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Background and Purpose: Patients with glioblastoma (GBM) involving the ventricles are
at high risk of ventricle opening during surgery and potential ventricular tumor spread. We
evaluated the effectiveness of whole-ventricular radiotherapy (WVRT) in reducing
intraventricular seeding in patients with GBM and identified patients who could benefit
from this approach.

Methods andMaterials:We retrospectively reviewed the data of 382 patients with GBM
who underwent surgical resection and temozolomide-based chemoradiotherapy.
Propensity score matching was performed to compensate for imbalances in
characteristics between patients who did [WVRT (+); n=59] and did not [WVRT (–);
n=323] receive WVRT. Local, outfield, intraventricular, and leptomeningeal failure rates
were compared.

Results: All patients in the WVRT (+) group had tumor ventricular involvement and
ventricle opening during surgery. In the matched cohort, the WVRT (+) group exhibited a
significantly lower 2-year intraventricular failure rate than the WVRT (–) group (2.1% vs.
11.8%; P=0.045), with no difference in other outcomes. Recursive partitioning analysis
stratified the patients in the WVRT (–) group at higher intraventricular failure risk (2-year
survival, 14.2%) due to tumor ventricular involvement, MGMT unmethylation, and ventricle
opening. WVRT reduced the intraventricular failure rate only in high-risk patients (0% vs.
14.2%; P=0.054) or those with MGMT-unmethylated GBM in the matched cohort (0% vs.
17.3%; P=0.036).

Conclusions: WVRT reduced the intraventricular failure rate in patients with tumor
ventricular involvement and ventricle opening during surgery. The MGMT-methylation
status may further stratify patients who could benefit from WVRT. Further prospective
evaluation of WVRT in GBM is warranted.
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INTRODUCTION

Glioblastoma (GBM) is the most common type of malignant
primary brain tumor in adults and accounts for most deaths due to
primary brain tumors (1). Currently, the standard treatment for
GBM is maximal surgical resection followed by temozolomide
(TMZ)-based concurrent chemoradiotherapy (2). Surgical
management is the cornerstone of GBM treatment, and the goal
is to minimize the residual postoperative contrast-enhancing
volume, as this strongly correlates with survival (3–5). Various
intraoperative mapping and monitoring techniques have emerged
to increase the extent of resection while reducing the risk of new
neurologic deficits (6–10). However, tumor location may limit the
extent of surgery.

In newly diagnosed patients, GBM commonly involves the
ventricular wall in 40–50% of cases (11–13). In such cases,
surgeons are reluctant to surpass the ventricular wall due to a
risk of iatrogenic tumor spread occurring through the ventricular
system. Previous reports demonstrated the increased risk of
leptomeningeal metastasis after surgical ventricular entry in
high grade gliomas (14–16). Furthermore, patients with
leptomeningeal and intraventricular tumor seeding in high
grade gliomas are known to exhibit a dismal prognosis with a
median survival of 2 to 6 months after being diagnosed with
seeding metastases (14, 15, 17–19).

Despite the risk of seeding metastasis, our institution prioritized
gross total tumor resection over ventricle wall preservation and have
seen a relatively high median overall survival (OS) of 20–22 months
(20–22), compared to the median OS of 15–18 months reported by
other studies (23, 24). Considering the potential risk of
intraventricular tumor seeding due to ventricular opening during
resection, we electively treat the whole ventricle, with the ventricles
opened, using intensity-modulated radiotherapy (IMRT). Whole-
ventricular radiotherapy (WVRT) is commonly applied in cases of
germ cell tumors (25) but is not commonly performed in GBM.
Herein, we evaluated the efficacy and safety of WVRT in patients
with GBM and to identify ideal candidates who may benefit from
this treatment.
MATERIALS AND METHODS

Patients
Between November 2005 and July 2019, the data of 433
consecutive patients with histologically confirmed GBM who
were treated with TMZ-based chemoradiotherapy were
retrospectively reviewed. Among these, patients with no post-
treatment magnetic resonance imaging (MRI) data (n=9), initial
leptomeningeal seeding (n=29), or gliomatosis cerebri who
received whole brain radiotherapy (n=13) were excluded; thus,
the data of 382 patients were analyzed. This retrospective study
was approved by the Institutional Review Board (4-2020-1351).
Tumor Location and Extent of Resection
All patients underwent preoperative MRI, including contrast-
enhanced T1-weighted, T2-weighted, and T2-fluid attenuated
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inversion recovery sequences. Tumor ventricular involvement
was defined as a contrast-enhancing lesion in contact with
the ventricle.

