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Endocrine therapy is a standard treatment offered to patients with ERa (estrogen
receptor a)-positive breast cancer. In endocrine therapy, ERa is either directly targeted
by anti-estrogens or indirectly by aromatase inhibitors which cause estrogen deficiency.
Resistance to these drugs (endocrine resistance) compromises the efficiency of this
treatment and requires additional measures. Endocrine resistance is often caused by
deregulation of the PI3K/AKT/mTOR pathway and/or cyclin-dependent kinase 4 and 6
activities allowing inhibitors of these factors to be used clinically to counteract endocrine
resistance. The nuclear mechanisms involved in endocrine resistance are beginning to
emerge. Exploring these mechanisms may reveal additional druggable targets, which
could help to further improve patients’ outcome in an endocrine resistance setting. This
review intends to summarize our current knowledge on the nuclear mechanisms linked to
endocrine resistance.

Keywords: fulvestrant, tamoxifen, estrogen receptor, transcription factors, chromatin accessibility, transcriptional
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INTRODUCTION

Breast cancer (BC), a systemic disease characterized by early tumor cell dissemination (1), is the most
frequent cancer among women and leading cause of cancer-related death in women worldwide (2).
Disseminated BC cells often enter dormancy and may later grow out to a metastatic lesion (3, 4). In a
metastasis-free state, there are good therapy options to substantially prolong survival of BC patients.
BC is a heterogenous disease, requiring subtyping, classically based on immunohistochemistry
(IHC), to offer the patient the best possible treatment. The statuses of estrogen receptor a (ERa),
progesterone receptor (PR) and human epidermal growth factor receptor 2 (Her2) are routinely
examined. The majority of BCs are ERa/PR-positive. Additionally, Her2-positive BCs and triple-
negative (ERa-, PR- and Her2-negative) BCs (TNBCs) are found. Subtyping by mRNA expression
profiling revealed four major BC subtypes (luminal A, luminal B, Her2-enriched and basal-like) (5),
which overlap with the IHC-subtypes. Luminal A and B tumors are mostly ERa-positive BCs,
whereby luminal B tumors are more aggressive. Basal-like BCs show commonly features of TNBCs.

Routine treatment options for BC patients include ERa- and Her2-targeting therapies,
chemotherapy, surgery and radiation. Besides ERa and Her2 expression, the luminal subtype,
tumor grading and lymph node involvement play a role in therapy decision (6). Endocrine therapy
is a standard treatment for patients with ERa-positive BCs. Two principal strategies are used in
endocrine therapy to block estrogen-dependent ERa activity. One strategy utilizes anti-estrogens to
compete with estrogen for binding to the ERa protein. Anti-estrogens are roughly divided in
selective ERa modulators (SERMs), such as tamoxifen (TAM) (7, 8), and selective ERa
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downregulator (SERDs), such as fulvestrant (FULV) (9, 10). In
contrast to SERMs, SERDs are pure ERa inhibitors, induce ERa
degradation and prevent ERa from becoming transcriptionally
active (9–11). In the other strategy, estrogen synthesis is blocked
by an aromatase inhibitor (AI), such as exemestane, resulting in
estrogen deficiency (12). Both strategies are effective for treating
ERa-positive BCs.

Endocrine resistance (ENDO-R), the resistance to ERa-
targeting therapy, is a major obstacle in treatment of ERa-
positive BCs. In first-line treatment, ENDO-R is observed in
approximately half of all ERa-positive BCs (13). Many factors
contributing to ENDO-R have been identified. While there are
excellent reviews on the mechanisms of endocrine resistance,
which primarily focus on signaling pathways, cell cycle
regulators, microRNAs and/or mutation in the ERa-coding
gene esr1 (14–19), this review preferentially aims to summarize
the currently known nuclear mechanisms that contribute to
ENDO-R. Where necessary, event(s) in other cellular
compartments that are crucially linked to the nuclear
mechanism discussed, are also described.
ERa, THE TARGET OF ENDOCRINE
TREATMENT

The ERa Protein
There are two estrogen receptors, ERa and ERb (20). While ERb
is generally considered to act anti-proliferative, ERa promotes
proliferation. Estrogen-activated ERa is a potent stimulator of
cyclin D1 expression (21, 22), leading to activation of cyclin-
dependent kinases (CDKs) 4 and 6, which in turn phosphorylate
retinoblastoma protein to initiate cell cycle entry (23).

Expression of ERa is regulated by transcription of its gene
estrogen receptor 1 (esr1) and by proteasome-dependent
degradation of the ERa protein (24). Primarily, ERa acts as a
transcription factor on estrogen-responsive element (ERE)-
containing genes by directly binding to its recognition
sequence. It is also possible that ERa binds indirectly to DNA
by tethering to other transcription factors, such as activating
protein-1 (AP-1) (25, 26). Two trans-activation domains,
transactivation function (AF)-1 and AF-2, allow ERa to
interact with the transcriptional machinery, whereby AF-2
mediates estrogen-dependent ERa transcriptional activity (27).
Two splice variants of ERa, ERa46 and ERa36, exist, whereby
ERa46 does not contain the AF-1 domain and ERa36 lacks both
transactivation domains.

The ERa protein can be phosphorylated at many sites, which
has an impact on its activity (27). Particularly important are
phosphorylations at Ser-118 and Ser-167 in the AF-1 domain.
These modifications, which promote ligand-dependent as well as
ligand-independent transcriptional activities of ERa, affect the
interaction of ERa with transcriptional co-factors, such as CREB
(cAMP regulatory element binding protein)-binding protein
(CBP) or steroid receptor co-activator (SRC). Phosphorylation
at these sites can be triggered by receptor tyrosine kinases (RTKs)
Frontiers in Oncology | www.frontiersin.org 2
through the PI3K/AKT/mTOR/p70S6K and the Ras/Raf/MEK1/
ERK1/2 pathways.

Besides genomic activities, non-genomic activities of ERa
have been documented, which leads to the activation of the
PI3K/AKT/mTOR/p70S6K and the Ras/Raf/MEK1/ERK1/2
pathways (27). These activities may involve interactions of
ERa with PI3K and the non-receptor tyrosine kinase c-Src.

Role of ERa in Endocrine Resistance
Given that ERa is the key transcriptional driver in ERa-positive
BC cells, it is not surprising that ERa inhibitors have a
tremendous effect on transcription. Exposure of MCF-7 cells to
anti-estrogens leads to altered expression of approximately two-
thirds of 1.8 x 104 studied genes (28). Though TAM or FULV
induce similar changes in gene expression, it takes different
strategies to overcome the inhibitory actions of the two anti-
estrogens. In the presence of TAM, ERa can still be active in an
estrogen-independent manner allowing ERa-based escape
mechanisms. Indeed, one study showed that ERa was
transcriptionally active in approximately three quarters of BC
specimens from patients who relapsed on TAM (29). ERa-based
escape mechanisms in TAM resistance include phosphorylation
of the ERa protein, overexpression of ERa co-activators, such as
SRC-1, a switch to AP-1-responsive gene activation and a shift
from genomic to non-genomic ERa activities (25, 30).
Nevertheless, as shown with MCF-7 cells, TAM resistance
coincides with an altered chromatin organization (31). In
addition, hundreds of genes are differently expressed in
tamoxifen resistant (TAM-R) cells as compared to estrogen-
treated parental cells.

