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Recently, immune response modulation at the epigenetic level is illustrated in studies, but
the possible function of RNA 5-methylcytosine (m5C) modification in cell infiltration within
the tumor microenvironment (TME) is still unclear. Three different m5C modification
patterns were identified, and high differentiation degree was observed in the cell
infiltration features within TME under the above three identified patterns. A low m5C-
score, which was reflected in the activated immunity, predicted the relatively favorable
prognostic outcome. A small amount of effective immune infiltration was seen in the high
m5C-score subtype, indicating the dismal patient survival. Our study constructed a
diagnostic model using the 10 signature genes highly related to the m5C-score,
discovered that the model exhibited high diagnostic accuracy for PTC, and screened
out five potential drugs for PTC based on this m5C-score model. m5C modification exerts
an important part in forming the TME complexity and diversity. It is valuable to evaluate the
m5C modification patterns in single tumors, so as to enhance our understanding towards
the infiltration characterization in TME.

Keywords: papillary thyroid carcinoma (PTC), subtype, immune infiltration, 5-methylcytosine (m5C) modification,
tumor microenvironment (TME)
INTRODUCTION

Thyroid cancer (THCA), a frequently-occurring endocrine cancer, takes up approximately 1.7% of
human cancers (1). TC can be divided into subtypes, namely, alloplastic, follicular, medullary, and
papillary thyroid cancer (PTC) (2). Of them, PTC shows the highest morbidity (75%–85% of
thyroid cancers) (3). PTC can be cured under general conditions, and its survival rate at 5 years was
over 95%, but PTC may sometimes differentiate to THCA, a malignancy with higher aggressiveness
and mortality (4). Besides, approximately 30% of PTC cases suffer from tumor recurrence (5). As a
result, analyzing the disease features at the molecular level is essential.
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It is increasingly suggested that RNA modification at the post-
transcriptional level exerts a vital part in a variety of malignancies (6,
7). RNA and histone alterations at epigenetic and genetic levels are
extensively investigated in the context of tumor progression; as a
result, numerous therapeutic means have been developed, such as
the drugs that target the hypoxic pathways and the histone
deacetylase inhibitors (8). In the living body, over 150 RNA
modifications are modified as the third epigenetics layer, such as
N1-methyladenosine (m1A) and N6-methyladenosine (m6A),
together with 5-methylcytosine (m5C) (9–13).

Of them, m5C modification, a reversible RNA post-
transcriptional modification, exerts an important part in the
regulation of mRNA translation, export, alternative splicing (AS)
and stabilization localization (14, 15). m5C in mRNAs has been
extensively studied, and many articles reveal that m5C greatly
affects mRNAs, tRNAs, and rRNAs (16). The m5C methylation is
related to various regulators, such as the m5C “readers”,
demethylases, and methyltransferases. Typically, the
methyltransferase “writer” complex enhances RNA methylation
at the C5 position, whereas the distinct “reader” proteins are
responsible for recognizing and binding to methylated mRNAs,
and “eraser” protein is in charge of reversing the m5C
modification through the degradation of written methylation.
The adenosine demethylases, methyltransferases, together with
the RNA-binding proteins involved in m5C modification are
referred to as the m5C “erasers” (like TET2), m5C “writers” (like
NSUN1-7, DNMT1-2, and DNMT3A-3B), as well as m5C
“readers” (like ALYREF) (17). More and more studies suggest
that m5C modification exerts an important part in a variety of
critical pathophysiological processes, such as the dysregulated
cell proliferation and death, abnormal immune modulation,
developmental defects, malignant development of tumor, and
damaged self-renewal ability (18–20). Nonetheless, the typical
gene signatures, together with the diagnostic and prognostic
significance of m5C-related regulators in PTC, are still unclear.