The extent of resection and post-resection ventricle opening
was evaluated using immediate postoperative MRI (performed
within 48 h after tumor resection) and intraoperative findings
during surgery. Gross total resection (GTR), subtotal resection
(STR), and partial resection (PR) were defined as the absence of
any contrast-enhancing lesions on immediate postoperative
MRI, ≥90% of the tumor removed, and <90% of the tumor
removed, respectively. Tumor specimens were examined for
their DNA methylation status at the CpG islands on the
MGMT promoter, as well as their IDH1R132H mutation status.
Treatment
Patients underwent maximal tumor resection or stereotactic
biopsy in cases not amenable to resection. Following surgical
resection, concurrent TMZ-based chemoradiotherapy was
administered to all patients within 4 weeks post-surgery. TMZ
was applied at a dose of 75 mg/m2 every day during
radiotherapy, followed by six cycles of adjuvant TMZ (150–200
mg/m2) for 5 days during each 4-week cycle (2, 24).

Radiotherapy was delivered as three-dimensional conformal
radiotherapy (3D-CRT) until 2011; IMRT was widely adopted
starting in 2012. The radiotherapy volume was defined according
to Radiation Therapy Oncology Group guidelines, with some
modifications (26). The gross tumor volume (GTV) was defined
as the resection cavity and any residual contrast-enhancing
tumor on immediate postoperative MRI with the addition of a
0.5–1-cm margin. The clinical target volume (CTV) included the
peritumoral edema with a 1–1.5-cm margin. Based on the
physician’s preference, the CTV was delineated by adding a
1.5-cm margin to the GTV regardless of the peritumoral edema
in some cases. An additional 0.3-cmmargin for setup uncertainty
was added to the GTV and CTV to create the boost and initial
planning target volume (PTV), respectively. For 3D-CRT plans,
46 Gy in 23 fractions was prescribed to the initial PTV and 14 Gy
in 7 fractions was prescribed to the boost PTV. For IMRT plans,
no additional PTV margin was added, and a simultaneous
integrated boost technique was used to prescribe a total of 60
Gy and 51 Gy in 30 fractions to the GTV and CTV, respectively.
Whole-Ventricle Radiotherapy
Since 2016, we have selectively applied WVRT in patients with
exposed ventricles during tumor resection because of a concern
for iatrogenic tumor spread through the ventricular system. All
patients who received WVRT were treated with IMRT, and 45
Gy in 30 fractions was prescribed to the whole ventricle with the
addition of a 0.3-cm margin. The whole ventricle was delineated
per the ACNS1123 protocol (27).
Follow-up and Failure Patterns
MRI was performed 4 weeks after the completion of CRT, every
12 weeks during adjuvant TMZ therapy, every 3 months for the
September 2021 | Volume 11 | Article 736482

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kim et al. Efficacy of WVRT in GBM
first 2 years after the end of adjuvant TMZ therapy, and annually
thereafter. Disease progression was determined based on
radiologic, neurologic, and clinical findings, according to the
Response Assessment in Neuro-Oncology criteria (28). All
recurrences during the follow-up period were evaluated. The
location of treatment failures was classified as local, outfield, or
intraventricular failure, or leptomeningeal seeding. Local failure
was defined when the epicenter of recurrence was within the initial
PTV volume. Intraventricular failure was defined as recurrence
within the ventricle and not including subventricular failures.
Leptomeningeal seeding was defined as leptomeningeal
involvement outside the ventricular system. Outfield failure was
defined as recurrence outside the PTV volume but not
intraventricular recurrence or leptomeningeal seeding. Radiation
necrosis was confirmed if contrast-enhancing lesions with in the
irradiated volume gradually decreased on more than two
subsequent follow-up MRI studies performed and clinical
symptoms improved. In contrast, contrast enhancing lesions
that gradually increased on more than two subsequent follow-up
MRI studies (with a size criterion of an increase of > 25% of the
size of a measurable [> 1 cm] enhancing lesion according to the
sum of the products of perpendicular dimensions) and
deterioration of clinical symptoms were diagnosed as
recurrences (29).

Peripheral blood counts were assessed every week during
CRT and every 4 weeks during adjuvant TMZ therapy, and the
change in blood cell counts during the course of treatment
was analyzed.
Statistical Analysis
Categorical variables were compared using the chi-square test or
Fisher’s exact test, whereas continuous variables were compared
using Student’s t-test or Mann–Whitney U test. Propensity score
matching was performed to compensate for imbalances in the
characteristics of patients who received and did not receive
WVRT; we implemented a 1:2 nearest neighbor analysis, with
a caliper width of 0.2 standard deviations of the logit distance
measured using the R-package, “MatchIt.” The covariates used
for matching included age, sex, Karnofsky performance score
(KPS), MGMT methylation, ventricular involvement, ventricle
opening, and resection extent.

