (DEGs) between the
TCGA-LGG samples and normal cerebral cortex samples were
analyzed using the “DESeq2”, “edgeR” and “limma” packages of R
software (version 3.6.3) (23–26). The DEGs were filtered using a
threshold of adjusted P-values of < 0.05 and an absolute log2-fold
change >1. Venn analysis was used to select overlapping DEGs
among the three algorithms mentioned above. Eighty-seven iron
metabolism-related genes were chosen for downstream analyses.
Additionally, functional enrichment analysis of selected DEGs was
performed using Metascape (https://metascape.org/gp/index.
html#/main/step1) (27).

Constructing and Validating the Risk-
Score System
Univariate Cox proportional hazards regression was performed
for the genes selected for the training set using “ezcox” package
(28). P < 0.05 was considered to reflect a statistically significant
difference. To reduce the overfitting high-dimensional prognostic
genes, the Least Absolute Shrinkage and Selection Operator
(LASSO)-regression model was performed using the “glmnet”
package (29). The expression of identified genes at protein level
was studied using the Human Protein Atlas (http://proteinatlas.
org). Subsequently, the identified genes were integrated into a risk
signature, and a risk-score system was established according to the
following formula, based on the normalized gene expression
values and their coefficients. The normalized gene expression
levels were calculated by TMM algorithm by “edgeR” package.

Risk score =on
i=1exprgenei � coeffieicentgenei

The risk score was calculated for each patients with LGG in this
study, and the distribution and receiver operating characteristic
(ROC) curve were plotted using “timeROC” package (30).
According to the median risk score in the training set, patients
were divided into high- or low- risk groups. Patients were also
divided into subgroups according to clinicopathological features,
including age, gender, WHO grade, histological type, isocitrate
dehydrogenase 1 (IDH1) mutation status, 1p19q codeletion status,
and O6‐methylguanine‐DNA methyl‐transferase (MGMT)
promoter methylation status. Boxplot were plotted using the
“ggpubr” package to identify associations between risk scores
and clinical features. In addition, the relationships between risk
scores and OS rates in different groups and subgroups were
evaluated by Kaplan-Meier survival analysis and log-rank testing.

Development and Evaluation of the
Nomogram
To evaluate whether the risk score system can serve as an
independent predictive index, univariate and multivariate Cox
Frontiers in Oncology | www.frontiersin.org 3
regression analyses were performed with clinicopathological
parameters, including the age, gender, WHO grade, IDH1
mutation status, 1p19q codeletion status, and MGMT promoter
methylation status. All independent prognostic parameters were
used to construct a nomogram to predict the 1-, 3- and 5-year OS
probabilities by the ‘rms’ package. Concordance index (C-index),
calibration and ROC analyses were used to evaluate the
discriminative ability of the nomogram (31).

GSEA
DEGs between high- and low-risk groups in the training set were
calculated using the R packages mentioned above. Then, GSEA
(http://software.broadinstitute.org/gsea/index.jsp) was performed
to identify hallmarks of the high-risk group compared with the
low-risk group.

TIMER Database Analysis
The TIMER database (http://timer.cistrome.org/) is a comprehensive
web tool that provide automatic analysis and visualization of
immune cell infiltration of all TCGA tumors (32, 33). The
infiltration estimation results generated by the TIMER algorithm
consist of 6 specific immune cell subsets, including B cells, CD4+ T
cells, CD8+ T cells, macrophages, neutrophils and dendritic cells.We
extracted the infiltration estimation results and assessed the different
immune cell subsets between high-risk and low-risk groups (34).