Immunotherapy based on the immunological checkpoint
inhibitors (PD-1/L1, ICB, or CTLA-4) is found to be effective on
certain patients who have persistent responses. However, most
patients can only gain small or even no benefit from
immunotherapy (21). In traditional practice, tumor progression is
recognized to be the multi-step process involving variations within
tumor cells at epigenetic and genetic levels, but many articles reveal
that the tumor microenvironment (TME) for the development and
survival of tumor cells also exerts an important part during tumor
progression (22). There is a complicated TME in tumor, which
contains tumor cells and stromal cells like macrophages and
resident fibroblasts [cancer-associated fibroblast (CAF)]. In
addition, it also contains distant recruited cells like the infiltrating
immunocytes (lymphocytes and myeloid cells), bone marrow-
derived cells (BMDCs) like hematopoietic and endothelial
progenitor cells, the secretory factors (like chemokines, cytokines,
and growth factors), and new vessels (23). Notably, the tumor-
associated myeloid cells (TAMCs) are composed of five different
myeloid subsets, namely, myeloid-derived suppressor cells
(MDSCs), tumor-associated macrophages (TAMs), tumor-
associated neutrophils (TANs), Tie2-expressing monocytes, and
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dendritic cells (DCs) (24). Tumor cells can trigger changes in
biological behaviors via directly or indirectly interacting with
other components in the TME; for instance, the induction of new
vessel formation and proliferation, apoptosis inhibition, hypoxia
prevention, and immune tolerance induction (25). The TME
complexity and diversity have been increasingly revealed, and
TME is found to play an important part in immune escape and
tumor progression, together with its impact on immunotherapy
response (26, 27). It is critical to predict ICB response according to
TME cell infiltration characterization, so as to increase the success
rate of current ICBs and to exploit the new immunotherapies.
Consequently, the comprehensive analysis of the complexity and
diversity of TME landscapes helps to identify the diverse tumor
immune phenotypes and to guide and predict responses to
immunotherapies (28). Furthermore, it also contributes to
revealing the potential biomarkers, thus facilitating to recognize
the immunotherapy responses in patients and develop the novel
therapeutic targets (29).

Individual recent articles suggest that the TME infiltrating
immunocytes are related to m5C modification, and such
relationship cannot be interpreted through the mechanism of
RNA degradation (30, 31). Nonetheless, these articles only focus
on holistic 5-hydroxymethylcytosine (5hmC) levels or cell types
because of the technical restrictions, and the anticancer efficacy is
evaluated based on a number of the highly coordinated tumor
suppressor factors. Consequently, it is necessary to
comprehensively recognize cell infiltration features within
TME under the regulation of several m5C regulators, so as to
shed more light on the TME immunomodulation. The present
work combined genome data from 493 TCGA-PTC samples for
the comprehensive evaluation of m5C modification patterns, and
related them to cell infiltration features within TME. Altogether,
three different m5C modification patterns were identified, under
which the high differentiation degree of TME features were
found, indicating the critical part of m5C modification in
forming individual TME features. On this basis, the scoring
system was also established for the quantification of m5C
modification patterns for individual cases. Finally, this study
mined the m5C-score-related signature genes to construct the
PTC diagnostic model using the support vector machine
(SVM) method.
MATERIALS AND METHODS

Source and Preprocessing of PTC Data
The work flow chart in the present work is presented in
Supplementary Figure 1. The Cancer Genome Atlas (TCGA)
and the Gene Expression Omnibus (GEO) databases were
searched to obtain the clinical annotation and related gene
expression data. Patients who had no survival data were
eliminated from this study. The eligible PTC cohorts
[including GSE33630 (32), GSE65144 (33), and GSE29265,
together with TCGA-PTC (The Cancer Genome Atlas-
papillary thyroid carcinoma)] were collected into the present
work. With regard to Affymetrix® microarray data, raw “CEL”
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files were downloaded to adjust the background and normalize
the quantile using the multiarray averaging approach by affy and
simpleaffy packages. In terms of microarray data of additional
sources, matrix files after normalization were collected directly.
For TCGA datasets, the RNA sequencing information (FPKM
values) of gene levels was obtained based on the Genomic Data
Commons (GDC, https : //portal .gdc .cancer .gov/) by
TCGAbiolinks of R package, a software designed to
comprehensively analyze GDC data (34). Thereafter, the
FPKM values were converted to the transcripts per kilobase
million (TPM) values. At the same time, the GSE65144 (12
tumor and 13 normal samples), GSE33630 (60 tumor along with
45 normal samples), and GSE29265 (29 tumor and 20 normal
samples) datasets were also downloaded. R package (version
3.6.1) was utilized for data analysis.