Cumulative incidence estimates of each type of treatment
failure, with death as a competing risk, were calculated and
compared using Gray’s test. OS was defined from the date of
surgery to the date of death. Progression-free survival (PFS) was
defined from the date of surgery to the date of treatment failure
or death. OS and PFS were estimated with the Kaplan–Meier
method and compared using a log-rank test. Recursive
partitioning analysis (RPA) was performed to stratify patients
who did not receive WVRT according to their risk of
intraventricular failure using the R-package, “rpart.” Variables
such as age, sex, KPS, MGMT methylation, IDH1 mutation,
ventricular involvement, ventricle opening, and extent of
resection were included. Additionally, serial changes in blood
cell counts and KPS were compared between groups using a
linear-mixed model to account for missing values.
Frontiers in Oncology | www.frontiersin.org 3
All statistical analyses were performed using SPSS version
25.0 (IBM SPSS Statistics, Armonk, NY), Graphpad Prism 8
(GraphPad Software, La Jolla, CA), and R software version 3.6.1
(R Foundation for Statistical Computing, Vienna, Austria).
P-values <0.05 were considered statistically significant.
RESULTS

Patient Characteristics
Among the 382 patients included, 59 received WVRT [WVRT
(+) group] and 323 received localized radiotherapy [WVRT (–)
group]. All patients in the WVRT (+) group had ventricular
involvement with a contrast-enhancing lesion and ventricle
opening during surgery (Table 1). GTR was performed in
66.5% of patients, and the extent of resection was similar in
the two groups (Table 1). Although the IDH1 mutation rate was
similar in the two groups, a significantly higher percentage of
patients were not evaluated for IDH1 mutation status in the
WVRT (–) group than in the WVRT (+) group. Significantly
more tumors exhibited MGMT methylation in the WVRT (+)
group than in the WVRT (–) group. All patients in the WVRT
(+) group and 53.5% of patients in the WVRT (–) group received
IMRT. Peritumoral edema was included in the radiotherapy field
in most patients, but the rate was significantly lower in the
WVRT (–) group than in theWVRT (+) group. The median dose
delivered to the tumor bed was 60 Gy in 30 fractions and did not
significantly differ between the two groups (Table 1). The
median dose delivered to the whole ventricle was 45 Gy (range,
41.25–51 Gy) in 30 fractions.

To compensate for the imbalance in baseline characteristics
between the WVRT (–) and WVRT (+) groups, propensity score
matching was performed (Table 1). Because of the severe
imbalance in the percentage of patients who had ventricular
involvement and ventricles exposed during surgery, 111 patients
were matched in the WVRT (–) group. Except for the
radiotherapy modality, all variables were well-balanced
following propensity score matching.

Treatment Outcomes in the
Matched Cohort
The median follow-up time was 15.4 (range, 7.0–49.7) months in
the WVRT (+) group and 47.6 (12.1–125.3) months in the
WVRT (–) group. Intraventricular failures were noted in 22
patients, at a median of 9.5 (range, 3.2–112.8) months after
diagnosis. One failure was noted in a patient in the WVRT (+)
group and the remaining were noted in patients in theWVRT (–)
group. The 2-year intraventricular failure rate was significantly
lower in the WVRT (+) group than in the WVRT (–) group
[2.1% (95% confidence interval (CI), 0.0–6.2%) vs. 11.8% (95%
CI, 5.8–17.8%); P=0.045; Figure 1A]. However, there were no
significant differences in the rates of 2-year local failure [48.1%
(95% CI, 31.3–64.9%) vs. 46.4% (95% CI, 37.1–55.8%); P=0.740;
Figure 1B], outfield failure [22.7% (95% CI, 12.8–40.2%) vs.
27.3% (95% CI, 19.0–35.7%); P=0.557; Figure 1C], and
leptomeningeal seeding [12.9 (95% CI, 2.1–23.8%) vs. 14.6%
September 2021 | Volume 11 | Article 736482
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(95% CI, 8.0–21.2); P=0.931; Figure 1D] between the WVRT (+)
and WVRT (–) groups. Additionally, there were no significant
differences in median PFS [15.4 (95% CI, 10.9–19.8) vs. 13.5
(95% CI, 11.4–15.6) months; P=0.577; Supplementary
Figure 1A] and median OS [30 (95% CI, 17.6–42.4) vs. 19.6
(95% CI, 15.4–23.8) months; P=0.577; Supplementary
Figure 1B] between the WVRT (+) and WVRT (–) groups.