Statistical Analysis
All statistical analyses in this study were conducted using R
software (version 3.6.3) and GraphPad Prism (version 8.0.2). The
log-rank test was used for the Kaplan-Meier survival analysis.
Hazard ratios (HRs) and 95% confidence intervals (CIs) were
reported where applicable. Student’s t-test and the Kruskal–
Wallis test were employed in the two-group comparisons. A
two-tailed P value of <0.05 was considered statistically significant
without specific annotation.
Availability of Data and Materials
The data we used were retrieved from open-access databases. The
majority of statistical codes are available in File S1.
RESULTS

Identification of Iron Metabolism-Related
Gene in Patients With LGG
Based on the MSigDB and a literature review, we selected 527 iron
metabolism-related genes for analysis. Four hundred and two
genes remained after excluding genes not present in the TCGA-
LGG or CGGA-LGG set. According to the criteria for DEG, we
identified 7,223 DEGs between 523 TCGA-LGG samples and 105
normal brain cortex samples based on overlapping edgeR, limma,
DESeq2 analysis results (Figure 1A). Then, a total of 87 iron
metabolism-related genes (50 up-regulated and 37 down-
regulated) among the DEGs were selected for further analysis
(Figure 1B). Enrichment analyses were performed to explore the
September 2021 | Volume 11 | Article 729103
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functions of the selected genes. These genes were significantly
enriched in terms of iron ion binding, iron ionmetastasis, and iron
ion transport (Figure 1C). Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis showed that ferroptosis,
mineral absorption, the p53 signaling pathway and the AMPK
signaling pathway were enriched (Figure 1D).

Construction and Assessment of the Risk-
Score System
First, univariate Cox regression was used to investigate the
relationship between the expression levels of the selected genes
and OS time in the training set. Using cut-off threshold of Cox P <
0.05, 47 genes were identified as potential risk factors related to OS
Frontiers in Oncology | www.frontiersin.org 4
(Table S1). Subsequently, the LASSO regression algorithm was
used to refine the gene sets by calculating regression coefficients
(Figures 2A, B). In this manner, 15 genes were identified as the
most valuable predictive genes, and the risk-score system was
established using the formula mentioned above (Table 1).

We also confirmed the expression level of these identified
genes by Immunohistochemical analysis in Human Protein Atlas
(HPA). And the results were shown in Figure 3. 6 of these genes
were dysregulated in LGG and higher-grade glioma samples. The
expressions level of GCLC, NCOA4, UROS were higher in LGG
samples, whereas the expression levels of LAMP2, RRM2,
STEAP3 were lower in LGG than HGG samples. CH25H and
RTEL1 were missing in HPA database. ACP5, CYP2D6, HBQ1,
A B

D

C

FIGURE 1 | Identification and functional enrichment analysis of dysregulated iron metabolism-related genes between the TCGA-LGG cohort and normal brain cortex
samples. (A), Venn diagram representing intersections of DEGs identified using edgeR, limma, and DESeq2 algorithms. (B), Heatmap of the expression levels of 87
DEGs related to iron metabolism. Enriched Gene Ontology terms (C) and KEGG pathways (D) associated with the 87 DEGs.
September 2021 | Volume 11 | Article 729103
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KHNYN, and SCD5 were not detected in glioma samples.
However, the expression levels of CYP2E1 and FLVCR2
showed low consistency with RNA expression data.

The risk score for each patient in the training and test sets was
calculated based on the expression levels of the selected genes
and the regression coefficients. The distribution of risk score in
training set was shown in Figure 4A. The median of risk score in
training set was defined as threshold, which divided the patients
into high-risk and low-risk groups. In addition, the distribution
of survival times indicated that a higher risk score may have
positively correlated with poorer outcomes (Figure 4A). The
corresponding expression levels of the selected genes were
determined (Figure 4A). The performance of the ROC in
terms of 1-, 3-, and 5-year prognoses was analyzed (Figure 4B).
The areas under the time‐dependent ROC curve (AUCs) were
0.892, 0.888, and 0.838, respectively, for the 1-, 3-, and 5-year OS
times in the training set. Kaplan–Meier analysis and log-rank
testing showed that the high-risk group had a significantly shorter
OS time than the low-risk group (P < 0.0001; Figure 4C).
Frontiers in Oncology | www.frontiersin.org 5
Furthermore, the robustness of our risk-score model was
assessed with the CGGA dataset. The test set was also divided
into high-risk and low-risk groups according to the threshold
calculated with the training set. The distributions of risk scores,
survival times, and gene-expression level are shown in
Figure 4D. The AUCs for the 1-, 3-, and 5-year prognoses
were 0.765, 0.779, and 0.749, respectively (Figure 4E). Significant
differences between two groups were determined via Kaplan–
Meier analysis (P < 0.0001), indicating that patients in the high-
risk group had a worse OS (Figure 4F). These results showed
that our risk score system for determining the prognosis of
patients with LGG was robust.