Consensus Clustering of the
13 m5C Regulators
Altogether, 13 regulators were obtained based on TCGA datasets
to identify the diverse m5C regulator-mediated m5C
modification patterns. All the 13 genes, except for ALYREF
and NSUN1, were with available expression profiles. The
remaining 11 m5C regulators contained one eraser (TET2) and
10 writers (NSUN2-7, DNMT1-2, and DNMT3A-3B). Of our
493 patients from TCGA-PTC, 9 among those 11 genes were
differentially expressed between tumor and normal tissues (with
the exception for NSUN3 and DNMT3A) (Supplementary
Table 1 and Supplementary Figure 2). Later, consensus
clustering was adopted for identifying the different m5C
modification patterns according to nine m5C regulator
expression levels, and then patients were classified accordingly.
The abov e p ro c edu r e wa s pe r f o rmed u s i n g th e
ConsensuClusterPlus package (35) for 1000 iterations to
guarantee the classification stability.

Gene Set Variation Analysis together With
Functional Annotation
To investigate the heterogeneities in biological process among
the m5C modification patterns, GSVA was carried out by the
“GSVA” R package. Notably, GSVA is the unsupervised, non-
parametric approach usually used to estimate variations of
pathways and biological processes within the expression
dataset samples (36). The “c2.cp.kegg.v7.0.symbols” gene sets
were extracted based on MSigDB database to conduct GSVA.
The adjusted p < 0.05 indicated statistical significance.
Meanwhile, functional annotation was performed using
WebGestaltR package (37), and the threshold was FDR < 0.05.

TME Cell Infiltration Estimation
Estimate R package was utilized to calculate immune and stromal
scores for all samples to reflect the immune and stromal cell
infiltration degrees on the whole. Besides, CIBERSORT
algorithm (38) was adopted for quantifying cell infiltration
relative abundance within the TME of PTC. Thereafter, the
gene set used to mark the TME-infiltrating immunocyte type
was acquired to score different human immunocyte subtypes,
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like the activated CD8 T cells, regulatory T cells, natural killer T
cells, activated dendritic cells (DCs), and macrophages (39).

Discovery of Differentially Expressed
Genes Across the Different m5C
Phenotypes
To identify the m5C-associated genes, the patients were divided
into three different m5C modification patterns according to nine
m5C regulator expression levels. DEGs were determined across
the diverse modification patterns using the empirical Bayesian
method in the limma R package (40). The adjusted p < 0.05
served as the significance criterion to determine DEGS.

m5C Gene Signature Construction
To quantify m5C modification patterns among individual
tumors, the scoring system, m5C-score, was built based on the
m5C gene signature, as shown below:

First of all, DEGs obtained based on the diverse m5C-clusters
were subjected to normalization across all samples, and then, those
overlapped genes were selected. Afterwards, all cases were divided
into different groups via the unsupervised clustering approach, so as
to analyze the overlapped DEGs. In addition, the gene cluster
number and the stability were defined using the consensus
clustering algorithm. Later, prognostic analysis was carried out for
all genes selected in our constructed signature by the use of the
univariate Cox regression model. Later, those significant genes were
obtained in subsequent analysis. In this study, p < 0.01 was selected
as the criterion to screen 49 genes. Supplementary Table 2 shows
the results of single factor survival analysis for the 49 genes. Then,
principal component analysis (PCA) was utilized for constructing
the m5C signature. PC1 and PC2 were adopted as the signature
scores; as a result, the score was focused on the set that had the
greatest number of well-correlated (or anticorrelated) genes, and the
contributions of genes not tracking with other members in the set
were down-weighted. Later, the m5C-score was defined by the GGI-
like approach (41):

m5C − score  =  o(PC1i +  PC2i)
In the formula, i represents the 49 m5C phenotype-associated

gene expression levels.

m5C-Score Based PTC Diagnostic
Model Establishment
First of all, this study mined the signature genes significantly
correlated with the m5C-score (correlation coefficient > 0.4), and
the PTC diagnostic model was constructed by the SVM method.
Thereafter, the accuracy of this model was verified using samples
from TCGA and GEO databases.

Statistical Methods
The Spearman and distance correlation analysis was adopted to
calculate the correlation coefficients of TME-infiltrating
immunocytes with m5C regulator expression levels. Thereafter,
Kruskal–Wallis test and one-way ANOVA were applied in
comparing the heterogeneities among three groups. Based on
correlations of the m5C-score with patient survival, the survminer
R package was utilized to determine the threshold value for every
November 2021 | Volume 11 | Article 729887
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dataset. In addition, the “surv-cutpoint” function was used for
dichotomizing the m5C-score by testing the possible threshold
values to find the maximal rank statistic. Later, all cases were
classified as high or low m5C-score group according to the
maximal log-rank statistics for reducing the calculation batch
effect. In the meantime, the log-rank test and Kaplan–Meier
approach were adopted for identifying the significance of
differences, so as to generate survival curves. The univariate Cox
regression model was used for calculating hazard ratios (HRs) for
the m5C regulators as well as the m5C phenotype-associated genes.
Meanwhile, the receiver operating characteristic (ROC) curve was
plotted to assess the sensitivity and specificity of our diagnostic
model and the m5C-score, and pROC R package was utilized to
quantify the area under the curve (AUC). The two-sided statistical p
< 0.05 indicated statistical significance. The R 3.6.1 software was
employed for data processing.
RESULTS