Risk Group Stratification of
Intraventricular Seeding
To further investigate the significant benefit of WVRT in terms
of reducing the rate of intraventricular failure, we determined
which subgroups were at higher risk of intraventricular failure
and more likely to benefit fromWVRT in an RPA. Only patients
who did not receive WVRT were included (n=309) in the RPA.
The patients were initially divided between those with and those
without ventricular involvement of the contrast-enhancing
lesion (Figure 2A). The MGMT methylation status was
Frontiers in Oncology | www.frontiersin.org 4
determined as the second most significant factor in dividing
the patients. The final division was decided according to ventricle
opening after surgery, which resulted in four terminal nodes
(Figure 2A). The 2-year intraventricular failure rates for nodes 1,
2, 3, and 4 were 1.5% (95% CI, 0–3.6%), 3.9% (95% CI, 0–9.2%),
0%, and 14.2% (95% CI, 7.5–20.8%), respectively (P=0.001;
Figure 2B). Nodes 1, 2, and 3, which had similar failure rates,
were merged and classified as the “low-risk” group and node 4
was classified as the “high-risk” group (Figures 2A, B).

The high-risk group exhibited a significantly higher
intraventricular failure rate than the low-risk group and
showed higher rates of 2-year local failure [58.6% (95% CI,
49.2–68.0%) vs. 45.2% (95% CI, 38.3–52.2%); P=0.083;
Supplementary Figure 2A], outfield failure [38.7% (95% CI,
29.4–48.0%) vs. 12.5% (95% CI, 7.9–17.1%); P<0.001;
Supplementary Figure 2B], and leptomeningeal seeding
[19.0% (95% CI, 11.5–26.5%) vs. 5.0% (95% CI, 2.0–8.1%);
P=0.001; Supplementary Figure 2C]. Moreover, the high-risk
TABLE 1 | Patient characteristics in the pre- and post-matching cohorts.

Characteristics Before matching After matching

Total (n = 382) WVRT (–) (n = 323) WVRT (+) (n = 59) P value WVRT (–) (n = 111) WVRT (+) (n = 59) P value

Age, yrs, median (range) 58 (17-79) 58 (17-79) 58 (29-71) 0.574 58 (23-78) 58 (29-71) 0.82
Sex 0.025 0.399
Male 216 (56.5%) 191 (59.1%) 25 (42.4%) 56 (50.5%) 25 (42.4%)
Female 166 (43.5%) 132 (40.9%) 34 (57.6%) 55 (49.5%) 34 (57.6%)

KPS 0.459 0.419
<70 68 (17.8%) 60 (18.6%) 8 (13.6%) 22 (19.8%) 8 (13.6%)
≥70 314 (82.2%) 263 (81.4%) 51 (86.4%) 89 (80.2%) 51 (86.4%)

MGMT methylation 0.008 0.369
Unmethylated 236 (61.8%) 207 (64.1%) 29 (49.2%) 64 (57.7%) 29 (49.2%)
Methylated 132 (34.6%) 102 (31.6%) 30 (50.8%) 47 (42.3%) 30 (50.8%)
Not evaluated 14 (3.7%) 14 (4.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

IDH1 1.000* 0.654*
Mutation 16 (4.2%) 14 (4.3%) 2 (3.4%) 7 (6.3%) 2 (3.4%)
Wild type 273 (71.5%) 216 (66.9%) 57 (96.6%) 77 (69.4%) 57 (96.6%)
Not evaluated 93 (24.3%) 93 (28.8%) 0 (0%) 27 (24.3%) 0 (0.0%)

Ventricle involvement, T1-enhance <0.001 NA
No 134 (35.1%) 134 (41.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Yes 248 (64.9%) 189 (58.5%) 59 (100.0%) 111 (100.0%) 59 (100.0%)

Ventricle involvement, T2-high 0.006 NA
No 37 (9.7%) 37 (11.5%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Yes 345 (90.3%) 286 (88.5%) 59 (100.0%) 111 (100.0%) 59 (100.0%)

Ventricle exposure during surgery <0.001 NA
Not open 151 (39.5%) 151 (46.7%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Opened 231 (60.5%) 172 (53.3%) 59 (100.0%) 111 (100.0%) 59 (100.0%)

Extent of resection 0.283 0.968
Biopsy 19 (5.0%) 19 (5.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Partial resection 28 (7.3%) 24 (7.4%) 4 (6.8%) 8 (7.2%) 4 (6.8%)
Subtotal resection 81 (21.2%) 67 (20.7%) 14 (23.7%) 28 (25.2%) 14 (23.7%)
Gross total resection 254 (66.5%) 213 (65.9%) 41 (69.5%) 75 (67.6%) 41 (69.5%)

