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Background: Patients with stage II to III breast cancer have a high recurrence rate. The
early detection of recurrent breast cancer remains a major unmet need. Circulating tumor
DNA (ctDNA) has been proven to be a marker of disease progression in metastatic breast
cancer. We aimed to evaluate the prognostic value of ctDNA in the setting of neoadjuvant
therapy (NAT).

Methods: Plasma was sampled at the initial diagnosis (defined as before NAT) and after
breast surgery and neoadjuvant therapy(defined as after NAT). We extracted ctDNA from
the plasma and performed deep sequencing of a target gene panel. ctDNA positivity was
marked by the detection of alterations, such as mutations and copy number variations.

Results: A total of 95 patients were enrolled in this study; 60 patients exhibited ctDNA
positivity before NAT, and 31 patients exhibited ctDNA positivity after NAT. A pathologic
complete response (pCR) was observed in 13 patients, including one ER(+)Her2(-) patient,
six Her2(+) patients and six triple-negative breast cancer (TNBC) patients. Among the
entire cohort, multivariate analysis showed that N3 classification and ctDNA positivity after
NAT were independent risk factors that predicted recurrence (N3, hazard ratio (HR) 3.34,
95% confidence interval (CI) 1.26 – 8.87, p = 0.016; ctDNA, HR 4.29, 95% CI 2.06 – 8.92,
p < 0.0001). The presence of ctDNA before NAT did not affect the rate of recurrence-free
survival. For patients with Her2(+) or TNBC, patients who did not achieve pCR were
associated with a trend of higher recurrence (p = 0.105). Advanced nodal status and
ctDNA positivity after NAT were significant risk factors for recurrence (N2 – 3, HR 3.753,
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95% CI 1.146 – 12.297, p = 0.029; ctDNA, HR 3.123, 95% CI 1.139 – 8.564, p = 0.027).
Two patients who achieved pCR had ctDNA positivity after NAT; one TNBC patient had
hepatic metastases six months after surgery, and one Her2(+) breast cancer patient had
brain metastasis 13 months after surgery.

Conclusions: This study suggested that the presence of ctDNA after NAT is a robust
marker for predicting relapse in stage II to III breast cancer patients.
Keywords: circulating tumor DNA, neoadjuvant therapy, breast cancer, recurrence, next-generation sequencing
INTRODUCTION

Although breast cancer prognosis has improved during the past
two decades, breast cancer-related death remains a major cause
of cancer-related mortality in women (1, 2). The main reason is
that a significant proportion of breast cancer patients develop
recurrence and distant metastases (3, 4). Once metastases occur,
breast cancer is treatable but no longer curable (5).

For breast cancer patients, early detection of recurrence
remains a major unmet need. In the neoadjuvant setting,
pathological complete response (pCR) is a favorable prognostic
marker in patients with Her2 (+) and triple-negative breast cancer
(TNBC) (6). However, some patients with pCR may still
experience recurrence or metastasis; on the other hand, the
absence of pCR does not necessarily correlate with recurrence
(6, 7). Recent studies have shown circulating tumor DNA
(ctDNA), which are circulating DNA fragments that carry
tumor-specific sequence alterations found in the cell-free
fraction of blood, to be a promising and sensitive tool for
targeted monitoring (8–12). The detection of resistance
mutations using ctDNA can also occur significantly earlier than
radiographic progression (13). In previous reports of metastatic
cancer patients, serial quantification of ctDNA allowed for
noninvasive assessment of therapeutic response and
understanding of resistance mechanisms (8, 11, 14, 15). For
patients with early-stage breast, lung and colon cancer, studies
reported that ctDNA in the plasma can be used to detect minimal
residual disease (16–18). Serial detection of ctDNA after surgery
and adjuvant chemotherapy of breast cancer could identify
recurrent disease earlier than clinical overt tumor presenting in
the radiologic images (19, 20). However, for breast cancer patients
receiving neoadjuvant therapy (NAT), the prognostic value of
ctDNA before and after NAT is uncertain. It is unknown whether
ctDNA or pCR has a more prognostic value for breast cancer
patients, either. To determine the prognostic value of ctDNA in
the context of NAT, we collected the patients’ plasma before and
after NAT and used next-generation sequencing (NGS)-based
deep sequencing to detect ctDNA and evaluated the impact of
ctDNA on disease recurrence.
DNA; CHIP, Clonal hematopoiesis of
ptor; Her2, Human epidermal growth
y; pCR, Pathologic complete response;
le-negative breast cancer.