The Nine-Regulator-Mediated m5C
Methylation Modification Patterns
According to nine m5C regulators with expression profiles in the
TCGA-PTC dataset, PTC samples were identified from normal
Frontiers in Oncology | www.frontiersin.org 4
samples (Figure 1A). Afterwards, the expression profile data of
these nine m5C regulators were carried out with z-score
standardization using the scale function in mosaic package.
Then, three different m5C modification patterns were
discovered according to those nine m5C regulator expression
patterns (Figures 1B, C). These three patterns were named m5C-
clusters 1–3. It was observed from Figure 1D that the expression
level of these nine m5C regulators showed significant differences
among the three distinct subtype samples.

Prognostic analysis was also carried out for these three major m5C
modification patterns, which suggested that the m5C-cluster 2
modification pattern showed survival advantage (Figure 1E).
However, due to the speciality of PTC and the good overall
prognosis, there was no significant statistical difference among these
three subtypes. Besides, average survival time of samples in these three
subtypes was also analyzed, which discovered that the average
survival time of C2 subtype samples was 1307.657 days, that of C1
subtype samples was 1125.877 days, and that of C3 subtype samples
was 1202.695, with that in C2 higher than those in C1 and C3.

TME-Infiltrating Cell Features in Different
m5C Modification Patterns
To explore those biological behaviors in the different m5C
modification patterns, GSVA was conducted. It was illustrated
A B

E

C

D

FIGURE 1 | The nine-regulator-mediated m5C methylation modification patterns. (A) PCA analysis based on nine m5C regulators. (B, C) Consensus clustering was
adopted for identifying the different m5C modification patterns. (D) The expression levels of 9 m5C regulators in different m5C modification patterns. (E) Survival
analysis of the three subtypes. ***statistical significance.
November 2021 | Volume 11 | Article 729887
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from Figure 2A that m5C-cluster 1 significantly associated with
the amino acid metabolic pathways; m5C-cluster 2 was enriched
to the endocrine system, lipid metabolism, and cancer, whereas
m5C-cluster 3 was associated with cell cycle, DNA repair, and
nucleic acid metabolism.

Furthermore, the distribution of clinical features of samples in
the above three subtypes was statistically analyzed. The statistical
results are displayed in Supplementary Table 3 and Figure 3. It
was found from the results that, multiple clinical features in the
three subtype samples were randomly distributed, with no
significant difference.

In addition, the ESTIMATE algorithm was applied in
quantifying the differences in stromal cell infiltration among
the three subtype samples. As shown in Figure 2B, the stromal
score in m5C-cluster 2 was the highest, followed by m5C-cluster
3, while m5C-cluster 1 had the lowest score. In addition, there
were significant differences among them. Thereafter, the
CIBERSORT deconvolution algorithm was utilized for
comparing the heterogeneities in immunocyte components of
the three m5C modification patterns (Figure 2C). Meanwhile,
the support vector regression was used to determine the
immunocyte types in tumors. As a result, high levels of Tregs
and monocytes were detected in m5C-cluster 1 and m5C-cluster
3, whereas excessive resting/activated DCs were found in m5C-
cluster 2. Recently, research has particularly focused on the RNA
modification mechanism in the regulation of DC activation. DCs
function to present antigen and to activate the naive T cells,
which connect the intrinsic immunity with the adaptive one (42).