Radiotherapy modality <0.001 <0.001
3DCRT 151 (39.5%) 151 (46.7%) 0 (0.0%) 48 (43.2%) 0 (0.0%)
IMRT 231 (60.5%) 172 (53.3%) 59 (100.0%) 63 (56.8%) 59 (100.0%)

Inclusion of peritumoral-edema 0.019 1.000
No 39 (10.2%) 38 (11.8%) 1 (1.7%) 2 (1.8%) 1 (1.7%)
Yes 343 (89.8%) 285 (88.2%) 58 (98.3%) 109 (98.2%) 58 (98.3%)

Dose, Gy, median (range) 60 (51.5-70) 60 (51.5-70) 60 (56-66) 0.216 60 (51.5-70) 60 (56-66) 0.836
Fraction, median (range) 30 (17-35) 30 (17-35) 30 (28-30) 0.588 30 (17-33) 30 (28-30) 0.219
September 2021
 | Volume 11 | Article
3DCRT, 3-dimensional conformal radiotherapy; IMRT, intensity modulated radiotherapy; KPS, Karnofsky Performance Score; NA, not applicable; WVRT, whole ventricular radiotherapy.
*P value was estimated by comparing the percentage of IDH1 mutation vs. wild type or not evaluated.
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group exhibited a significantly poorer median PFS [10.0 (95% CI,
9.0–11.8) vs. 15.7 (95% CI, 13.7–18.9) months; P<0.001;
Supplementary Figure 2D] and median OS [16.3 (95% CI,
15.2–19.6) vs. 25.0 (95% CI, 22.4–29.8) months; P<0.001;
Supplementary Figure 2D] than the low-risk group.

Benefit of WVRT According to Risk
Group Stratification and MGMT
Methylation Status
Next, the effect of WVRT on intraventricular failure was evaluated
in each of the risk groups. The 2-year intraventricular failure rates
for theWVRT (+) andWVRT (–) groupswere 0% and 14.2% (95%
CI, 7.5–20.8%; P=0.054; Figure 3A), respectively, in the high-risk
group and 3.7% (95% CI, 0–10.9%) and 2.0% (95% CI, 0.1–4.0%;
P=0.513; Figure 3B), respectively, in the low-risk group.

Considering that the MGMT methylation status was one of
the main determinants for intraventricular failure, we further
analyzed the effect of WVRT on the intraventricular failure rate in
the propensity score-matched cohort (Table 1) according to the
MGMT-methylation status. The 2-year intraventricular failure
Frontiers in Oncology | www.frontiersin.org 5
rates for the WVRT (+) and WVRT (–) groups were 0% and
17.3% (95% CI, 8.0–26.6%; P=0.036), respectively, in the MGMT-
unmethylated subpopulation (Figure 3C) and 3.7% (95% CI, 0–
10.9%) and 4.3% (95% CI, 0–10.0%; P=0.898), respectively, in the
MGMT-methylated subpopulation (Figure 3D).

Sites of Intraventricular Failure and
Implications for WVRT Volume
To gain insight into the adequacy of the WVRT volume, we
analyzed the sites of intraventricular failure. As mentioned
above, 21 patients in the WVRT (–) group and one patient in
the WVRT (+) group exhibited intraventricular failure. The
common sites of failure included the lateral ventricle (7 of 22;
31.8%), fourth ventricle (7 of 22; 31.8%), and both the lateral
and fourth ventricles (6 of 22; 27.3%; Supplementary Table
S1). In five patients within the WVRT (–) group, the lateral
ventricles, but not the fourth ventricle, were included in the
radiotherapy field. Among these five patients, two experienced
intraventricular failure and both of these had fourth ventricular
involvement (Figure 4).
A B