2

METHODS

Patients and Sample Collection
Stage II or III breast cancer patients who received NAT were
enrolled in this study. The clinical and pathologic characteristics
were reviewed retrospectively from medical records. The
presence of estrogen receptors (ER), progesterone receptors
(PR), and Her2 were determined by immunohistochemical
staining. The ER or PR status was considered negative when
less than 1% of the tumor cells showed positive staining. For Her2
staining, a score of 0 or 1+ was considered negative; specimens
with a score of 2+ were further tested with fluorescence in situ
hybridization analysis. The tumor histological grade was defined
using the Nottingham combined histological grading system.
This study was approved by the institutional review board (IRB
number: 201704009RINC).

At the initial diagnosis (defined as before NAT), a 10-mL
sample of blood was collected and stored in an EDTA-containing
tube. Then, all patients were treated with NAT and received
breast surgery. After NAT and breast surgery (defined as after
NAT), another 10 mL of blood was sampled. Within three hours
of blood sampling, the plasma was extracted after centrifugation
at 1000× G for 10 minutes then stored at -80°C (21). Cell-free
DNA was extracted using a QIAamp Circulating Nucleic Acid
Kit (Qiagen, Germantown, MD, USA) according to the
manufacturer’s protocol.

Library Preparation and Next-Generation
Sequencing
The library was constructed using a QIAseq Targeted DNA
Panel with a customized gene list. The customized panel was
designed to amplify the coding regions of the following genes:
TP53, PIK3CA, Her2, GATA3, CDH1, PTEN, AKT1, ESR1,
S100A7-9, ZNF703, B2M, CCND1, GATA3 and c-MYC.
According to the manufacturer’s protocol, 10 ng of DNA was
digested briefly into small fragments by a fragmentation enzyme
at 32°C and 72°C. The DNA fragments were added to the QIAseq
IL-N7 adapters, followed by target enrichment polymerase chain
reaction (PCR) using the QIAGEN IL-Forward primer and the
targeted DNA Panel primers. Finally, the library was amplified
with universal PCR. The DNA library was then checked by
using an Agilent Chip High Sensitivity DNA kit. KAPA library
quantification kits were used to quantify the final concentration.
The final DNA library was sequenced with the following
November 2021 | Volume 11 | Article 736769
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Illumina platforms: Illumina MiSeq Reagent Kit v2, 2 x 150 bp
reads or Illumina NextSeq 550 system Mid-Output Kit, 2 x 150
bp reads.

Post-Sequencing Analysis
Previously, we have constructed an analytic pipeline of post‐
NGS bioinformatics (22). First, BWA software (version 0.5.9)
was used to align the raw sequencing data to the reference
human genome [Feb. 2009, GRCh37/hg19; SAMtools (version
0.1.18)]. Picard (version 1.54) was used to perform the
necessary data conversion, sorting, and indexing. GATK was
used for variant calling with the Mutect2 and VariantFiltration
parameters. Finally, ANNOVAR was used to annotate the
genetic variants. Pathogenic and likely pathogenic variants
were defined according to the American College of Medical
Genomics and Genetics (ACMG) guidelines (23). The presence
of ctDNA was determined by the presence of pathogenic and
likely pathogenic variants, which are also considered tumor
mutations. For variants of uncertain significance, if the
prevalence of the variants in the normal population was less
than 0.01 in a genomic database (1000 Genomics, ESP6500 and
ExAC) and predicted to be deleterious by computer software
(SIFT, PolyPhen2, and CADD), then they were classified as
“highly suspected deleterious”. The above filtering analyses
removes germline variants as much as possible (24); these
variants are highly suspected to originate from tumors, so the
detection of these variants could be considered indicative
of ctDNA.