Finally, this study analyzed the expression of the 34 known
immune checkpoints in the three subtype samples. As found
from Figure 2D, there were significant differences in the
expression of these 34 immune checkpoints among the three
subtypes. Most immune checkpoint genes were highly expressed
in m5C-cluster 2, followed by m5C-cluster 3, while m5C-cluster 1
had the lowest expression, which was consistent with the average
survival time of samples in the three subtypes.

m5C Gene Signature Establishment Along
With Functional Annotation
To better investigate the possible biological behaviors of all the
m5C modification patterns, the limma package was used to
determine 690 m5C phenotype-associated DEGs (Supplementary
Figure 3). In addition, KEGG pathway enrichment analysis was
carried out on DEGs using the WebGestaltR package. It was
surprising that these genes were enriched to cell cycle, DNA
repair, cell adhesion molecules, and immune inflammatory
response-related pathways. These findings verified the important
role of m5C modification in cancer cells themselves and in TME
immunomodulation (Figure 4A). To better validate such regulatory
mechanism, the unsupervised clustering analysis was performed
using those 690 m5C phenotype-associated genes, for the sake of
classifying cases to distinct genome subtypes. Similar to clustering
analysis of m5C modification patterns, three different m5C
modification genome phenotypes were found, which were
referred to as m5C gene-clusters A–C, separately (Supplementary
Figure 4). According to such results, there were three different m5C
Frontiers in Oncology | www.frontiersin.org 5
methylation modification patterns in PTC. Besides, there were
diverse signature genes in the three different gene clusters
(Supplementary Figure 4). The m5C regulator expression levels
were significantly different among the three m5C gene-clusters
(Supplementary Figure 5), consistent with the results obtained
for m5C methylation modification patterns. The expression
quantities of these nine genes were the highest in gene-cluster B
samples, followed by gene-cluster A samples, and were the lowest in
the gene-cluster C samples.

Clinical Features and Transcriptome Traits
of the m5C-Associated Phenotypes
First of all, we analyzed the stromal scores of three m5C gene-
cluster subtypes. The results suggested that (Figure 4B) there
were significant differences in the stromal score of three
subtypes, among which, gene-cluster C had the highest score,
followed by gene-cluster B, while gene-cluster A had the lowest
score. Then, we analyzed the distribution of 22 immunocytes in
the three m5C gene-cluster subtypes. As observed from
Figure 4C, the distribution of 15 immunocytes in three
subtypes showed statistically significant differences. These
findings revealed the important role of m5C methylation
modification in the formation of diverse TME landscapes and
tumor-related immune regulation.

Nonetheless, the above results were obtained from patient
population alone, which might not precisely estimate the m5C
methylation modification patterns of individual cases. Due to the
m5C modification complexity and heterogeneity in individual
samples, this study established the scoring system (m5C-score)
using the phenotype-associated genes for quantifying m5C
modification patterns in individual PTC cases. Besides, those
attribute alterations in individual patients were visualized by the
alluvial diagram (Figure 5A). It was discovered from the figure
that, among the 3 m5C-cluster subtypes, samples in m5C-cluster
2 and m5C-cluster 3 subtypes were mostly distributed in the low
m5C-score group, while those in the high m5C-score group were
basically derived from the m5C-cluster 1 subtype. In the three
m5C gene-cluster subtypes, the m5C-score values of Cluster A
and Cluster C samples were lower. Samples aged over 40 years
were mostly classified into the low m5C-score group, while
females mostly belonged to the high m5C-score group.

To further evaluate the differences between low and high
score samples, the limma package was used to analyze the DEGs
between the two groups. Using the thresholds of logFC > log2
(1.2) and p < 0.05, 67 DEGs were screened, including 58
upregulated and 9 downregulated ones (Figure 5B). Moreover,
the WebGestaltR package was utilized for the GO and KEGG
enrichment analyses of DEGs, with p < 0.05 as the threshold. A
total of 62 biological processes (BP), 2 cellular components (CC),
6 molecular functions (MF), and 9 pathways were selected. As
shown in Supplementary Figure 6, these genes were mainly
involved in tumor proliferation and immune response-related
biological processes/molecular functions and signaling pathways,
such as MAPK, TNF, and IL-17.

Subsequently, this study observed the correlation of the m5C-
score with patient survival and analyzed the difference in
November 2021 | Volume 11 | Article 729887
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A B

C

D

FIGURE 2 | TME-infiltrating cell features in different m5C modification patterns. (A) Biological behaviors in the different m5C modification patterns were conducted by
GSVA. (B) Levels of stromal scores in different m5C modification patterns. (C) The levels of infiltration of 22 immune cells in different m5C modification patterns.
(D) The expression levels of 37 immune checkpoints in different m5C modification patterns. *, **, ***, **** statistic difference at different levels; ns, no significance.
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prognosis between high and low m5C-score samples. The results
suggested that, samples with low m5C-scores had better
prognosis than those with a high score, regardless of DFS or
OS (Figures 5C, D). In addition, it was also discovered that there
was no difference in the clinical features (such as T, M, and stage)
between high and low m5C-score samples (Supplementary
Figure 7). The expression levels of nine m5C regulators in the
high m5C-score group were significantly higher than those in
the low score group, and there was significant difference between
the two groups (Supplementary Figure 8).