C D

FIGURE 1 | Cumulative incidence rates of intraventricular failure (A), local failure (B), outfield failure (C), and leptomeningeal seeding (D) in the propensity score-matched
cohort. The cumulative incidence rates were compared between the WVRT (–) group (n=111) and WVRT (+) group (n=59). WVRT, whole-ventricular radiotherapy.
September 2021 | Volume 11 | Article 736482
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The failure patterns (Supplementary Table S2) showed that
local failure was the predominant site of recurrence in both the
WVRT (+) and WVRT (–) groups. Intraventricular failure was
rarely observed as the sole site of failure (2/22, 11.1%); rather, it
was more likely combined with local failure (7/22, 31.8%),
leptomeningeal seeding (6/22, 27.3%), or both (7/22, 31.8%).
Ventricle Opening During Surgery
Patients with ventricular involvement of a contrast-enhancing
lesion had a significantly higher rate of ventricle opening during
surgery than those without tumor ventricular involvement [87.0%
vs. 11.9%; P<0.001]. Indeed, among patients with ventricular
involvement [n=248] who received GTR, STR, and PR/biopsy,
95.5%, 86.0%, and 48.5%, had ventricle opening during surgery,
respectively [P<0.001]. The rate of out-field recurrence was
significantly increased in patients that had ventricle opening
than in patients without ventricle opening [18.3% (95% CI,
13.1–23.5%) vs. 6.3% (95% CI, 0–14.6%); P = 0.032] but the rate
of leptomeningeal seeding [9.5% (95% CI, 5.5–13.4%) vs. 3.1%
(95% CI, 0–9.2%); P = 0.354] and intraventricuar seeding [7.6%
(95% CI, 4.0–11.2%) vs. 0%; P = 0.199] did not significantly differ.
Despite the significantly higher rate of ventricle opening in
patients with a larger resection extent , the 2-year
intraventricular failure rate of patients in the WVRT [–] group
with tumor ventricular involvement [n=189] was similar among
those who received GTR, STR, and PR/biopsy [8.6% (95% CI, 3.5–
13.7%), 11.6% (95% CI, 2.0–21.2%), and 10.3% (95% CI,
0–21.4%), respectively; P=0.847; Supplementary Figure 3A].
Moreover, GTR was associated with a significantly higher
median OS [21.5 (17.6–25.4) vs. 15.1 (95% CI, 13.7–16.5) vs.
15.7 (95% CI, 11.3–20.1) months; P<0.001; Supplementary
Figure 3B] and median PFS [14.3 (95% CI, 10.9–17.7) vs. 9.1
Frontiers in Oncology | www.frontiersin.org 6
(95% CI, 8.4–9.8) vs. 9.6 (95% CI, 7.5–11.7) months; P<0.001;
Supplementary Figure 3C] than STR and PR/biopsy.
Toxicity Following WVRT
Considering the increase in radiotherapy volume by including the
whole ventricle, we compared the deterioration in performance,
incidence of radiation necrosis, and changes in complete blood cell
counts between the WVRT (+) and WVRT (–) groups. There was
a significant decline in the KPS in both groups during the course of
treatment (P<0.001), but there were no significant differences
between the two groups in both the matched and whole cohorts
(P=0.737; Figure 5A and Supplementary Figure 4A). The
incidence of radiation necrosis did not significantly differ
between the WBRT (+) and WVRT (–) groups in the matched
cohort (8.5% vs. 7.2%; P = 0.769) and in the whole cohort (8.5% vs.
11.5%; P = 0.652). Among the 5 patients (8.5%) in the WVRT (+)
group that experienced radiation necrosis, 4 patients were
conservatively managed and 1 patient received bevacizumab for
symptom control.

Next, we evaluated serial blood cell counts from baseline to 12
months post-radiotherapy. No significant differences between
the WVRT (+) and WVRT (–) groups were observed in terms of
hemoglobin level and platelet, white blood cell, and absolute
neutrophil counts in both the matched and whole cohorts
(Figures 5B–E and Supplementary Figure 4B–E). However,
the absolute lymphocyte count (ALC) was significantly lower in
the WVRT (+) group than in the WVRT (–) group at 5–6
months post-WVRT but not at other time points, and the ALC
gradually recovered to a similar level as that in the WVRT (–)
group (Figure 5F). In the whole cohort, the ALC was
significantly lower during CRT and adjuvant TMZ therapy
(P < 0.001), but it gradually recovered and did not significantly
A B

FIGURE 2 | RPA classification according to the risk of intraventricular seeding. (A) Diagram of RPA classification in patients who did not receive WVRT.
(B) Intraventricular failure rates of the RPA-classified nodes. RPA, recursive partitioning analysis; WVRT, whole-ventricular radiotherapy.
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differ from that in the WVRT (–) group at 9 months post-
radiotherapy (Supplementary Figure 4F).
DISCUSSION

To the best of our knowledge, this study provided the first data on
the feasibility ofWVRTfor the treatmentofpatientswithGBMwho
exhibit tumor ventricular involvement and ventricle opening
during surgery. We found that WVRT can significantly reduce
intraventricular seeding without increasing severe toxicity.

For GBMs involving the ventricle, ventricle opening is
inevitable during maximal tumor resection. The concern for
iatrogenic tumor spread due to ventricle opening during surgery
discourages surgeons from performing maximal resection in
GBMs involving the ventricle (14–16). However, the extent of
tumor resection is an important prognostic factor in GBM (3, 4,
Frontiers in Oncology | www.frontiersin.org 7
22, 30). Unlike tumor-specific prognostic factors such as the
MGMT-methylation status, the extent of resection is a factor that
can be controlled by surgeons. Therefore, surgeons should
attempt maximal resection of the tumor. Additionally,
surgeons should attempt to minimize the dissemination of
tumor cells into the ventricle by opening the ventricle at the
later stage of resection, after most of the main body mass has
been removed, and closing the ventricular opening as soon as
possible. In line with this policy, we perform maximal tumor
resection even in tumors involving the ventricle, despite the risk
of ventricle opening, and cover the whole ventricle in the
radiotherapy volume.