Analysis of Copy Number Changes
Since theHer2, c-Myc, CCND1 and S100A genes can be amplified
in some breast cancer tumors, we decided to use copy number
variations (CNV) to indicate the presence of ctDNA (25–27).
Copy number variations were analyzed by OncoCNV (https://
github.com/BoevaLab/ONCOCNV) according to the authors’
instructions. The baseline control consisted of the ctDNA
BAM files of 14 healthy people. The ctDNA BAM files from
the breast cancer patients were compared to the BAM files from
the control population by using OncoCNV’s default cghseg
segmentation algorithm (28). The sequencing region of each
targeted gene was divided into several segments. When the mean
of all segments of each gene was significantly different from the
baseline, such as when the copy number predicted was greater
than three copies or fewer than one copy from the baseline, we
considered that to indicate a CNV alteration, which indicated the
presence of ctDNA.

Statistics
The chi-squared test and Fisher’s exact test were used to calculate
the significance of the variance between each group. Survival was
estimated by Kaplan-Meier analysis. Cox proportional hazards
regression analysis was used to estimate the hazards ratios of RFS
with a corresponding 95% confidence interval (CI) for various
factors. All p values are two-sided, and p-values less than 0.05
were considered statistically significant.
Frontiers in Oncology | www.frontiersin.org 3
RESULTS

Evaluation of Assay Performance
First, to confirm the accuracy of the NSG-based deep sequencing,
we checked whether this method could distinguish the existence
of low-abundance mutants from background errors arising from
the polymerase chain reaction (PCR) or sequencing process. We
constructed a TP53 mutant (NM_000546.6: c.844C>A) as a
reference sample; then we utilized this TP53 mutant with serial
concentrations of 100%, 10%, 1%, and 0.1% to test whether the
experimental method could detect these mutants at these
concentrations (Supplementary Methods). The results
demonstrated that the signal from the 0.1% mutant was
significantly higher than background errors (Supplementary
Figure S1A), suggesting that NGS testing accurately detected
mutants present at 0.1%. In addition, the mutation level could be
measured with a linear fashion (R2 = 0.9997, Supplementary
Figure S1B).

Second, in deep cell-free analyses, another source of variants
that makes it hard to distinguish cancer mutations is clonal
hematopoiesis of indeterminate potential (CHIP) (29–31). The
CHIP mutations mostly occur in the DNMT3A, TET2, PPM1D,
ASXL1 and TP53 genes (29), whereas pathogenic variants of breast
cancer were most prevalent in TP53, PIK3CA, MAP3KA1, CDH1,
and PTEN (32). Variants most likely to be indistinguishable from
CHIP were located in TP53. Twenty-two tumors from the pre-
neoadjuvant core biopsy tumors were available for DNA
extraction and sequencing (Supplementary Table S1). Among
them, 6 patients had TP53 variants, and their TP53 variants co-
existed in the ctDNA and DNA from tumor biopsies
(Supplementary Table S1 and Supplementary Figure S2),
suggesting the TP53 variants origin from breast cancer, not
CHIP mutations.