Stratified Analysis
Associations between risk-score and clinical features in the training
set were examined. We found that the risk score was significantly
lower in groups of patients with age > 40 (P < 0.0001), WHO II
LGG (P < 0.0001), oligodendrocytoma (P < 0.0001), IDH1mutations
(P < 0.0001),MGMT promoter hypermethylation (P < 0.0001), and
A B

FIGURE 2 | DEGs with univariate Cox regression P-value of < 0.05 are shown. Identification of prognostic signatures in the training set. (A), Cross-validation for
tuning parameter screening in the LASSO regression model. (B), Coefficient profiles in the LASSO regression model.
TABLE 1 | Iron metabolism-related genes and their relationship with OS, and their coefficients in LASSO regression model.

Gene Description HR(95%CI) P value Coefficients

ACP5 Acid Phosphatase 5 1.19 (1.07-1.33) 0.00111 0.0287
CH25H Cholesterol 25-Hydroxylase 0.893 (0.813-0.98) 0.0172 -0.039
CYP2D6 Cytochrome P450 Family 2 Subfamily D Member 6 0.744 (0.639-0.867) 0.000153 -0.111
CYP2E1 Cytochrome P450 Family 2 Subfamily E Member 1 0.685 (0.602-0.779) 9.08E-09 -0.004
FLVCR2 FLVCR Heme Transporter 2 0.784 (0.669-0.92) 0.00286 -0.178
GCLC Glutamate-Cysteine Ligase Catalytic Subunit 0.498 (0.392-0.634) 1.46E-08 -0.012
HBQ1 Hemoglobin subunit theta-1 0.697 (0.605-0.804) 7.52E-07 -0.064
KHNYN KH And NYN Domain Containing 2.08 (1.7-2.55) 1.76E-12 0.1640
LAMP2 Lysosomal Associated Membrane Protein 2 1.55 (1.14-2.11) 0.00573 0.1224
NCOA4 Nuclear receptor coactivator 4 0.351 (0.253-0.488) 4.69E-10 -0.194
RRM2 Ribonucleotide Reductase Regulatory Subunit M2 1.38 (1.25-1.52) 4.08E-10 0.099
RTEL1 Regulator of telomere elongation helicase 1 2.74 (1.88-3.99) 1.30E-07 0.260
SCD5 Stearoyl-CoA Desaturase 5 0.435 (0.349-0.544) 2.25E-13 -0.145
STEAP3 Six-transmembrane epithelial antigen of the prostate 3 1.67 (1.49-1.87) 1.78E-18 0.153
UROS Uroporphyrinogen III Synthase 0.294 (0.213-0.405) 7.67E-14 -0.253
Septemb
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1p/19q co-deletion (P < 0.0001) (Figures 5A–F). However, no
difference was found in the risk scores between males and females
(data not shown). In both astrocytoma and oligodendrocytoma
group, risk score was significantly lower in WHO II group
(Figures 5G, H). We also validate the prediction efficiency with
different subgroups. Kaplan–Meier analysis showed that high-risk
patients in all subgroups had a worse OS (Figure S1). Besides, the
risk score was significantly higher in GBM group compared with
LGG group (Figure S2).
Nomogram Construction and Validation
To determine whether the risk score was an independent risk
factor for OS in patients with LGG, the potential predictors (age
group, gender, WHO grade, IDH1 mutation status, MGMT
promoter status, 1p/19q status and risk level) were analyzed by
univariate Cox regression with the training set (Table 2). The
individual risk factors associated with a Cox P value of < 0.05
Frontiers in Oncology | www.frontiersin.org 6
were further analyzed by multivariate Cox regression (Table 2).
The analysis indicated that the high-risk group had significantly
lower OS (HR = 2.656, 95% CI = 1.51-4.491, P = 0.000268). The
age group, WHO grade, IDH mutant status, MGMT promoter
status and risk level were considered as independent risk factors
for OS, and were integrated into the nomogram model
(Figure 6A). The C-index of the nomogram model was 0.833
(95% CI = 0.800-0.867). Subsequently, we calculated the score of
each patient according to the nomogram, and the prediction
ability and agreement of the nomogram was evaluated by ROC
analysis and a calibration curve. In the TCGA cohort, the AUCs
of the nomograms in terms of 1-, 3-, and 5-year OS rates were
0.875, 0.892, and 0.835, respectively (Figure 6B). The calibration
plots showed excellent agreement between the 1-, 3-, and 5-year
OS rates, when comparing the nomogram model and the ideal
model (Figures 6D–F). Moreover, we validated the efficiency of
our nomogram model with the CGGA test set. The AUCs for the
1-, 3-, and 5-year OS rates with the model were 0.722, 0.746,
A B