The rate of intraventricular seeding was significantly lower in
the WVRT (+) group than in the WVRT (–) of the propensity
score-matched cohort. All patients in the matched cohort had
ventricular involvement of the tumor and ventricle exposure
during surgery, indicating the potential of WVRT to inhibit
A B

C D

FIGURE 3 | Cumulative incidence rates of intraventricular failure in different subgroups. (A, B) Intraventricular failure rates in the RPA-classified high-risk group (n=135; A)
and low-risk group (n233; B). (C, D) Intraventricular failure rates in the propensity score-matched cohort (n=170) with MGMT-unmethylated GBM (n=93; C) and MGMT-
methylated GBM (n=77; D). The cumulative incidence rates were compared between the WVRT (–) and WVRT (+) groups. RPA, recursive partitioning analysis; WVRT,
whole-ventricular radiotherapy.
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A

B

FIGURE 4 | A representative case of intraventricular failure. (A) A typical case of WVRT after ventricle opening where the whole ventricle, including the lateral, third,
and fourth ventricles are included. (B) A patient who did not receive WVRT but had the adjacent lateral ventricles included in the field. This patient experienced
recurrence in the fourth ventricle 7 months post-surgery without local recurrence. WVRT, whole-ventricular radiotherapy.
A B C

E FD

FIGURE 5 | Performance status and blood cell counts during and after treatment in the propensity score-matched cohort (n=170). (A) Karnofsky performance score
(KPS) before surgery, 3 months post-radiotherapy, and 6 months post-radiotherapy. (B–F) Serial values of blood test findings from before surgery to 12 months
post-radiotherapy in terms of hemoglobin level (B), platelet count (C), white blood cell count (D), absolute neutrophil count (E), and absolute lymphocyte count
(F). ***P<0.001; *P<0.05.
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tumor spread after surgical ventricle entry. As WVRT
significantly reduced intraventricular seeding, we further
stratified patients to identify the subset of patients who may
best benefit from WVRT. Tumor ventricular involvement was
the strongest predictor of intraventricular seeding. Surprisingly,
the MGMT-methylation status was the second most significant
predictive factor for intraventricular seeding. Patients with
MGMT methylation experienced a very low incidence of
intraventricular seeding, despite ventricular involvement or
ventricle opening. MGMT methylation is one of the most
important prognostic and predictive markers in GBM (24, 30–
32). Patterns of failure also differ between MGMT-methylated
and MGMT-unmethylated GBMs, with MGMT-methylated
tumors exhibiting higher distant failure rates than those seen
in MGMT-unmethylated tumors (33, 34). This difference may be
attributed to the higher sensitivity of MGMT-methylated tumors
to TMZ/radiation and improved local control, which provides a
higher chance of distant failure during follow-up. However,
intraventricular seeding is more likely to be caused by direct
tumor cell seeding during the surgical procedure. This is also
supported by the early occurrence of most intraventricular
failures during the first postoperative year. Among the seeded
tumor cells in the ventricle, TMZ-sensitive MGMT-methylated
tumor cells may be controlled through TMZ administration
without WVRT, but TMZ-resistant MGMT-unmethylated
tumor cells may have a better chance to repopulate the
ventricle without WVRT, resulting in a higher rate of
intraventricular failure.

Previous reports comparing treatment outcomes between
tumors with and without ventricular involvement have
demonstrated significantly poorer outcomes for tumors
involving the ventricle (11, 13). In these studies, the rate of
GTR in GBMs involving the ventricle was only half of that in
tumors not involving the ventricle (11, 13). Along with the poor
biological nature of tumors infiltrating the subventricular zone
(SVZ) (35, 36), a less aggressive surgical approach may also
contribute to the poor survival rates of patients with GBMs
involving the ventricle. In this study, despite a higher rate of
ventricular opening with a larger extent of surgery, patients who
underwent GTR exhibited significantly higher PFS and OS than
patients who underwent STR or PR/biopsy. This implies that
maximal surgical resection should be attempted regardless of
tumor ventricular involvement.