Patients
A total of 95 patients were enrolled in this study. The median age
was 50.0 years old. Forty-one patients had ER(+) Her2(-) breast
cancer, 29 patients had Her2(+) breast cancer, and 25 patients had
triple-negative breast cancer (TNBC). Before NAT, tumors with
T1, T2 and T3-4 size classifications were found in three, 54 and 38
patients of each population, respectively. Eighty-two patients had
positive axillary lymph nodes. According to standard clinical
practice, ER(+) Her2(-) breast cancer patients with large tumors
were treated with NAT. Out of the 95 patients, 77 patients received
anthracycline while 80 patients received taxane in their NAT
regimens. All Her2(+) patients received adjuvant anti-Her2 target
therapy (27 patients receiving trastuzumab, one another receiving
trastuzumab/pertuzumab and the other receiving trastuzumab-
DM1). After NAT, 13 patients achieved a pCR of their primary
breast tumors; 82 patients did not have pCR. Among the 13 pCR
patients, there was one ER(+) Her2(-), six Her2(+) and six TNBC
patients. The frequency of pCR was significantly higher in patients
with Her2(+) breast cancer or TNBC than ER(+)Her2(-) patients
(p = 0.002). CtDNA was detected in 60 patients before NAT and
31 patients after NAT. All of the clinical and pathologic
characteristics are shown in Table 1.
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Genetic Alterations in Tumor ctDNA
Among the 95 patients, 19 patients were found to have ctDNA
before and after NAT; 41 patients had ctDNA only before NAT,
12 patients had ctDNA only after NAT, and 23 patients had
ctDNA neither before nor after NAT (Supplementary Table S2).
The most common genetic variants were in the TP53 (n = 28),
followed by PIK3CA (n = 16), CDH1 (n = 15), and Her2 (n = 7)
genes. Eighteen patients had altered CNVs in their ctDNA,
including of AKT1, CCND1, CDH1, c-MYC, Her2, PIK3CA,
S100A , and ZNF703 , e i ther be fore or a f t e r NAT
(Supplementary Table S2 and Figure 1). Before NAT, Patient
#73 (Figure 1A) and Patient #24 (Figure 1B) exhibited copy
number gains of the S100A and Her2 genes in ctDNA,
respectively; after NAT, the copy numbers of these genes in
ctDNA returned to normal levels. Patient #3 (Figure 1C) had a
new copy loss of the PTEN gene after NAT. We observed gains of
Her2 and c-MYC in patient #27 (Figure 1D) before NAT that
were only partially resolved after NAT.
Frontiers in Oncology | www.frontiersin.org 4
Association Between ctDNA and Clinical
Characteristics
Patients who had ctDNA before NAT tended to have a larger
tumor size than those who did not have ctDNA before NAT (mean
5.0 cm vs. 4.3 cm, p = 0.104). However, the presence of ctDNA after
NAT did not correlate with the tumor size or LN numbers after
NAT. Although the difference was not statistically significant,
patients with pCR had a lower detection of ctDNA after NAT
than patients with no pCR (patients with pCR vs. absence of pCR:
November 2021 | Volume 11 | Article 736769
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FIGURE 1 | The CNV of four patients before and after NAT (A–D). The red dots
represent the CNV before NAT, and green dots represent the CNV after NAT.
TABLE 1 | Clinical and pathologic characteristics of enrolled patients stratified by
immunophenotypes.

All ER(+) Her2
(-)

ER(±) Her2
(+)

TNBC

Number 95 41 29 25
Age (mean ± SD) 50.0 ±

8.8
49.2 ± 7.8 49.3 ± 8.7 52.0 ±

10.2
T classification (before NAT)
T1 3 0 1 2
T2 54 19 16 19
T3-4 38 22 12 4
N classification (before NAT)
N-negative 13 4 6 3
N-positive 82 37 23 22
T classification (after NAT)
no tumor 13 1 6 6
T1 32 10 13 9
T2 29 16 6 7
T3-4 21 14 4 3
N classification (after NAT)
N0 34 7 16 11
N1 29 9 10 10
N2 22 17 2 3
N3 10 8 1 1
Response
pCR 13 1 6 6
absence of pCR 82 40 23 19
NAT regimen
Anthracycline 77 33 24 20
Taxane 80 29 29 22
Trastuzumab/pertuzumab 29 0 29 0
Presence of ctDNA
before NAT 60 33 15 12
after NAT 31 11 10 10
Adjuvant chemotherapy 30 18 3 9
anthracycline 15 8 3 4
taxane 15 10 0 5
Adjuvant anti-Her2 target
therapy*

29 0 29 0
anti-Her2 target therapy*: 27 patients receiving trastuzumab, one another receiving
trastuzumab/pertuzumab and the other receiving trastuzumab-DM1.
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15.4% vs. 35.4%, p = 0.132). Additionally, the presence of ctDNA
was not correlated with the immunophenotype of breast cancer.