D E F

C

FIGURE 3 | Human Protein Atlas immunohistochemical analysis of LGG and Higher-grade glioma. (A) GCLC; (B) LAMP2; (C) NCOA4; (D) RRM2; (E) STEAP3; (F) UROS.
September 2021 | Volume 11 | Article 729103
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0.701, respectively (Figure 6C). The results of the calibration
curves showed good agreement between the predicted OS rates
and the probabilities of the 1-, 3-, and 5-year OS rates with the
test set (Figures 6G–I).
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GSEA
To clarify the potential impact of the expression levels of the
selected genes on the LGG transcriptomic profile, GSEA analysis
was performed with the high-risk and low-risk groups of the
A B

D E

F

C

FIGURE 4 | Risk score analysis, survival analysis and prognostic performance of a risk-score model based on differential expression of iron metabolism-related
genes in patients with LGG. Risk score and survival time distributions, and heatmaps of gene-expression levels of the iron-metabolism signature in the TCGA (A) and
CGGA (D) cohorts. ROC curves and AUC values of the risk score model for predicting the 1-, 3-, and 5-year OS times in the TCGA (B) and CGGA (E) cohorts.
Kaplan–Meier survival analysis was performed to estimate the OS times between the high- and low-risk groups in the TCGA (C) and CGGA (F) cohorts.
September 2021 | Volume 11 | Article 729103
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training set. GSEA revealed that several pathways, such as those
related to inflammatory response, IL6/JAK/STAT3 signaling,
IL2/STAT5 signaling, glycolysis, apoptosis, and the EMT, were
enriched in the high-risk group (Figures 7A–F). These findings
suggest potential roles for iron metabolism-related genes in the
progression, metabolism, tumor microenvironment and immune
responses of LGG.
Frontiers in Oncology | www.frontiersin.org 8
Immune Cell Infiltration and Immune
Checkpoint Analysis
Next, the correlation between this prognostic model and the
infiltration of immune cells for patients in the TCGA-LGG
cohort were calculated. The proportion of different infiltrating
immune cells were retrieved from the TIMER database. The
results indicated that the risk score positively correlated with
A B

D E F

G H

C

FIGURE 5 | Association between clinicopathologic features and the iron metabolism based risk score in the TCGA dataset. (A–F), Risk-score distributions showed
statistically significant differences in LGG patients stratified by age, WHO grade, pathological types, IDH1 mutation status, MGMT promoter methylation status, and
1p/19q co-deletion status. (G), Distribution of risk scores between WHO II and WHO III grade in astrocytoma patients. (H), Distribution of risk scores between WHO
II and WHO III grade in oligodendrocytoma patients. **P < 0.005, ****P < 0.0001, ns, not significant.
September 2021 | Volume 11 | Article 729103
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infiltrating immune cells, including B cells, CD4+ T cells, CD8+T
cells, neutrophils, macrophages and dendritic cells (Figure 8A).
The high-risk group showed more infiltrating immune cells,
especially dendritic cells and macrophages (P < 0.0001;
Figure 8B). Additionally, we assessed the relationship between
risk-score model and immune checkpoint proteins (PD1, PDL1,
CTLA4, LAG-3, TIM3, TIGIT and CD48). The expression levels
of PD1, PDL1, CTLA4, TIM3, and CD48 positively correlated
with the risk score(P < 0.001; Figure 8C). In addition, the
expression levels of PD1, PDL1, and TIM3 were higher in
high-risk group of TCGA-LGG cohort than in the low-risk
group (P < 0.0001; Figure 8D).
DISCUSSION