Subsequently, this study observed the correlation of the
m5C-score with TME. First of all, the CIBERSORT method
was adopted to evaluate the infiltration level of each
immunocyte type in the high and low m5C-score TCGA-TPC
samples. The results are presented in Supplementary Figure 9A.
There were significant differences in six cell types between high
and low m5C-score groups. In addition, this study also calculated
the stromal score, immune score, and ESTIMATE score in
different samples. As presented in Supplementary Figure 9B,
in the low m5C-score group, the immune score was significantly
Frontiers in Oncology | www.frontiersin.org 7
higher than that in the high m5C-score group, which was
consistent with the previous results that show that the low
m5C-score group had better prognosis than the high score
group. Moreover, it was discovered through expression of
immune checkpoint genes that there were significant
differences in 16 immune checkpoint gene expression levels
between high and low m5C-score groups (Supplementary
Figure S10). Based on these findings, low m5C-score showed
close correlation with immune activation. Furthermore, the
m5C-score helped to assess m5C modification patterns in
individual tumors and better assess the TME cell infiltration
features of tumors, thus contributing to distinguishing the true or
false TME immune infiltration.

Last, this study integrated the influences of the m5C-score and
various immunocyte infiltration levels on the prognosis for PTC
patients. From Figure 6, it was discovered that resting CD4+

memory T cells and CD8+ T cells were mainly enriched in low
m5C-score samples, while activated NK cells and monocytes
were mostly enriched in the high m5C-score group. Then, the
median infiltration level of the above four cell types was used to
FIGURE 3 | The distribution of clinical features (gender, stage, and age) of samples in the m5C-cluster 1–3.
November 2021 | Volume 11 | Article 729887
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divide all samples into high and low immunocyte infiltration
level groups. It was discovered that samples with low m5C-score
and low infiltration level of resting CD4+ memory T cells had the
best prognosis, while those with high m5C-score and low
infiltration level of resting CD4+ memory T cells had the
poorest prognosis. In addition, samples with low m5C-score
and high CD8+ T cell infiltration had the best prognosis, while
those with high m5C-score and low CD8+ T cell infiltration had
the poorest prognosis. Furthermore, it was found that samples
with low m5C-score and high monocyte infiltration had the best
prognosis, while those with high m5C-score and high monocyte
infiltration had the poorest prognosis. According to the
prognostic prediction model, we analyzed the correlation
between the m5C-score and Treg expression in 24 PTC
patients. The m5c-score showed a negative relationship with
CD3+CD4+/CD3+CD8+ (r = −0.9543, p < 0.0001; Figure 5E),
but a positive relationship with CD4+CD25+ Tregs percentage
(r = 0.4477, p = 0.015; Figure 5F).

Construction and Verification of the
m5C-Score-Based PTC Diagnostic Model
First of all, this study calculated the correlation of 49 m5C
phenotype-related genes with the m5C-score. Then, 10
Frontiers in Oncology | www.frontiersin.org 8
signature genes related to the m5C-score were screened by the
threshold of correlation coefficient >0.4, which were used as the
features to construct the SVM classification model.

In order to verify the classification efficiency and accuracy of
the model, we used the expression profile data of TCGA tumor
samples as the training set. The m5C-score was utilized to classify
the samples into high and low groups. Then, the expression
profile data of these 10 genes were used to construct the SVM
classification model to classify the TCGA-TPC samples. It was
discovered that, compared with the m5C-score classification
results, the accuracy reached 98.3%, and the sensitivity was up
to 88.9%. The 493 samples were accurately classified, with an
area under the ROC curve (AUC) of 0.936 (Figure 7A). The
above results demonstrated that the classification model
constructed based on these 10 signature genes well simulated
the classification results of the m5C-score. The gene number was
substantially reduced, which significantly improved the
classification efficiency.