Impact of Clinical Factors and
ctDNA on RFS
The median follow-up time of the entire cohort was 5.1 years,
and the 5-year recurrence-free survival (RFS) was 58% (95% CI
48.0 – 68.0%). For clinical factors, Kaplan-Meier analysis showed
that the residual tumor size after NAT and N classification after
NAT were prognostic factors for RFS; patients who achieved
pCR tended to have a better RFS than patients who did not
achieve pCR (Figures 2A–C and Table 2). On the other hand,
patients with ctDNA after NAT had a significantly inferior RFS
(p < 0.001, Figure 2D). Other factors, such as age, ctDNA
detection before NAT, immunophenotype, initial tumor size
before NAT and N classification before NAT and adjuvant
chemotherapy did not influence RFS. RFS was similar between
patients with and without TP53, PIK3CA and CDH1 mutations
(Table 2 and Supplementary Table S3).
Frontiers in Oncology | www.frontiersin.org 5
We then analyzed the clinical and pathologic characteristics
of patients with and without ctDNA after NAT, and no
difference was found between the two patient groups
(Supplementary Table S4). After incorporating the residual
tumor size, N classification after NAT, pCR and ctDNA after
NAT, multivariate analysis showed that an N3 classification and
ctDNA positivity after NAT were independent risk factors that
predicted tumor recurrence (N3, hazard ratio (HR) 3.352, 95%
CI 1.267 – 8.870, p = 0.015; ctDNA, HR 4.135, 95% CI 2.014 –
8.491, p < 0.0001). Other factors did not significantly impact
RFS (Table 2).

Next, we analyzed the 72 patients with detected ctDNA, either
before or after NAT. Patients with ctDNA positivity after NAT
had a significantly inferior RFS compared to those without
detectable ctDNA (Supplementary Figure S3, p<0.001). After
adjusting for tumor size (after NAT), N classification (after
NAT) and pCR, multivariate analysis with the Cox model
revealed that ctDNA positivity after NAT was the most
significant risk factor that predicted tumor recurrence (HR
A B

C D

FIGURE 2 | Kaplan-Meier analysis estimated the recurrence-free survival of the entire cohort according to (A) the tumor size after NAT (p = 0.021), (B) N classification
after NAT (p = 0.011), (C) pCR (p = 0.055) and (D) ctDNA after NAT (p < 0.001).
November 2021 | Volume 11 | Article 736769

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lin et al. ctDNA After NAT Predicting Recurrence
8.02, 95% CI 3.24 – 19.86, p < 0.0001) (Supplementary
Table S5).

The Impact of ctDNA on Disease
Recurrence in Different
Immunophenotypes of Breast Cancer
The median RFS of all the patients with ctDNA positivity after
NAT was 1.19 years. When stratified by the immunophenotypes,
ctDNA positivity after NAT was associated with a significantly
inferior RFS for ER(+) breast cancer or TNBC patients and a
trend of higher recurrence rates for patients with the Her2
subtype (Figures 3A–C). The median RFS of ER(+) breast
cancer, Her2 (+) breast cancer and TNBC patients with ctDNA
positivity after NAT were 0.90, 2.52 and 0.74 years, respectively.