Like TAM resistance, resistance to AI often occurs with the
ERa protein remaining active. A frequent escape mechanism
involves a mutation in the AF-2 domain allowing constitutive
ERa activation in the absence of estrogen (16, 18).

As pure ERa antagonists, SERDs block ERa activity
completely (10), requiring cells to find escape routes
independent of ERa usage. In fact, in clinical samples, FULV
resistance is associated with decreased ERa pathway activity
(32). Also, in contrast to TAM-R MCF-7 cells, fulvestrant
resistant (FULV-R) MCF-7 cells show almost no response of
ERa-regulated genes to estrogen (33). Furthermore, TAM-R
sublines are usually sensitive to FULV (34). Nevertheless, in
some cases, TAM resistance may be accompanied by FULV
resistance (34) suggesting that TAM resistance can also be
achieved by ERa-independent mechanisms.

Pre-existing vs. Acquired Endocrine
Resistance in Established BC Cell Lines
Drug resistance can either happen when cells in the tumor pre-
exist that are intrinsically insensitive to the drug or when cells
acquire resistance during treatment. Given the heterogenous
nature of tumors (35, 36), it is not unlikely that drug-resistant
cell clones have spontaneously developed during clonal evolution
(37) without having been challenged by a particular drug. Such
pre-existing drug-resistant clones would be expected to allow the
cancer to rapidly progress under treatment pressure. In fact, a
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study on patients with ERa-positive advanced BC treated with
FULV and the CDK4/6 inhibitor palbociclib revealed that
cancers with pre-existing escape mutations reduced
progression free-survival significantly and showed “no need” to
develop additional escape mutations (38).

Most of our knowledge on mechanisms underlying anti-
estrogen resistance has come from studies with established BC
lines, predominantly MCF-7, T47D and ZR75-1. These cell lines
have been established from pleural effusions of metastatic BC
patients (39). Their ERa chromatin binding profiles overlap with
those of primary BCs with poor outcome confirming the
aggressive nature of these cell lines (40). Numerous studies
demonstrated that the MCF-7 cell line is a heterogenous
population (41–45), which, when challenged by anti-estrogens,
form multiple FULV-R and TAM-R clones, all containing the
same DNA aberrations (46). This suggests that the resistant
clones all derived from one subpopulation of cells that pre-
existed in the MCF-7 cell line (46). It would explain why FULV-
R clones appear rapidly (within a couple of weeks) when MCF-7
cells are exposed to FULV (45). Importantly, at the time when
MCF-7 or other commonly used BC lines were established,
endocrine therapy was not available (40). Hence, it is likely
that established BC cell lines contain cells that spontaneously
became endocrine resistant in the absence of endocrine
treatment before the tumor cells have been collected from the
patient decades ago. This should be taken into consideration
when interpreting the results obtained in resistance studies with
established BC cell lines.

Current Targets for Therapy in Endocrine
Resistance
The PI3K/AKT/mTOR pathway has become a major focus in
ENDO-R research and has stimulated the development of drugs
that target this pathway (47, 48). PI3K and mTOR inhibitors
have been found to be effective drugs to treat patients with an
endocrine resistant BC (49, 50). More recently, CDK4 and CDK6
have been shown to be appropriate druggable targets in ENDO-R
(17, 51). Combinatorial treatments with drugs directed to the
PI3K/AKT/mTOR pathway and to CDK4/6 are discussed to
further improve treatment efficacy (52).

Activation of the PI3K/AKT/mTOR pathway in ENDO-R
can occur in different ways and most often involves RTKs,
including epidermal growth factor receptor (EGFR), Her2, Her3,
Her4, fibroblast growth factor receptor (FGFR), insulin-like
growth factor receptor (IGF1R) and insulin receptor (IR)
(Figure 1). Other ways are a gain-of-function mutation in the
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
alpha (pik3ca) gene coding for the PI3K catalytic component
p110a (53, 54) or a loss of phosphatase and tensin homolog
(PTEN) (55). RTKs are often deregulated in ENDO-R by
overexpression (EGFR, Her2, Her3, Her4) (34, 56–58), partly as
a result of gene amplifications (FGFR1) (59, 60), by mutations
(Her2) (61) or by higher availability of RTK ligands, such as
heregulin, IGF1 or insulin (Her3, Her4, IGF1R, IR) (62–64).

As the second major pathway that is activated by RTKs, the
Ras/Raf/MEK/ERK1/2 pathway also contributes to ENDO-R
Frontiers in Oncology | www.frontiersin.org 3
(Figure 1). Independent of RTKs, this pathway can also be
activated by mutations in Ras, Raf or MEK or by
downregulation of the Ras inhibitor neurofibromatosis type 1
(NF1) (61).

Dual CDK4/6 inhibitors, such as palbociclib (PD-0332991),
in combination with endocrine therapy are currently standard of
care for advanced ERa-positive breast cancer (51, 65–68).
Activation of CDK4/6 requires physical interaction with their
co-factor cyclin D1 (69), whose level raises upon activation of
certain proteins, such as RTKs or ERa (70). High expression of
cyclin D1 is associated with poor prognosis in ERa-positive
breast cancer (71) and linked to an increased risk of relapse on
TAM (72). In FULV resistance, of the two CDKs particularly
CDK6 may play a role. Increased expression of CDK6 was
reported in FULV-treated MCF-7 cells (73, 74). Inhibition of
CDK6 suppressed growth of FULV-resistant MCF-7 cells. A
high CDK6 level in breast cancer of FULV-treated metastatic
patients was found to predict a worse outcome (74).

Deciphering the changes happening in the nucleus upon
acquisition of ENDO-R may result in the identification of
additional druggable factors in ENDO-R.
TRANSCRIPTION FACTORS

Sequence-specific transcription factors (TFs) are key drivers of
gene expression and can have activating or repressive functions.
Activating TFs induce gene transcription by binding to
promoters and/or enhancers followed by recruitments of co-
activators and RNA polymerase (75). Two major types of
activating TFs are distinguished: pioneer and settler TFs (76).
Pioneer TFs assist loading of settler TFs by initiating chromatin
accessibility (Chromatin Accessibility). Both types of TFs are
involved in ENDO-R (Figure 2). They may act as effectors of
signaling pathways involved in ENDO-R and/or may reprogram
cells from ERa-dependent to ER-independent gene expression.