The dose applied forWVRT was 45 Gy in 30 fractions in most
cases, which may seem to be insufficient to control GBM.
However, we observed only one case of intraventricular failure
among the 59 patients who received WVRT. Notably, this single
case of intraventricular failure occurred after local failure. As
tumor cells within the ventricle system seeded during surgery are
less likely to be colonized, a relatively small dose may have been
successful in eradicating the tumor cells, even in patients with
MGMT-unmethylated GBMs. Interestingly, intraventricular
seeding in the fourth ventricle was observed in some cases
where only the lateral ventricles in proximity to the primary
tumor were covered during radiotherapy (Figure 4B).
Considering the high rates of recurrence in the lateral and
Frontiers in Oncology | www.frontiersin.org 9
fourth ventricles, the whole ventricular system should be
covered when delivering WVRT.

Irradiating the whole ventricle was intended to target the
cancer cells seeded within the ventricle by ventricular exposure
during surgery. However, during WVRT, the SVZ, which has
been suggested as a region where radioresistant cancer stem cells
reside (35, 37), is also inevitably included in the radiation
volume. Previous reports have demonstrated a benefit in PFS
or OS with a higher radiation dose delivered to the SVZ (38–40).
Chen et al. reported that the benefit of a higher SVZ dose was
limited to patients who received GTR (39). However, there have
also been contradictory results indicating that a higher SVZ dose
does not correlate with improved survival after correcting for
other clinicopathological factors (41). In this study, the reduction
in intraventricular seeding with WVRT did not translate into a
survival benefit. This may be attributed to the high proportion of
local progressions among the treatment failures, where 80% of
treatment failures were associated with local progression; WVRT
could not reduce the rate of local failure. Moreover, the
intermediate dose applied for WVRT may be insufficient to
eradicate intrinsically radioresistant cancer stem cells in the
SVZ. Lee et al. demonstrated that doses >59.4 Gy delivered to
the SVZ were associated with improved PFS, unlike lower doses
of 43 Gy (38). Considering these radioresistant cancer stem cells
as a source of recurrence, better treatment strategies targeting
this cell population may be needed to further improve treatment
outcomes (42).

As including the whole ventricle, in addition to the tumor bed,
increases the total radiotherapy volume, we examined the effect of
WVRT on patient performance status and the change in blood cell
counts following surgery. We did not observe any difference in
patient performance status according to the receipt of WVRT in
both the total and matched cohorts. Furthermore, the blood cell
counts were similar between the two groups during follow-up,
with the exception of the ALC, which was significantly lower in
the WVRT (+) group than in the WVRT (–) group at 5–6 months
post-radiotherapy in the matched cohort. However, the ALC
gradually recovered in the WVRT (+) group and became similar
to that in the WVRT (–). These findings of lower ALC can be
explained by previous findings of a larger PTV volume
significantly correlating with an increased incidence of acute
severe lymphopenia in patients with GBM (43). Indeed, the
increased irradiated volume in patients who receive WVRT can
contribute to radiation-induced lymphopenia. Since acute severe
lymphopenia has been demonstrated as a negative prognosticator
for GBM and other solid tumors, efforts should be made to
decrease the integral dose delivered to the brain (43, 44).
Applying more advanced techniques in WVRT, such as proton
therapy (45), may decrease the degree of lymphopenia and further
improve the efficacy of WVRT in GBM.

Although this study provided data on a novel treatment
approach for GBM, it has several limitations, which stem from
its retrospective nature. The most significant weakness of this
study was the shorter median follow-up time in the WVRT (+)
group compared to the WVRT (–) group. Since WVRT was first
applied after IMRT was introduced in the treatment of GBM, the
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WVRT (+) group comprised more recently treated patients,
which led to a difference in the median follow-up time
between the WVRT (+) and WVRT (–) groups. Although the
median time to intraventricular seeding fell within the median
follow-up time of the WVRT (+) group, the shorter follow-up
time in the WVRT (+) group may have led to underestimation of
the true incidence of intraventricular spread as failure may occur
later on. Another limitation was the lack of data on patient
neurocognitive function. The correlation between larger
radiation volumes and poorer neurocognitive results have been
demonstrated in previous studies (46, 47). However,
neurocognitive test batteries were not routinely performed in
the present study and the effect of WVRT on neurocognitive
function were not able to be properly analyzed. Although no
significant decline in KPS was observed in patients who received
WVRT, language and verbal memory function may decline after
WVRT due to the larger radiation volume.

In conclus ion, WVRT significant ly reduced the
intraventricular failure rate in patients with GBMs involving
the ventricle who had ventricles exposed during maximal tumor
resection, especially in MGMT-unmethylated GBMs. Our data
suggest that WVRT may be considered a new treatment option
in these particular cases, and its efficacy should be prospectively
evaluated in future studies.
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