LGG is a heterogeneous disease, especially in terms of
tumorigenesis, its molecular characteristics, therapeutic responses
and clinical outcomes (2, 35). Currently, recurrence or malignant
progression is still inevitable, even after treatment with surgical
resection, radiotherapy, chemotherapy and immunotherapy.
Recently, iron metabolism was found to participate in glioma
tumorigenesis, progression, and the tumor microenvironment (14,
36). GBM cancer stem-like cells uptake much more iron than non
stem-like cells (37). However, the non stem-like cells have higher
free iron ion level, which reduces cell viability and growth (37). Iron
metabolism also recently became a therapeutic target and a potential
prognostic marker of glioma (36, 38).

In this study, we used gene expression data and
clinicopathological information from open-access database.
Initially, we selected 87 iron metabolism-related DEGs. Among
these, 15 genes were identified as potential prognostic markers by
univariate Cox analysis and LASSO regression analysis, and these
genes were used to construct a prognostic model. Among them,
the expression levels of six genes (RTEL1, KHNYN, STEAP3,
LAMP2, RRM2, and ACP5) negatively correlated with OS,
whereas the expression levels of nine genes (CYP2E1, GCLC,
CH25H, HBQ1, CYP2D6, SCD5, FLVCR2, NCOA4, and UROS)
Frontiers in Oncology | www.frontiersin.org 9
positively correlated with OS. This model was validated effective
and stable with different patient cohorts, and verified as an
independent predictive marker by multivariate Cox regression
analysis. In addition, patients with wild type IDH1, MGMT
hypomethylation, 1p/19q non-codeletion status, or a higher
WHO grade had significantly higher risk scores. The higher
grade gliomas contained higher proportion of stem like cells,
which affected iron uptake and free iron ion level (37). Liu et al.
proposed that ferritin light chain may be a upstream regulator of
MGMT promoter methylation process (14). However, Kingsbury
et al. reported that IDH1 mutation lead to higher level of D-2-
hydroxyglutarate (2HG) production, which affects the iron
sensing mechanisms and promotes tumor progression (39).
Variants of RTEL1 is associated with molecular subtype in
IDH wild-type gliomas (32386320, 31842352). These may also
result in iron metabolism dysregulation, but the underlying
mechanisms still need to be further investigated.

Some data have shown that iron metabolism-related genes are
involved in glioma pathological processes. RTEL1, an ATP-
dependent DNA helicase, was reported as a risk gene for glioma
(40). Some RTEL1 variants may lead to a higher risk for glioma
development (41). STEAP3, which encodes metalloreductase, is
considered highly expressed in glioblastoma, and knocking down
STEAP3 suppresses glioma cell proliferation andmetastasis (42). It
was also reported that STEAP3 drives EMT progression through
STAT3/FoxM1 signaling pathway (42). LAMP2 was found to be
overexpressed in the perinecrotic areas of gliomas (43). Valdor
et al. reported that LAMP2 participated in activating chaperone-
mediated autophagy in a glioma model (44). Sorafenib combined
with lapatinib increased the level of LC3-GFP vesicles and reduced
the level of LAMP2 (45). RRM2 encodes the M2 subunit of
ribonucleotide reductase. RRM2 was reported to promote
glioma proliferation and progression through ERK1/2- and
AKT- signaling pathways (46, 47). RRM2 expression induced by
BRCA1, traditionally regarded as tumor suppressor, promotes
tumorigenicity in GBM cells (48).

Additionally, ACP5, which encodes a metalloprotein enzyme,
has been reported to promote tumor metastasis and recurrence
TABLE 2 | Univariate and multivariate Cox analysis of OS in TCGA-LGG dataset.