AP-1
ATF2 and c-Jun are members of the AP-1 family of transcription
factors and often form heterodimers (77, 78). Impairment of
ERa activity can lead to a shift from ERE-dependent to AP-1-
dependent ERa-induced transcription, involving c-Jun (79).
Interestingly, c-Jun activity can be regulated by RTKs, partly
through the Ras/Raf/MEK/ERK1/2 and the PI3K/AKT signaling
pathways (80) linking c-Jun to RTK-induced ENDO-R. Another
study showed that silencing of ATF2 in FULV-R and TAM-R
MCF-7 sublines strongly decreased ERa-independent cellular
growth and concomitantly increased the level of ERa and the
expression of ERa-responsive genes (81). On the other hand,
ATF-2 and c-Jun can have opposite effects on genes. For
instance, while c-Jun represses, ATF-2 activates PTEN
transcription in BC cells, leading to opposing effects of the two
AP-1 members on AKT activity (82).

A screen in a chemical library resulted in the discovery of two
ATF-2 inhibitors, celastrol (CSL) and acetyl isogambogic acid
(AIGA), which both proved to be potent inhibitors of melanoma
September 2021 | Volume 11 | Article 736597
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growth (83). CSL, known as an anti-inflammatory drug, could
also be shown to counteract cis-platin resistance of non-small
cell lung cancer by inhibiting ATF-2 (84).
E74-Like Factor 5
Elf5, also known as epithelium-specific Ets transcription factor 2
(ESE2), a member of the E26-transformation-specific/E-twenty-
six-specific sequence (ETS) domain family of transcription
factors (85), plays a role in BC progression (86). Elf5 is highly
Frontiers in Oncology | www.frontiersin.org 4
expressed in basal-like BCs, while its expression in luminal BCs is
lower than in normal breast tissue (87). However, resistance of
MCF-7C cells to FULV and TAM coincides with an increase in
Elf5 expression. Ectopic expression of Elf5 in MCF-7 and T47D
cells was found to down-regulate ERa and FoxA1 levels and to
suppress the expression of ERa-driven genes. Additionally, it
induces a gene signature resembling that of basal-like BC cells. It
is thought that the Elf5-induced switch from a luminal to a basal-
like subtype may be one route for ERa-positive BC cells to escape
the growth-suppressing effects of anti-estrogens.
FIGURE 1 | Mechanisms that induce ENDO-R by deregulation of the PI3K/AKT/mTOR and/or Ras/Raf/MEK/ERK1/2 pathways, two pathways that not only
stimulate proliferation by raising cyclin D expression and thereby activating CDK4/6 but also promote survival. A common mechanism involves a higher activity of
certain RTKs. This includes higher activities of Her proteins, induced by higher availability of ligands, such as EGF or HRG, or by gain-of-function mutation (Her2).
FGFR1 is often amplified (amp) in ENDO-R and requires co-factors FGFR substrate 2 (FRS2) and phospholipase C-g; (PLC-g) to activate the two pathways. IR or
IGF1R may contribute to ENDO-R if activated by insulin or IGFs. Higher IGF availability can be achieved by reduced expression of IGF binding proteins (IGFBPs).
The expression of the IR/IGF1R co-factor insulin receptor substrate (IRS) may also play a role in ENDO-R. RTK-independent activation of PI3K/AKT/mTOR pathway
is commonly caused by a gain-of-function mutation of the gene pik3ca coding for p110a, which together with p85a forms the PI3Ka complex. Dysfunction of PTEN,
which prevents AKT activation by blocking the formation of phosphatidylinositol-3,4,5-trisphosphate (PIP3) is another way by which this pathway can be upregulated.
RTK-independent activation of the Ras/Raf/MEK/ERK1/2 pathway in ENDO-R include gain-of-function mutations in ras, raf or mek-encoding genes as well as
dysfunction of NF1, an inhibitor of Ras. Arrows indicate positive, T-shaped symbols negative effects. A green or red star denotes a gain-of function or a loss-of-
function mutation/deletion, respectively.
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FIGURE 2 | Nuclear proteins involved in ENDO-R. (A) Blockage of ERa function by FULV or TAM causes ARID1A to bind to FoxA1 leading to transcriptional
inhibition of ERa-driven genes by recruitment of HDAC1. Dysfunctional ARID1A leads to higher abundance of acetylated histone 4 (acH4) and recruitment of BRD4,
able to active transcription despite the presence of anti-estrogens. (B) ENDO-R often coincides with DNMT-mediated DNA methylation of ERa-driven genes at
promoters and/or enhancers, resulting in blockage of ERa binding to these sites. (C) Acquisition of ENDO-R by transcriptionally re-programming cells. YB-1
suppresses ERa activity and upregulates the expression of Her2 and EGFR leading to a Her2-driven transcriptional pattern. Elf-5 inhibits the expression of ERa and
FoxA1 and fosters a transcriptional pattern typically seen in basal-like breast cancer. (D) Hypoxia promotes ENDO-R by activating HIFs. FoxA1-regulated HIF-2a
stimulates the transcription of EGFR and SNAT2, the latter being a transmembrane transporter and sensor of amino acids. Anti-estrogen resistant cells may use
SNAT2-imported glutamine as a major carbohydrate source to maintain metabolism. (E) Independent of ERa, FoxA1 can stimulate the transcription of AGR2 and, in
cooperation with GRHL2, the transcription of LYPDR3. AGR2 can cause the cyclin D1 synthesis to rise. FoxA1, GRHL2, LYPDR3 and AGR2 may act in concert to
induce ENDO-R. (F) Members of the NFкB/Iк;B family may be involved in ENDO-R. NFкB supports ENDO-R by stimulating cyclin D1 expression and by inhibiting
apoptosis. Bcl-3, whose expression in BCs is induced by MSC- and CAF-secreted factors, causes higher expression of proliferation-stimulatory c-Myc and anti-
apoptotic stem cell factor Sox2 and blocks proliferation-inhibitory KLHL4. (G) Twist and ZEB1 can enhance CSC activity by inducing EMT. Additionally, Twist and
ZEB1 can suppress ERa expression by recruiting DNMT to the esr1 promoter. ERa may limit CSC activity by suppressing the transcription of Notch4. One way
involves induced expression of the transcriptional repressor DAXX followed by DNMT1-dependent methylation, another down-regulated abundance of Notch1-
derived NICD1, a positive regulator of Notch4 transcription. Green and red ovals indicate proteins that promote or inhibit anti-estrogen resistance, respectively.
Green arrows indicate a positive, red T-shaped symbols a blocking effect. Red circles denote CpG methylations.
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Estrogen-Related Receptor-a
ERRa is an orphan nuclear receptor that shows a high homology
to ERa in the DNA binding domain, potentially allowing ERRa
to activate ERa-target genes in the absence of estrogen (88).
Higher levels of ERRa and lower levels of ERa were found in BC
specimens from patients who relapsed on TAM compared to BC
specimens from untreated patients (29). Furthermore, in TAM-R
and FULV-R MCF-7 cells, ERRa expression is increased, while
silencing of ERRa has a stronger inhibitory effect on growth of
resistant sublines than it does on the growth of the parental cell
line. Moreover, high ERRa expression predicts poor prognosis
for TAM-treated patients (29) (Table 1).