Thereafter, all the 551 TCGA samples (including 493 tumor
samples and 58 normal samples) were used as the verification set
1. The abovementioned 10 genes were used as the features to
construct the SVM classification model to classify the samples.
Surprisingly, it was discovered that the model accurately classified
A B

C

FIGURE 4 | m5C gene signature establishment along with functional annotation. (A) KEGG enrichment analysis of 690 DEGs. (B) Levels of stromal scores in three
m5C gene-cluster subtypes. (C) The levels of infiltration of 22 immune cells in three m5C gene-cluster subtypes. *, **, ***, **** statistic difference at different levels; ns,
no significance.
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TCGA-TPC samples into tumor samples and para-carcinoma
tissue samples, with a classification accuracy of 89.7% and a
sensitivity of 98.6%. Of the 551 samples in verification set 1, 538
were accurately classified, with an AUC of 94.2% (Figure 7B).
Frontiers in Oncology | www.frontiersin.org 9
To further verify the model classification efficiency and
accuracy, another three sets of microarray data were also
downloaded, and the 10 signature genes were used for SVM
verification. The GSE29265 dataset was utilized as verification
A B

C D

E F

FIGURE 5 | Clinical features and transcriptome traits of the m5C-associated phenotypes. (A) Alluvial diagram showing the changes of m5C modification patterns,
gender, age, gene cluster, and the m5C-score. (B) DEGs between high and low m5C-score samples. (C, D) Differences in DFS (C) and OS (D) between high and
low m5C-score samples. (E) Relationship between the m5C-score value and the score of CD3+CD4+/CD3+CD8+ cells of the peripheral blood samples of 24 GBM
patients. The m5C-Score value was negatively associated with the ratio of CD3+CD4+/CD3+CD8+ cells. (F) Relationship between the m5C-score value and the
percentage of CD4+CD25+ Tregs in peripheral blood samples of the 24 GBM patients. The m5C-score value was positively related with the percentage of
CD4+CD25+ Tregs.
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set 2, which included 49 samples (20 normal samples and 29
tumor samples), with a model classification accuracy of 95%. Of
the 49 samples, 48 were accurately classified, the model
sensitivity to high and low scores was up to 100%, and the
AUC was 97.5% (Figure 7C). Meanwhile, the GSE33630 dataset
was used as verification set 3, which included 105 samples (45
normal samples and 60 tumor samples). The model
classification accuracy reached up to 100%, all the 105
samples were accurately classified, the model sensitivity to
high and low scores was 100%, and the AUC was 100
(Figure 7D). The GSE65144 dataset was used as verification
set 4, which contained 25 samples (13 normal samples and 12
tumor samples). The model classification accuracy was 84.5%,
all the 25 samples were accurately classified, the model
sensitivity to high and low scores was 100%, and the AUC
was 92.3% (Figure 7E).
Frontiers in Oncology | www.frontiersin.org 10
Potential Drug Screening and Evaluation
for the m5C-Score-Based PTC
Diagnostic Model
We firstly used the L1000 fireworks display (L1000FWD) tool, and
a reverse drug screening method for deferentially expressed genes
in high- and low-risk groups of the m5C-score and obtained small
molecules (drugs, Supplementary Table 4). In the interaction
database between CMAP drug and gene expression, we analyzed
67 drugs that may interact with genes with different changes in the
risk model constructed by the m5C-score, and selected 55 small
molecules (drugs, Supplementary Table 5). We compared the
potential drug overlap between L1000 and CMAP annotation, and
found that there were five overlapping small molecules (S8),
namely cephaeline, emetine, anisomycin, ouabain, and
thapsigargin. CCK8 was used to detect the effect of five potential
drugs on the growth and metabolic activity of PTC tumor cells. It
FIGURE 6 | The influences of the m5C-score and various immunocyte (resting CD4+ memory T cells, CD8+ T cells, activated NK cells, and monocytes) infiltration
levels on the prognosis for PTC patients.
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was found that compared with the control group, the five drugs
could inhibit the growth of thyroid cancer cells in different degrees
(Figure 8A). Consistent with this, results of subcutaneous
transplantation model also showed that intraperitoneal injection
of these five drugs could significantly inhibit the growth of tumor,
respectively (Figure 8B).
DISCUSSION

More and more studies suggest that the m5C modification
interacts with different m5C regulators to play a vital part in
anticancer efficacy, inflammation, and intrinsic immunity. A
majority of articles have focused on the individual TME cell
type or individual regulator, yet no study has completely
identified the TME infiltration features mediated by several
m5C regulators simultaneously. It is important to identify the
different m5C modification patterns within the TME-infiltrating
Frontiers in Oncology | www.frontiersin.org 11
cells, so as to display the anticancer immune response in TME
and to guide the efficient immunotherapies.