The Impact of ctDNA on Disease
Recurrence in Patients With and
Without a pCR
For the entire cohort, the presence of ctDNA after NAT was a
significant risk factor associated with recurrence in both patients
who achieved and did not achieve pCR (Figures 3D, E, all p <
Frontiers in Oncology | www.frontiersin.org 6
0.001). Because pCR was previously reported as a surrogate
marker for survival in patients with Her2(+) and TNBC (6),
we analyzed these patient subgroups. Between the two patient
populations, pCR was related to a trend of improved survival
compared to absence of pCR (HR 3.328, 95% CI 0.777 – 14.243,
p = 0.105, Supplementary Table S6). Multivariate analysis
showed that advanced nodal status and ctDNA after NAT
were independently correlated with high risk (N2-3, HR 3.753,
95% CI 1.146–12.297, p = 0.029; ctDNA, HR 3.123, 95% CI.
1.139 – 8.564, p = 0.027), and pCR status did show a not
significant correlation with recurrence (Table 3). A potential
reason for this phenomenon is that pCR only represents the
therapeutic efficacy of local breast tumor and the ctDNA may
indicate that an occult lesion is present that is not effectively
treated with NAT. In our study, 13 patients achieved pCR after
NAT, and among those patients, two exhibited ctDNA positivity
after NAT. One TNBC patient (case #50) received neoadjuvant
docetaxel/epirubicin (four cycles) and achieved pCR for her
primary breast and axillary tumors. However, she had hepatic
metastases at 6 months after mastectomy (Supplementary
Figure S4). The other patient (case #5) had Her2-positive
TABLE 2 | Univariate and multivariate analysis of recurrence-free survival of the entire cohort.

variables univariate multivariate

HR lower upper P value HR lower upper P value

Age (>50 vs. <50) 0.962 00.525 1.763 .899
T classification (before NAT)
T1-2 1
T3-4 1.026 .553 1.903 0.936
N classification (before NAT)
N-negative 1
N-positive 2.266 0.700 7.336 0.172
T classification (after NAT)
no tumor 1 1
T1 2.536 0.568 11.333 0.223 1.963 0.333 11.575 0.456
T2 4.842 1.112 21.083 0.036 2.435 0.450 13.186 0.302
T3-4 4.158 0.929 18.604 0.062 2.338 0.488 11.202 0.288
N classification (after NAT)
N0 1 1
N1 0.953 0.401 2.263 0.914 1.378 .526 3.606 0.514
N2 1.750 0.798 3.838 0.163 1.418 .611 3.293 0.416
N3 3.055 1.246 7.487 0.015 3.352 1.267 8.870 0.015
Response
pCR 1 1
absence of pCR 3.656 0.883 15.134 0.074 2.230 0.468 10.623 0.314
Immunophenotype
ER/PR(+)Her2(-) 1
ER/PR(+)Her2(+) 0.611 0.284 1.314 0.207
TNBC 1.294 0.639 2.622 0.474
ctDNA
before NAT* 0.700 0.378 1.298 0.257
after NAT* 3.894 2.113 7.177 <0.001 4.135 2.014 8.491 <0.001
Adjuvant chemotherapy
No 1
Yes 1.141 0.601 2.169 0.686
Genes
TP53# 1.156 0.609 2.197 0.657
CDH1# 0.669 0.263 1.704 0.399
PIK3CA# 1.313 0.607 2.837 0.489
No
vember 2021 | V
olume 11 | Article
*The presence of ctDNA vs. nonpresence of ctDNA; #gene mutation vs. nonmutation.
736769
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breast cancer and received neoadjuvant docetaxel/trastuzumab
(four cycles) and epirubicin/cyclophosphamide (four cycles).
The pathology showed no residual tumors. Trastuzumab was
continuously maintained for one year. At the end of trastuzumab
Frontiers in Oncology | www.frontiersin.org 7
treatment (13 months after mastectomy), a cerebellar metastasis
was found. The other 11 patients who achieved a pCR did not
have ctDNA after NAT nor did they experience recurrence
or metastasis.
A B C

D E

FIGURE 3 | The prognostic impact of ctDNA after NAT in patients with (A) ER(+) breast cancer, (B) Her2(+) breast cancer and (C) TNBC. ctDNA after NAT predicted
RFS in (D) pCR and (E) patients who did not achieve pCR.
TABLE 3 | Multivariate analysis of recurrence-free survival in patients with Her2(+) breast cancer and TNBC.