The potential role of ERRa in diabetes has encouraged the
development of ERRa inhibitors (102). Specific ERRa-targeted
drugs have been generated by preventing the recruitment of the
co-activator SRC to the ERRa protein. These drugs were proven
to have little effects on ERRa relatives ERRb and ERRg, did not
influence ERa activity and were well tolerated when
administered to rats. Such inhibitors were also shown to act
Frontiers in Oncology | www.frontiersin.org 6
anti-proliferatively on breast cancer cells in vitro and in vivo
(103). They may be potentially useful for treating ERRa-induced
ENDO-R.

Forkhead Box Protein A1
Expression of FoxA1 correlates with ERa expression in primary
ERa-positive BCs (104). As a pioneer TF, FoxA1 facilitates ERa
binding to promoters and enhancers and cooperates with ERa to
drive ERa-dependent transcription (105). Most of the ERa
binding takes place outside of proximal promoters (106),
coinciding with enhanced gene looping allowing recruitment of
distal regulatory transcriptional machinery (31). Silencing of
FoxA1 results in failure of estrogen to stimulate growth
of MCF-7 or ZR75-1 cells, confirming the essential role of
FoxA1 in ERa function (105).

Overexpressionof FoxA1 leads to transcriptional reprogramming
mainly based on higher FoxA1 occupation of so-called super
enhancers (107). Super enhancers are clusters of enhancers densely
occupiedwith transcription factorsand located in thevicinityofgenes
TABLE 1 | Nuclear proteins linked to endocrine resistance and their impacts on clinical outcome in breast cancer.

Protein Cohort N (patients) Molecule
analyzed

Detection method
(s)

Prognosis Independent marker in
multivariate analysis?

Reference

ARID1A pat. w/primary BC 476 protein IHC high ARID1A ⇨ higher DFS
and OS (all BCs, lum A)

Yes, indicative for good outcome (89)

ARID1A pat. w/BC 1824 DNA mutational status mutant ARID1A ⇨ lower OS n.a. (28)
Bcl-3 pat. treated w/TAM only 229 mRNA KM-P (in silico) higher Bcl-3 ⇨ lower RFS n.a. (90)
DAXX pat. treated w/ET only or

received NST
742 (ET) 503
(NST)

mRNA KM-P (in silico) high DAXX ⇨ higher RFS
(ET), high/low DAXX⇨ same
RFS (NST)

n.a. (91)

ERRa pat. treated w/TAM 1. 239
2. dataset

GSE9893

1. protein
2. mRNA

1. IHC
2. MA (in silico)

high ERRa ⇨ lower OS Yes (mRNA and protein), indicative
for poor outcome of TAM-treated
pat.

(29)

FoxA1 pat. treated w/TAM only
or w/o ET

615 (TAM) mRNA KM-P (in silico) high FoxA1 ⇨ lower RFS
(TAM) high/low FoxA1 ⇨
same RFS (no ET)

n.a. (92)
500 (no ET)

FoxA1 pat. treated w/ET only or
received NST

997 (TAM) protein IHC high FoxA1 ⇨ high RFS
(TAM and NST)

Yes, indicative for good survival of
pat. w/ERa-pos. BC

(93)

FoxM1 pat. w/BC 965 (lum A) mRNA KM-P (in silico) high FoxM1 ⇨ lower DMFS
(lum A, B) lower RFS (TAM)

n.a. (94)
430 (lum B)
809 (TAM
only)

H2A.Z pat. w/BC 517 protein IHC high H2A.Z ⇨ lower OS Yes, indicative for poor outcome (95)
HDAC pat. who relapsed on ET

(HDACi + exe vs.
placebo + exe)

365 none none HDACi ⇨ higher PFS n.a. (96)

Notch pat. w/ERa-pos. BC 1862 mRNA KM-P (in silico) high Notch activity ⇨ lower
RFS and DMFS

n.a. (97)

Notch pat. treated w/TAM or
received NST

669 (TAM) mRNA MA data sets
(in silico)

high Notch activity ⇨ lower
DMFS (TAM), lower OS (NST)

n.a. (98)
343 (NST)

Snail
Slug
Twist

pat. w/non-metastatic
BC

289 protein IHC high Snail, Slug or Twist ⇨
lower RFS

Yes (Snail and Twist combined),
indicative for poor survival of pat.
w/ERa-pos. BC

(99)

XBP1 pat. w/ERa-pos. BC 97 mRNA Q-RT-PCR high XBP1(U) ⇨ higher RFS
high XB1(S/U) ratio ⇨ lower
RFS

Yes, XB1(S/U) ratio indicates poor
survival of pat. w/ERa-pos. BC

(100)

YB-1 pat. w/newly diagnosed
invasive BC

4049 protein IHC high YB-1 ⇨ lower BCSS (all
BCs, TAM treatment)

Yes, indicative for poor outcome (101)
September 2021 | Volume 11 | Art
BC, breast cancer; BCSS, breast cancer-specific survival; DFS, disease-free survival; DMFS, distant metastasis-free survival; ET, endocrine treatment; HDACi, HDAC inhibitor; IHC,
immunohistochemistry; KM-P, Kaplan-Meier plotter (http://kmplot.com/analysis); MA, cDNA microarray; n.a., not analyzed; OS, overall survival; pat., patients; PFS, progression-free
survival; Q-RT-PCR, quantitative reverse transcription polymerase chain reaction; RFS, relapse-free survival; TAM, tamoxifen; NST, no systemic treatment.
icle 736597

http://kmplot.com/analysis
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dittmer Endocrine Resistance, Nuclear Mechanisms
important for cell identity (108). Ectopic expression of FoxA1
desensitizes MCF-7 cells to FULV and TAM (92). Furthermore,
FoxA1 was found to be overexpressed in TAM-R sublines derived
fromMCF-7 andBT474 (92), thoughTAMresistanceofMCF-7 cells
may also coincidewith a lowerFoxA1 level (109). FoxA1 is frequently
overexpressed in primary BC, which happens more often in luminal
B than luminal A tumors (92).

There are contradicting results in terms of the predictive value
of FoxA1 overexpression for TAM-treated patients. While higher
FoxA1 mRNA levels correlated with poor survival (92), FoxA1
protein overexpression was associated with favorable outcome
(93). In 3.7% of primary BCs and even in 7% of lobular BC the
FoxA1 gene is mutated (110). These mutations were found to be
associated with higher FoxA1 expression and activity.

Among the genes targeted by FoxA1 is anterior gradient 2
(AGR2), the human homologue of XAG-2, a Xenopus laevis
protein playing a potential role in neural development (111).
AGR2 is a protein disulfide isomerase and involved in protein
maturation control in the endoplasmic reticulum (112). In
murine mammapoiesis, AGR2 regulates epithelial proliferation
and lobuloalveolar development (113). AGR2 is able to
upregulate the EGFR ligand amphiregulin (114) and the
expression of cyclin D1 (115), being consistent with the
finding that, in primary BC, the level of cyclin D1 correlates
with that of AGR2 (116).