Parameters Univariate Cox analysis Multivariate Cox analysis

HR(95% CI) P-value HR(95% CI) P-value

Age level Young (≤40) – – – –

Old (>40) 2.840 (1.940-4.150) <0.0001 2.781 (1.837-4.210) <0.0001
Gender Female – – – –

Male 1.100 (0.772-1.580) 0.589 – –

WHO grade II – – – –

III 3.460 (2.330-5.140) <0.0001 2.123 (1.394-3.232) 0.00045
IDH1 Wild type – – – –

Mutant 0.287 (0.201-0.411) <0.0001 0.525 (0.355-0.777) 0.00127
1p/19q Non-codel – – – –

Codel 0.378 (0.234-0.611) <0.0001 0.666 (0.388-1.142) 0.1397
MGMT promoter Unmethylated – – – –

Methylated 0.396 (0.26-0.605) <0.0001 0.619 (0.398-0.961) 0.033
Risk score level Low (≤-1.8905) – – – –

High (>-1.8905) 5.020 (3.260-7.750) <0.0001 2.656 (1.51-4.491) 0.000268
Se
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in many cancers, like hepatocellular carcinoma and breast cancer
(49, 50). CYP2E1 encodes a membrane protein and is a member
of the cytochrome P450 complex. CYP2E1 RsaI variant has been
associated with glioma (51). Bae et al. reported that inhibiting
CYP2E1 activity reduced apoptosis in glioma cells and prevented
the degradation of p53 (52, 53). CYP2D6 encodes an important
member of the cytochrome P450 family. Elexpuru-Camiruaga
et al. reported that the CYP2D6 genotype correlated with the
susceptibility to astrocytoma and meningioma (54). In addition,
a non-functional CYP2D6 variant was previously associated with
higher recurrence rates in a breast cancer cohort (55). GCLC
encodes catalytic subunits of glutamate-cysteine ligase, which
Frontiers in Oncology | www.frontiersin.org 10
mainly participates in glutathione synthesis and ferroptosis.
Previous data showed that intratumoral thymidine from
necrotic cells inhibited GCLC activity (56) and that GCLC
expression was upregulated in IDH1-mutated compared to
IDH1 wild-type glioma (57). Furthermore, Yu et al. confirmed
that triptolide induced GCLC degradation drove cytotoxicity due
to reactive oxygen species (ROS) in IDH1-mutated glioma (58).
The CH25H enzyme belongs to the oxidoreductase family.
Previous findings showed that elevated CH25H expression
promoted chemotactic monocyte recruitment of glioma cells
(59). NCOA4 encodes a receptor that plays important roles in
ferritinophagy and iron storage. Liu et al. also identified NCOA4
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FIGURE 6 | Prognostic nomogram for the 1-, 3-, and 5-year OS times of LGG patients. (A), Independent risk factors screened by multivariate Cox regression in the
TCGA cohort were integrated into the nomogram model. ROC curves and AUC values of the nomogram for predicting 1-, 3-, and 5-year OS in the TCGA (B) and
CGGA (C) cohorts. Calibration curves of the nomogram for predicting 1-, 3-, and 5-year OS in the TCGA (D–F) and CGGA (G–I) cohorts.
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as a prognostic factor in glioma (60). COPZ1 knockdown
increased the expression level of NCOA4, which elevated iron
levels and reactive oxygen species, resulting ferroptosis and
reduced growth of GBM cells (61). Moreover, Pinton et al.
reported that NCOA4 is overexpressed in bone marrow-
derived macrophages from glioma lesions (62). UROS, an
enzyme associated with congenital erythropoietic porphyria,
participates in the heme biosynthesis pathway. Nawaz et al.
demonstrated that the expression level of miR-4484, a tumor
suppressor, positively correlated with UROS expression, which is
considered the host gene of miR-4484 (63).

Some genes, like KHNYN, HBQ1, SCD5 and FLVCR2, may
play roles in tumorigenesis, metabolism or tumor therapy (64–
68). However, the specific relationships between these genes and
glioma still require further exploration.