In this study, on the basis of those nine m5C regulators, three
different m5C methylation modification patterns were identified,
which showed different TME-infiltrating features. Furthermore,
differences in mRNA transcriptome data across different m5C
modification patterns were suggested to be remarkably related to
the biological pathways associated with m5C and immunity. Such
DEGs were recognized to be the m5C-associated signature genes.
Consistent with the m5C modification phenotype clustering
analysis results, three genomic subtypes were found using the
m5C signature genes, and they showed significant correlations
with the immune and stromal activation. According to such
results, m5C modification played an important role in the
formation of diverse TME landscapes. As a result ,
comprehensively assessing m5C modification patterns can shed
more light on the features of TME cell infiltration. Due to the
differences in individual m5C modification patterns, quantifying
A B

E

C

D

FIGURE 7 | Construction and verification of the m5C-score-based PTC diagnostic model. (A) Comparison of classification results of TCGA-PTC samples by
diagnostic model constructed based on 10 signature genes and the m5C-score. (B) Accuracy of classification of TCGA samples by a diagnostic model constructed
based on 10 signature genes. (C–E) Accuracy of classification of samples in GSE29265 (C), GSE33630 (D), and GSE65144 (E) by a diagnostic model constructed
based on 10 signature genes.
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m5C modification patterns in individual tumors is necessary. To
this end, the scoring system, namely, the m5C-score, was
constructed in the present work for evaluating m5C
modification patterns in PTC cases. Our results show the
reliability and robustness of the m5C-score to comprehensively
assess the m5C modification patterns of individual tumors, and it
might be used to better examine TME infiltration patterns
(namely, the immune phenotypes of tumor). Integrative
analysis further revealed that the m5C-score might serve as a
biomarker to independently predict the PTC prognosis. Finally,
this study constructed a diagnostic model using the 10 signature
genes highly related to the m5C-score and discovered that the
model exhibited high diagnostic accuracy for PTC.

The m5C-score might be adopted clinically for the
comprehensive evaluation of m5C methylation modification
patterns together with related TME cell infi ltration
characteristics for individual patients, thus contributing to
determining the tumor immune phenotypes and guiding
efficient clinical practice. Furthermore, the m5C-score might
also be adopted to assess the clinicopathological characteristics
of patients, like molecular subtypes, histological subtypes, tumor
mutation burden, tumor inflammation stage, tumor
differentiation degree, clinical stages, and genetic variation.
Frontiers in Oncology | www.frontiersin.org 12
This work elaborated the association of the m5C-score with the
clinicopathological characteristics. Besides, the m5C-score also
served as a biomarker to independently predict patient survival.
The adjuvant chemotherapy efficacy and clinical anti-PD-1/PD-
L1 immunotherapy response of patients were also predicted via
the established m5C-score. Noteworthily, some new points were
proposed in this study regarding cancer immunotherapy, which
was that it was helpful to target the m5C regulators or the m5C
phenotype-associated genes to alter m5C modification patterns,
and to reverse the negative TME cell infiltration features, so as to
develop new drug combinations and new immunotherapeutics.
Results in this study shed new light on boosting immunotherapy
response in patients, recognizing the diverse immune
phenotypes of tumor and improving the individualized
cancer immunotherapy.

To sum up, findings in the present study have illustrated the
wide regulatory mechanisms of m5C methylation modification
patterns in the TME. Heterogeneity in m5C modification
patterns has been identified as a nonnegligible factor, which
may induce TME complexity and heterogeneity. It is important
to comprehensively evaluate the m5C modification patterns in
individual tumors, so as to shed more light on TME cell-
infiltrating features and to guide efficient immunotherapies.
A

B

FIGURE 8 | Five potential drugs based on the PTC m5C-score model could impair growth of PTC cells. (A) Histogram showing the viability of PTC cells with or
without five potential drugs (cephaeline, emetine, anisomycin, ouabain, and thapsigargin) for 48 h at 20 mM. (B) BALB/c mice were subcutaneously injected with PTC
cells. After 5 days, the nude mice were treated with cephaeline, emetine, anisomycin, ouabain, or thapsigargin (100 mg/kg daily, intraperitoneal injection). Tumor
weights were measured after 6 weeks (n = 5 mice/group). ***statistical significance.
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