As shown with MCF-7 cells, AGR2 is important for ERa-
driven proliferation (112, 116–120). AGR2-overexpressing
MCF-7 cells show a delay in FULV-induced ERa degradation,
likely caused by physical interaction of the AGR2 with the ERa
protein (121). Silencing of AGR2 increased the sensitivity of
ZR75-1 and T47D cells to FULV and TAM, reduced c-Src kinase
activity and decreased the level of the anti-apoptotic protein
survivin (115). In TAM-R MCF-7 cells, AGR2 is highly
expressed while being mainly regulated by FoxA1
independently of ERa (117). If secreted, AGR2 can bind to the
membrane receptor LY6/PLAUR domain containing 3 (LYPD3),
whose expression is regulated by FoxA1 in cooperation with the
transcription factor grainyhead like transcription factor 2
(GRHL2) (122). There is evidence that AGR2, LYPD3, GRHL2
and FoxA1 act together to foster ENDO-R.

Higher AGR2 expression is associated with unfavorable
prognosis in BC (117). This holds true also for ERa-positive
BC (116), where AGR2 is more abundant (112, 123).
Furthermore, higher AGR2 expression predicts a weaker
response to TAM in primary BC (116, 122).

Antibodies against AGR2 and LYPD3 have been found to be
effective to suppress growth of TAM-R breast cancer cells in mice
(122). Additionally, humanized anti-AGR2 and anti-LYPD3
antibodies are in development. In a pre-clinical trial, an anti-
LYPD3 antibody-auristatin conjugate (BAY 1129980) is tested
for treatment of LYPD3-expressing non–small cell lung
cancer (124).

FoxM1
The FoxM1 gene is transcriptionally regulated by ERa and is
important for ERa-driven cellular growth (125). Accordingly,
FULV and TAM reduce FoxM1 expression. However, long-term
Frontiers in Oncology | www.frontiersin.org 7
treatment with TAM increases FoxM1 expression in MCF-7 cells
(126), while FoxM1 depletion sensitizes TAM-R MCF-7 cells to
TAM (125). Among the genes upregulated by FoxM1 are cyclin
D1 and ATP-binding cassette super-family G member 2
(ABCG2) (125, 126). ABCG2, a transporter protein that
pumps drugs out of the cell (127), was found to contribute to
anti-estrogen resistance (126). Many genes, including ABCG2,
require active ERK2 for FoxM1-dependent transcription linking
FoxM1 transcriptional activity to the Ras/Raf/MEK/ERK1/2
pathway. FoxM1 may also be connected to the PI3K/AKT
pathway, as overexpression of activated AKT can increase
FoxM1 expression (128).

FoxM1 may be suitable as a predictive marker in ENDO-R.
Overexpression of FoxM1 in ERa-positive breast cancer was
found to correlate with worse prognosis of TAM-treated patients
(94, 126). Interestingly, a gene signature linked to the protein 14-
3-3z, a FoxM1 regulator, is also associated with unfavorable
prognosis of TAM-treated patients (129) suggesting that a 14-3-
3z-FoxM1 axis can drive ENDO-R.

FoxM1 might be targeted through 14-3-3z, whose activity can
be inhibited by small molecules, such as FOBISIN101, or by the
peptide inhibitor R18 (130). R18 was found to strongly support
the apoptotic effect of TAM on MCF-7 cells (131).

Hypoxia-Inducible Factor 1/2a
Hypoxia stabilizes HIF-1a and HIF-2a proteins allowing them
to initiate transcription of numerous genes engaged to ensure
survival under hypoxic conditions (132). In cancer, also non-
physiological activation of these transcription factors occur
(133). HIF-1a and HIF-2a are involved in tumor progression
(134). Among others, they promote metastasis and cancer stem
cell activity (Cancer Stem Cells).

Overexpression of HIF-1a or HIF-2a was found to desensitize
MCF-7 cells to FULV (135, 136). Likewise, exposure to hypoxia
reduced ERa expression and FULV sensitivity of various ERa-
positive breast cancer cell lines (136, 137). Also, FULV-R MCF-7
cells showed higher expression of HIF-2a, but not HIF-1a, and
could be sensitized to FULV by inhibition of HIF activity.

One target of HIF-2a is EGFR, which has been linked to anti-
estrogen resistance. EGFR can also feedback on HIF-2a (136).
Furthermore, HIF-2a expression is driven by FoxA1 (107)
linking HIF-2a and EGFR to FoxA1.

Interestingly, HIF and ERa share many genes that they can
transcriptionally activate (138). Of these, sodium-dependent
neutral amino acid transporter 2 (SNAT2) has been linked to
FULV resistance. SNAT2 is a transmembrane transporter for
short chain neutral amino acids, such as glutamine, and an
amino acid sensor (139, 140). When overexpressed in MCF-7
cells, SNAT2 induces FULV resistance in vitro and in vivo (138).
FULV-R or TAM-R MCF-7 cells can use glutamine instead of
glucose for maintaining metabolism (141), which may play a role
in SNAT’s ability to induce FULV resistance. SNAT2
overexpression was associated with worse outcome in luminal
B-type, but not in luminal A-type cancers (138).

The activation of HIF also leads to a disconnect between
glycolysis and the tricarboxylic acid cycle, whose maintenance
becomes then dependent on glutamate (142). Hence, when HIF
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is activated, glutamine metabolismus is gaining importance in
cancer’s energy generation. Therefore, endocrine resistant breast
cancer with high HIF activity may be responsive to drugs
interfering with glutamine metabolism. A promising druggable
target is glutaminase (GLS) which converts glutamine to
glutamate (143). The GLS-inhibiting drug CB-839 is now
tested in clinical trials (142). In one study, it is combined with
paclitaxel to treat TNBCs.

Nuclear Factor kB
The NFкB pathway has been linked to oncogenesis (144) and to
ENDO-R (145). The NFкB family of transcription factors
include NF-kB1 (p50), NF-kB2 (p52), RelA (p65), RelB and c-
Rel, which homo- or heterodimerize to interact with specific
DNA binding sites. Upon phosphorylation of the NFкB regulator
IkB (inhibitor of NFкB) by IKK (IkB kinase) the NFкB protein is
released from the inhibitory complex and translocates to the
nucleus to regulate transcription (146).

Being a strong activator of cyclin D1 synthesis (22), NFкB
may replace ERa in stimulating proliferation when ERa activity
is impaired. In a number of FULV-R MCF-7 sublines, increased
NFкB (p65, RelB) activity has been noted, whose inhibition
resulted in growth-suppressive effects (147–150). NFкB has
also been found to prevent apoptosis of FULV-R MCF-7
cells (150).