Variables HR lower upper P value

T classification (after NAT)
no tumor 1
T1 0.909 0.167 4.952 0.912
T2 2.461 0.435 13.917 0.308
T3-4 4.082 0.756 22.038 0.102
N classification (after NAT)
N0 1
N1 1.845 .633 5.378 0.262
N2-3 3.753 1.146 12.297 0.029
Response
pCR 1
absence of pCR 4.082 0.756 22.038 0.102
Adjuvant chemotherapy
No 1
Yes 1.137 0.419 3.084 0.801
ctDNA after NAT
undetected 1
detected 3.123 1.139 8.564 0.027
No
vember 2021 | Volume 11 | Article
 736769

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lin et al. ctDNA After NAT Predicting Recurrence
DISCUSSION

Our data suggested that the presence of ctDNA after NAT is a
prognostic factor that predicts breast cancer recurrence after
mastectomy. Traditionally, the therapeutic response to NAT was
considered a marker for predicting prognosis (6). In our study,
multivariate analysis showed a greater predictive value for
ctDNA than the response of the primary breast tumor to NAT
treatment. Therefore, ctDNA seems more representative of the
therapeutic efficacy of primary and potential micrometastatic
tumors treated with NAT.

During the median 5.1-year follow-up, the overall positive
predictive value of ctDNA positivity after NAT for disease
relapse was 70.9%, which was higher than the predictive value
of 48.8% for relapse in patients who did not achieve pCR. After
stratifying patients into pCR and absence of pCR, ctDNA
positivity after NAT remained a significant risk factor for RFS
among the two patient groups (Figures 3D, E). Although
patients who did not achieve pCR usually had a significantly
inferior RFS than pCR patients, ctDNA negativity after NAT in
patients who did not achieve pCR was associated with a better
RFS (Figure 3E), compatible with previous findings that ctDNA
clearance associated with the improved survival in patients who
did not achieve pCR (33). In contrast, pCR after NAT was a
surrogate marker for predicting disease-free Her2(+) and TNBC
patients. However, in our cohort, two patients (one Her2(+) and
one TNBC) who achieved a pCR and exhibited ctDNA positivity
after NAT developed distal metastasis at six months and one
year, respectively. A possible reason is that the pCR was assessed
using only primary breast tumor detection without evaluating
systemic micrometastatic tumor cells. The patient who had
Her2-positive breast cancer and achieved a pCR after NAT
developed brain metastasis after trastuzumab maintenance
therapy. This was compatible with previous report that
trastuzumab was difficult to penetrate the blood-brain barrier
to treat brain micrometastatic tumor cells (34). However,
ctDNA positivity suggested that ctDNA could cross the
blood–brain barrier to be detected in the plasma (35). Thus,
ctDNA is more suitable than pCR for representing the overall
disease state and could be a robust marker for predicting the
survival rate.

Although patients with ctDNApositivity after NAT had inferior
RFS, the length of RFS varied among patients with different
immunophenotypes. Among patients with ctDNA positivity after
NAT, patients with Her2- positive breast cancer had a significantly
longer RFS than patients with TNBC and luminal breast cancers.
The maintenance of anti-Her2 antibody therapy and the potential
long-term preservation of antibody-dependent cellular cytotoxicity
may explain the risk attenuation and delayed relapse of Her2-
positive breast cancer patients (36). In this study, some patients
received adjuvant chemotherapy according to physician decision.
However, adjuvant chemotherapy did not influence the RFS in the
overall cohort (Table 2) or in each subtype of breast cancer
(Supplementary Table S3). For patients with detected ctDNA
after NAT, all twelve Her2-positive breast cancer patients received
postmastectomy adjuvant anti-Her2 therapy; one received
trastuzumab emtansine, another received trastuzumab plus
Frontiers in Oncology | www.frontiersin.org 8
pertuzumab, and the remaining patients received trastuzumab
for one year. For the eight TNBC patients, only one received
adjuvant chemotherapy. Out of the eleven patients with ER(+)
breast cancer, six received adjuvant chemotherapy, and all of
them received hormone therapy. Notably, the median RFS of
TNBC and ER(+) breast cancer patients was less than one year.
This result might suggest that current standard chemotherapy
and hormone therapy treatments were not effective for these
patients. CtDNA has the potential to identify actionable genetic
variants that provide sensitivity or resistance mechanisms for
chemotherapy and/or targeted therapy (37); this information can
be used to guide personalized therapy in the future (38).
Alternative adjuvant therapy options can be explored for
these patients.