Furthermore, we constructed a prognostic nomogram model
based on iron metabolism-related genes for predicting the OS of
patients with LGG. The risk score, WHO grade, and 1p/19q co-
deletion status were integrated into the nomogram model.
Calibration plots and ROC analysis illustrated the reliable
predictive ability of the nomogram for OS with the TCGA and
Frontiers in Oncology | www.frontiersin.org 11
CGGA cohorts. This nomogram model could be used for
determining patients’ prognoses and scheduling follow-up plans.

Moreover, GSEA showed that pathways associated with
immune responses and tumor progression were enriched in
the high-risk group. Yao et al. confirmed that activation of the
IL-6/JAK/STAT3 signaling pathway led to poor outcomes in
patients with glioma (69, 70). STAT5 was also found to promote
glioma cell invasion (71). Both pathways are related to tumor-
associated immune cells and regulate immunotherapeutic
responses (72). Taga et al. reported that co-expression of genes
related to the extracellular matrix, iron metabolism, and
macrophages was associated with treatment outcomes in
patients with glioma (36). mTOR complex 2 can control iron
metabolism by regulating acetylation of iron-related genes
promoter, promoting tumor cell survival (73). Previous reports
showed that iron chelator therapy inhibited EMT in many
cancers (74, 75). Both Dp44mT and bovine lactoferrin, as iron
chelators, suppress growth, migration, and EMT process of
glioma by inhibiting IL-6/STAT3 signaling pathway (38, 76).
Iron complexes could suppress glioma cells proliferation
associated with P53 and 4E binding protein 1 (77).
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FIGURE 7 | GSEA of the iron metabolism-related gene signature in the TCGA cohort. (A–F), inflammatory response, IL6/JAK/STAT3 signaling pathway, IL2/STAT5
signaling pathway, glycolysis, apoptosis and the EMT were enriched in the high-risk group.
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Additionally, iron and copper complexes with antioxidant effects
also inhibit EMT in glioma cells (78).

Immune cell infiltration analysis showed that the risk score
positively correlated with the infiltration levels of immune cells,
in accordance with previous data showing that higher numbers
of glioblastoma-associated myeloid cells were associated with
poor outcomes in GBM (79). Similarly, previous evidence
suggested that M2 tumor-associated macrophages exhibited an
iron-release phenotype and drove immune tolerance (9). Glioma
cells could exploit monocytes as iron-string macrophages (80),
and iron-related genes were overexpressed in macrophages (62).
However , heme and iron can drive TAM into an
proinflammatory phenotype, and iron nanoparticles are
considered as promising anti-tumor agents (81). Additionally,
neutrophils infiltration were induced during tumor progression
(chronic ischemia, hypoxia…), resulting tumor ferroptosis and
poor survival (82). Moreover, iron can modulate T cell
phenotypes (83). Based on immune checkpoint analysis, our
risk score also positively correlated with the expression levels of
Frontiers in Oncology | www.frontiersin.org 12
immune checkpoints proteins, like PD1, PDL1, CTLA4, and
TIM3. These findings indicate that iron metabolism-related
genes may predict or influence immunotherapeutic effects in
patients with LGG.
CONCLUSION

In conclusion, we developed and validated a risk score system
based on iron metabolism-related genes from TCGA and CGGA
datasets for prognosis and risk stratification. A nomogrammodel
for 1-, 3-, and 5-year OS rate predictions was constructed and
showed good predictive accuracy. The selected genes can
potentially be targeted to understand the pathological
mechanisms of LGG. Additionally, GSEA, tumor immune
infiltration, and immune checkpoint analyses showed that iron
metabolism may be involved in tumorigenesis, progression, the
tumor microenvironment and immune tolerance. These results
suggest promising therapeutic targets for LGG. However, large
A B
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FIGURE 8 | Immune cell infiltration and immune checkpoint analysis in the TCGA cohort. (A), Correlation between immune cell infiltration and risk scores. (B), Boxplot
indicating the levels of immune cell infiltration in high-risk and low-risk LGG patients. (C), Correlation matrix of seven immune checkpoint proteins and associated risk
scores. (D), Expression levels of immune checkpoint proteins in high-risk and low-risk LGG patients. *P < 0.05, ***P < 0.001, ****P < 0.0001, ns, not significant.
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scale, prospective studies are still required to validate our model
in the future.
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