In FULV resistance induced by mesenchymal stem/stromal
cells (MSCs) or carcinoma-associated fibroblasts (CAFs) the
atypical IkB protein B-cell lymphoma-3 (Bcl-3) plays a role,
whose expression is associated with poorer survival of TAM-
treated patients (90). Bcl-3 can activate NFкB-dependent
transcription by binding to transcriptionally repressive p50/p50
and p52/p52 homodimers and “convert” them to activators
(151). Bcl-3 is a growth-stimulatory factor in cancer cells (152,
153). It may partially act as such by upregulating the expression
of c-Myc (154, 155), a proliferation-inducing protein which may
contribute to ENDO-R (141, 156) and by stimulating the
expression of sex determining region Y-box 2 (Sox2) (157), a
stem cell protein involved in drug resistance (158). In addition,
Bcl-3 downregulates the expression of selenoprotein P, plasma 1
(SEPP1) and kelch-like 4 (KLHL4) (90), two genes whose mRNA
levels inversely correlate with relapse-free survival of TAM-
treated patients. Interest ingly, KLHL4 has recently
been reported to bind p53 to increase the expression of the cell
cycle inhibitor p21 (159). Hence, part of Bcl-3’s growth-
stimulatory activity may be based on its suppressive effect on
KLHL4 expression.

A number of drugs interfering with the NFкB pathway have
been developed (160). some of which are used in clinical trials
(161). For instance, the anti-alcoholismus drug disulfiram, which
also inhibits NFк;B activity, is tested in a phase II trial of patients
with a Her2-negative BC.

X-Box Binding Protein-1
Unfolded protein response (UPR) is activated in the event of
endoplasmic reticulum stress (162). UPR is important for
ENDO-R, as it is able to act as prosurvival mechanism by
eliminating endoplasmic reticulum stress and by re-installing
Frontiers in Oncology | www.frontiersin.org 8
metabolic homeostasis (163). XBP1 is a key transcription factor
involved in regulating UPR and is activated by UPR. Upon UPR
initiation, XBP1 is activated by unconventional cytoplasmic
splicing resulting in the conversion of XBP1 mRNA coding for
the unspliced XBP1(U) form to the mRNA encoding spliced
XBP1(S) form. In contrast to the XBP1(U) protein, the
longer XBP1(S) protein harbors a transactivation domain
allowing XBP1(S) to activate transcription through CREB
responsive elements. One important target gene of XBP1(S) is
esr1, the gene coding for ERa, another the gene encoding the
NFкB transcription factor p65/RelA (164). Overexpression of
XBP1 renders MCF-7 cells more resistant to FULV (165), while
its depletion reduces cell growth of FULV-R MCF-7 cells by
inducing apoptosis (164), likely caused by reduced expression of
XBP1-regulated anti-apoptotic protein Bcl-2 (165). Higher ratio
of XBP1(S)- to XBP1(U)-mRNA correlates with worse prognosis
of patients with ERa-positive BC, while XBP1(U) expression
alone predicts better survival (100).

The importance of UPR for drug resistance has planted the
idea of inducing an overload of ER stress (166). This could be
achieved by certain nanoparticles or by the proteasome inhibitor
bortezomib, the latter being already used to treat certain
haematopoietic cancers.

Y-Box Binding Protein 1
The transcription factor YB-1, a so-called cold-shock protein, is
involved in cellular stress responses (167). By binding to the ERa
protein and interfering with its activity (168, 169) and by
upregulating the expression of EGFR and Her2 (168, 170, 171),
YB-1 induces a shift from ERa- towards EGFR/Her2-driven
gene expression. In line with this, in primary BCs, YB1
expression correlates with the expression of EGFR and Her2
and inversely with that of ERa and PR (170, 172, 173). Higher
YB-1 expression is associated with poorer prognosis in BC
(174–178) and predicts a worse outcome of TAM-treated
patients (101).

Its role in ENDO-R is further supported by the finding that
ectopically expressed YB-1 desensitizes MCF-7 and T47D cells to
FULV and TAM (179, 180). Lapatinib counteracts the FULV-de-
sensitizing effect of YB-1 confirming the involvement of EGFR
and Her2. Silencing of YB-1 reverses the switch from ERa to
Her2 expression and re-sensitizes cells to anti-estrogens.
Interestingly, in FULV-R cells, YB-1 expression is not
upregulated, but its phosphorylation at Ser102 is increased
(180). P-Ser102 modified YB-1 has been shown to foster
anchorage-independent growth and radiation resistance of BC
cells (181, 182). Ser102 can be phosphorylated by AKT, p70S6K,
and ribosomal S6 kinase (p90RSK) (180). As shown with MCF-7
and ZR75-1 cells, FGFR2-dependent signaling increases the
interaction between YB-1 and ERa (169), suggesting also a
link between YB-1 and FGFR2.

Interference with YB-1 activity is possible by the novel
multikinase inhibitor TAS0612, which targets AKT, p70S6K,
and p90RSK and thereby prevents YB-1 phosphorylation at
Ser102 and its subsequent transport into the nucleus (180).
TAS0612 was shown to efficiently suppress growth of Fulv-R
BC cells in vitro and in vivo.
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CHROMATIN ACCESSIBILITY

Chromatin accessibility is defined by the ability of DNA-binding
factors to access chromatin DNA, which is highly compacted by
its interactions with histones and other chromatin-binding
factors (183). Chromatin accessibility is vital to active
transcription. Only 2-3% of the chromation contains accessible
DNA to which 90% of the TFs bind. Besides pioneer TFs,
chromatin remodeling complexes, such as switch mating type/
sucrose non-fermenting (SWI/SNF), histone modifiers, histone
readers and mediators play an important role in opening up
chromatin (75, 76). Post-transcriptional modifications (PTMs)
of histones play a key role in regulating chromatin accessibility
(184). PTMs are regulated by “writing” enzymes that add a
modification and “erasing” enzymes that remove a modification
(185). For instance, histone acetyl transferases (HATs), such as
CBP, acetylate histones, thereby promoting transcription, while
histone deacetylases (HDACs) deacetylate histones, thereby
repressing transcription. PTMs can be recognized by histone
readers. Bromodomain histone readers, such as bromodomain-
containing protein 4 (BRD4), recognize acetylated histones
(186). The bromodomain and extraterminal (BET) family of
bromodomain histone readers has recently gained attention as a
potential target in cancer therapy.

Long-term repression of transcription can be achieved by
DNA methylation, leaving an epigenetic mark that can be
transmitted to daughter cells. Abnormal de novo DNA
methylation in tumorigenesis prevent the activation of key
genes involved in terminal differentiation and thereby in
inhibition of proliferation (187).

Resistance to FULV, TAM or AI is accompanied by changes
in histone PTM and DNA methylation patterns indicating that
resistance to these drugs are accompanied by epigenetic
reprogramming (188–190).

AT-Rich Interaction Domain 1A
Among the genes required for the anti-proliferative effects of
FULV and TAM is ARID1A, a factor of the SWI/SNF complex
BAF (28). It is recruited by FoxA1 to FoxA1/ERa-regulated
genes and in turn attracts HDAC1, thereby blocking ERa-
depending transcription (Figure 2). Loss of ARID1A leads to
increased histone 4 acetylation and recruitment of BRD4 to these
genes. This allows that these genes can be transcribed even
though anti-estrogens are present, which eventually results in
FULV and TAM resistance (28).