The concordance between pCR and the clearance of ctDNA
was moderate. The ctDNA concentration usually decreases after
NAT (17, 39). In a previous report, the decrease in ctDNA levels
in patients who achieved a pCR was greater than that in those
who did not achieve a pCR (39). Similarly, our data revealed that
a lower proportion of patients who achieved a pCR exhibited
ctDNA positivity after NAT than that in patients who did not
achieve pCR (pCR vs. absence of pCR: 15.4% vs. 35.4%, p =
0.132). Among the 72 patients with ctDNA positivity (before and
after NAT), 81.0% of responders had a decrease in ctDNA
(defined as a tumor size reduction of more than 30% of the
original size) (40), whereas 58.9% of nonresponders had a
decrease in ctDNA concentrations (Pearson’s chi-squared, p =
0.088, Figures 4A, B).

One limitation to this study is the possibility that some
ctDNA mutations may have originated from CHIP mutations
(41). Although we observed a good concordance of genetic
variants between ctDNA and available pre-neoadjuvant biopsy
tumors, the possibility that some ctDNA mutations originated
from CHIP mutations could not be ruled out because we did not
have all of the biopsy tumors for sequencing. To reduce the
possibility of detecting CHIP mutations, first, we designed a
sequencing panel by selecting genes that are often mutated in
breast cancer, not in hematologic cells (32). This strategy
decreases the possibility of mixing the CHIP mutations into
breast cancer mutations. Second, we only considered pathogenic/
likely pathogenic or highly-suspicious deleterious variants as
proof of ctDNA positivity. These variants may have biological
implications for breast cancer. For example, PIK3CA H1047R is
a driver mutation in breast cancer (42), suggesting that it could
be a ctDNA specific to breast cancer. Third, we not only analyzed
the genetic variants but also the CNV. The amplification ofHer2,
S100A and CCND1 have biological significance in breast cancer
pathology (25, 43), and amplification of c-MYC is related to high-
grade malignancy (44). These CNVs are considered to be derived
from breast cancer. Thus, we can reduce the possibility to
contaminate CHIP mutations in the ctDNA.

The second limitation was that we only examined ctDNA
before and after NAT and did not perform longitudinal
monitoring; as a result, we were not able to detect late
recurrence. In our cohort, 42 patients had disease recurrence.
Out of those 42 patients, 22 exhibited ctDNA positivity after
NAT. The 22 patients with ctDNA positivity had a significantly
November 2021 | Volume 11 | Article 736769
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shorter time to recurrence than those with ctDNA negativity
(with ctDNA vs. without ctDNA: 1.31 vs. 2.64 years, p = 0.004,
Figure 4C). A single time point sample of ctDNA after NAT was
a significant predictor of only early recurrence. Longitudinally
tracking ctDNA may improve the predictive value for both early
and late recurrence (19, 20, 39).
CONCLUSIONS

We showed that ctDNA detection after NAT has great clinical
utility potential as a prognostic marker in patients with breast
cancer. CtDNA detection can identify and define a subset of
high-risk patients. The next step is to determine the type of
adjuvant therapy strategies that can effectively reduce recurrence.
Since actionable genetic variants can be detected by ctDNA,
further prospective trials should focus on incorporating ctDNA
detection and exploring how to guide patient treatment, which
could maximize the utility of ctDNA detection.
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