Higher expression of ARID1A correlates with good prognosis
in BC (89). However, mutations in ARID1A gene, found in 5% of
primary and 12% of metastatic BCs, are associated with
unfavorable prognosis (28). BET-inhibitors, available for
therapy of cancer patients (191), may be useful tools to
counteract ENDO-R caused by ARID1A dysfunction.
HDACs
Based on their homology to yeast deacetylases, four classes of
human HDACs are distinguished: class I, IIa, IIb. III and class IV
Frontiers in Oncology | www.frontiersin.org
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(192). Originally identified as enzymes that deacetylase histones,
HDACs were later found also to modify non-histone proteins.
Class I HDACs (HDAC1, -2, -3, and -8) are primarily located in
the nucleus and engaged in histone deacetylation. By removing
acetyl group from lysines, histones become more positively
charged, which strengthens the interaction with the negatively
charged DNA. This leads to higher compaction of the chromatin,
which is then less available for transcription (185). HDACs are
typically recruited by transcriptional repressors.

In ERa-negative breast cancer cells, HDAC1 contributes to
the inactivation of the esr1 promoter (193). In addition,
independent of its histone-regulating function, HDAC1 binds
directly to the ERa protein, thereby further suppressing ERa
activity (194). Subsequently, suppression of HDAC activity by an
HDAC inhibitor (HDACi) results in re-occurrence of the ERa
protein in ERa-negative cells (195, 196). Furthermore, inhibition
of HDAC3 was shown to reduce the formation of FULV-RMCF-
7 colonies (197). Also, knock-down of HDAC2 was found to
strongly increase the sensitivity to TAM (198). Treatment of
TAM-R MCF-7 cells with HDACi was reported to induce
apoptosis as well as autophagy and to reduce cellular growth in
vitro and in vivo (199–201). It has been speculated that
alterations in the expression of ERa co-repressors, such as
nuclear co-repressor (NCoR) 1 and 2, may play a role in the
cytotoxic effect of HDACi on TAM-R BC cells, as these co-
repressors recruit HDACs (202). Loss of such co-repressors may
lead to an epigenetic imbalance of ERa-driven gene activity.
Importantly, NcoR1 is lost in more than half of all ERa-
positive BCs.

In a phase III trial, patients who relapsed on endocrine
therapy show a survival benefit when treated with the HDACi
tucidinostat in addition to the AI exemestane (96). Hence, there
is evidence that HDACs are involved in ENDO-R.

Non-Canonical Histone Variant H2A.Z
Histone variants replace canonical histones at certain places of
the chromatin, particularly in transcriptionally active regions of
the genome, and thereby locally influence epigenetics (203).
Histone variants may allow higher rates of nucleosome
turnover and may improve chromatin remodeling at active
promoters and enhancers.

There is growing evidence that cancer cells misuse histone
variants to foster their proliferative activity. In breast cancer, the
mRNA expression of the histone variant H2A.Z correlates with
the mRNA levels of cell cycle proteins, including cyclins (204).
H2A.Z may be of particular importance for ERa-driven breast
cancer (203). Of the two H2A.Z proteins, H2A.Z.1 and H2A.Z.2,
H2A.Z.1 is regulated by ERa through an ERE site in its gene
h2afz. Furthermore, H2A.Z is recruited to hypomethylated DNA
at ERa-active enhancers (205) and is important for estrogen-
dependent ERa activity at FoxA1/ERa binding sites (206).
Interestingly, ectoptic expression of H2A.Z was shown to
increase MCF-7 cell proliferation in the absence of estrogen or
in the presence of TAM suggesting a potential role of this protein
in ENDO-R (204). Overexpression of H2A.Z is associated with
poor outcome in BC (95).
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DNA Methylation
Compared to the MCF-7 parental cell line the DNA methylation
pattern is different in FULV-R MCF-7 sublines (33, 189, 207,
208). Both altered hyper- and hypomethylation of promoters and
enhancers were found to coincide with FULV resistance.
Hypermethylation of promoters in the anti-estrogen-resistant
sublines was linked to either a higher expression of DNA
methyltransferase (DNMT) 3B or DNMT1 (207, 209). In
FULV-R MCF-7 cells, promoter A of the esr1 gene is one of
the hypermethylated promoters giving rise to strongly reduced
ERa expression (208). In contrast, in FULV-R T47D cells, loss in
promoter A activity did not coincide with hypermethylation.
PTEN is another gene whose promoter can be highly methylated
in anti-estrogen resistant MCF-7 cells (209).

In TAM-R MCF-7 cells, hypermethylation was predominantly
found in enhancers (189). Of these enhancers ~20% were ERa-
responsive, of which approximately half contained FoxA1 binding
sites. Importantly, methylation in the ERa-responsive enhancers
significantly reduced ERa binding and the expression of the
enhancer-driven genes. A higher methylation status in these
enhancers was found to be linked to a higher risk of relapse on
TAM treatment. Methylation of the ERa-responsive enhancers
seems also to play a role in regulating ERa transcriptional activity
in the different BC subtypes. The highest median methylation of
ERa-responsive enhancers was found in the ERa-negative subtype,
whereas it was lowest in luminal A tumors (189).
CANCER STEM CELLS (CSC)

There is a great body of evidence that a minor population of cells
with stem-like activities, CSCs, are responsible for BC growth
initiation and progression (210, 211). To identify CSCs in BC,
several markers have been established, among them CD44,
CD24, CD133 and aldehyde dehydrogenase 1 (ALDH1) (212,
213). By being multidrug resistant (214) and by showing low
expression of ERa (98, 215) CSCs are highly likely to escape
endocrine treatment. If so, anti-estrogens, by eradicating non-
CSCs while leaving CSCs alive, would increase the proportion of
the CSC population. Indeed, treatment with FULV or TAM has
been found to enrich the CSC fraction in the MCF-7 cell line (98,
216). Also, high expression of ALDH1 is associated with failure
of ERa-positive BCs to respond to TAM (98). As shown with
MCF-7 cells in mouse xenografts, one subpopulation of CSCs
(CD133hi/CD44low) may be of particular importance in FULV-R
(217). In BC, higher expression of CD133 correlates with lower
response rates to chemotherapy (218) suggesting a general role of
CD133 in drug response.

CSC activity is maintained by a number of transcription-
regulating factors, such as cleaved fragments of the Notch
pathway, b-catenin activated by the Wnt pathway and epithelial-
to-mesenchymal transition (EMT)-inducing-TFs (211).

The Notch Pathway
The Notch signaling pathway, important for the maintenance of
CSC activity in BC (211), has been linked to ENDO-R (219, 220).
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To stimulate signaling through the Notch pathway, a Notch
receptor interacts with a ligand of the Delta-Serrate-Lag2 (DSL)
family, such as JAG1, presented by a neighboring cell. This leads
to a g-secretase-dependent cleavage of the Notch protein
resulting in the Notch fragment Notch intracellular domain
(NICD) (221, 222). Imported into the nucleus, NICD induces
transcription of genes, such as hairy and E(spl (Hes), engaged in
regulation of cell fate decisions.

In MCF-7 and T47D cells, Notch1 and Notch4 activities are
negatively regulated by estrogen-activated ERa (91, 223). The
ERa-dependent repression of the notch4 gene involves the
transcriptional repressor death domain associated factor 6
(DAXX), a protein stabilized by ERa. In turn, DAXX recruits
DNMT1 to the notch4 promoter leading to DNA methylation.
Besides Notch4, DAXX also down-regulates other stemness-
relevant genes, including ALDH1A1, thereby causing the
tumor-initiating capacity of BC cells to decline. Importantly,
higher expression of DAXX correlates with more favorable
outcome of patients who received endocrine treatment (91).

Consistent with the repressive effect of ERa on Notch activity,
inhibition of ERa in MCF-7 and T47D cells by FULV or TAM
increases Notch pathway activity, particularly the activities of
Notch 3, 4 and JAG1 (91, 97, 98, 224–226). Furthermore,
activation of the Notch pathway renders MCF-7 cells resistant
to TAM, which coincides with higher NICD levels of Notch1, 3
and 4 (224). Moreover, higher Notch activity predicts worse
outcome in ERa-positive BCs (97, 98).

The link between the ERa and Notch pathways may be more
complex. One study shows that Notch1 and JAG1 are involved in
ERa expression (227) and that silencing of either protein
resulted in a loss of luminal marker genes and a gain in basal-
like marker genes. Another study suggested an ERa-driven
cross-talk between non-CSCs and CD44+/Epcam+/CD24-

-CSCs, by which the Notch pathway is activated to increase the
CSC population (228).

Inhibitors of the Notch pathways, such as g-secretase
inhibitors, are tested in breast cancer trials (220) and may be
suitable tools to treat Notch-dependent ENDO-R.

The Wnt Pathway
The Wnt pathway is an important pathway in mammopoiesis,
involved in mammary stem cell regulation and cell fate decisions
(229). Its deregulation can lead to BC. In the canonical Wnt
pathway, a Wnt ligand interacts with the Wnt receptor Frizzled,
which in concert with its co-receptor low-density lipoprotein
receptor-related (LRP) leads to stabilization of the protein b-
catenin in the cytoplasm (230). Translocated to the nucleus, this
key effector of the Wnt pathway drives transcription by
interacting with the transcription factor T cell factor/lymphoid
enhancer-binding factor. Among the target genes are the EMT-
TFs Twist and Slug. Through a different pathway Wnt/Frizzled
interaction leads to increased ATF-2/c-Jun activity (230), two
factors of the AP-1 family discussed to be involved in ENDO-R
(AP-1).

In FULV-R and TAM-R MCF-7 sublines, expression of Wnt
pathway components, including b-catenin, are increased (33).
Also, overexpression of b-catenin in MCF-7 cells decreased their
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sensitivity to FULV (231). Higher b-catenin cytosolic and/or
nuclear abundance have been linked to poor survival in BC
(232). Since this was found for all BC subtypes, it may simply
reflect a higher degree of CSC activity.

EMT-TFs
EMT is an essential process in embryonal development and wound
healing allowing stationary cells to switch to a migrating phenotype
(233). This is caused by a set of EMT-TFs, such as Twist, Slug and
zinc-finger E-box binding homeobox 1 (ZEB1). EMT can bestow
cancer cells stem cell features and convert them to CD44+/CD24-

CSCs (234). EMT may not lead to a fully formed mesenchymal
phenotype, but may give rise to intermediate states, now called
quasi-mesenchymal phenotypes (235). Quasi-mesenchymal CSCs
may be of particular importance for cancer progression.

Overexpressed in MCF-7 and T47D cells, Twist was shown to
bind to the esr1 promoter and to inhibit ERa expression, leading
to estrogen-independent proliferation and FULV and TAM
resistance (236). Twist-induced suppression of esr1
transcription coincided with DNA methylation, caused by the
Twist-recruited DNMT3B. Like Twist, ZEB1 induces esr1
promoter hypermethylation and ENDO-R (237), while ZEB1
downregulation increases FULV sensitivity (238). In FULV-R
and TAM-R MCF-7 sublines, primarily Slug was found to be
overexpressed (239).

Clinically, higher expression of Twist, Snail or Slug was found
to be associated with a higher probability to relapse in ERa-
positive BCs (99). Twist and Snail combined were even more
powerful in predicting the risk of relapse than each protein alone.
However, it remains unclear whether the link between EMT-TF
expression and poor clinical outcome is based on the down-
modulatory effects of EMT-TFs on ERa signaling or on their
ability to promote cellular migration.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Currently, the PI3K/AKT/mTOR pathway and CDK4/6 are the
prime targets to manage endocrine resistance. However,
inhibitors against these targets may fail. For instance, ENDO-R
resulting from Her2 mutations or FGFR1 amplification are also
resistant to the CDK4/6 inhibitor palbociclib (60, 240). Hence,
there is a need for a list of biomarkers predicting the responses to
the currently used inhibitors. Unraveling the nuclear
mechanisms involved in ENDO-R may lead to the discovery of
additional biomarkers which may help to optimize treatment of
endocrine resistant BCs.

Furthermore, by exploring the nuclear mechanisms that
allow escape from endocrine treatment new druggable targets
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may come to light. However, the diversity of nuclear
mechanisms leading to ENDO-R requires additional
diagnostics to clarify which nuclear changes are responsible
for the observed resistance. One such recently identified
promising target is the histone PTM reader BRD4 (28),
whose activity can be blocked by BET-inhibitors already
available for therapy of cancer patients (191). HDACi, also
available for treatment of cancers (192), may be an option to
overcome HDAC-dependent suppression of estrogen-driven
transcription (96).

Transcription factors are more difficult to target, as they
usually lack enzymatic activity. However, drugs can interfere
with these factors indirectly, for instance, by blocking enzymes
responsible for their activation or by inhibiting their
interactions with essential co-factors. Transcription factors
that are druggable through such an approach include YB-1,
NFкB, Notch and ERRa. YB-1 activity can be suppressed by
blocking the kinases that catalyze an essential activating
phosphorylation event (180). NFкB can be kept in an
inactivated state by IKK inhibitors or by the anti-
alcoholismus and anti-cancer drug disulfiram, which seems to
interfere with an essential proteolytic step in the NFкB pathway
(161). Notch activity can be blocked by g-secretase inhibitors,
which are already used in the clinic to treat cancers (241). As
the Notch pathway is also important for maintaining the CSC
population in BC, g-secretase inhibitors may also counteract
the rise of the CSC population during endocrine treatment.
ERRa inhibitors, developed to treat diabetes (102), interfere
with the interaction of ERRa with its co-factor SRC.

Transcriptional activities could also be controlled by
interfering with certain miRNAs. For instance, by blocking
miR221/222 b-catenin-dependent transcription FULV
resistance can be suppressed (231).

Thus, understanding the nuclear mechanisms involved in
ENDO-R may help to dissect those patients who benefit most
from treatment with PI3K/AKT/mTOR pathway and CDK4/6
inhibitors and, additionally, may allow the identification of new
druggable targets.
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