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Objectives: Both radiomics and deep learning methods have shown great promise in
predicting lesion malignancy in various image-based oncology studies. However, it is still
unclear which method to choose for a specific clinical problem given the access to the
same amount of training data. In this study, we try to compare the performance of a series
of carefully selected conventional radiomics methods, end-to-end deep learning models,
and deep-feature based radiomics pipelines for pulmonary nodule malignancy prediction
on an open database that consists of 1297 manually delineated lung nodules.

Methods: Conventional radiomics analysis was conducted by extracting standard
handcrafted features from target nodule images. Several end-to-end deep classifier
networks, including VGG, ResNet, DenseNet, and EfficientNet were employed to
identify lung nodule malignancy as well. In addition to the baseline implementations, we
also investigated the importance of feature selection and class balancing, as well as
separating the features learned in the nodule target region and the background/context
region. By pooling the radiomics and deep features together in a hybrid feature set, we
investigated the compatibility of these two sets with respect to malignancy prediction.

Results: The best baseline conventional radiomics model, deep learning model, and
deep-feature based radiomics model achieved AUROC values (mean ± standard
deviations) of 0.792 ± 0.025, 0.801 ± 0.018, and 0.817 ± 0.032, respectively through
5-fold cross-validation analyses. However, after trying out several optimization
techniques, such as feature selection and data balancing, as well as adding context
features, the corresponding best radiomics, end-to-end deep learning, and deep-feature
based models achieved AUROC values of 0.921 ± 0.010, 0.824 ± 0.021, and 0.936 ±
0.011, respectively. We achieved the best prediction accuracy from the hybrid feature set
(AUROC: 0.938 ± 0.010).
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Conclusion: The end-to-end deep-learning model outperforms conventional radiomics
out of the box without much fine-tuning. On the other hand, fine-tuning the models lead to
significant improvements in the prediction performance where the conventional and deep-
feature based radiomics models achieved comparable results. The hybrid radiomics
method seems to be the most promising model for lung nodule malignancy prediction in
this comparative study.
Keywords: lung nodule, benign-malignant classification, lung cancer prediction, radiomics, deep classifier
INTRODUCTION

Lung cancer is notoriously aggressive and accounts for the leading
cause of cancer-related death worldwide (1). Early diagnosis of
asymptomatic lung cancer plays a vital role in treatment planning
that can significantly improve the survival rate of lung cancer
patients (2). The National Lung Screening Trial (NLST), a large-
scale trial involvingmore than 50000 individuals, has reported that
screening with Low Dose Computed Tomography (LDCT) scans
will result in a 20% of reduction in lung cancer mortalities (3).
Most lung cancers emerge from small malignant pulmonary
nodules that refer to moderately well-marginated round
opacities with the largest diameter less than 3cm (4). Although
most solitary pulmonary nodules have benign causes, 30%–40% of
such nodules are malignant (5). In clinical practice, expert
radiologists visually examine the CT volumes on a slice-by-slice
basis and subjectively determine the likelihood of nodule
malignancy that often yields to relatively high inter/intra-
observer variability of the interpretations. Moreover, highly
similar visual characteristics shared among benign and
malignant pulmonary nodules make this manual assessment
task even more challenging (see Figure 1). Therefore, it would
be beneficial to develop Computer-Aided Diagnosis (CAD) tools
to capture latent characteristics of the pulmonary nodules in order
to assist the radiologist with the task of benign-malignant lung
nodule classification.

In the context of CAD tools, many semi/fully automatic
pulmonary nodule classification methods have been proposed
in the literature. Among all the recent proposed solutions,
radiomics analysis (6–10), and deep learning-based methods
(11–15) render the most promising results. Strictly speaking,
radiomics analysis aims at building predictive models based on
extracting handcrafted features from lung nodules. These
radiological image-based features are designed to quantify
the latent characteristics of the medical images that are
imperceptible to human eyes. On the other hand, deep
learning approaches such as Convolutional Neural Networks
(CNNs) are trained with an end-to-end scheme to automatically
translate the input images into corresponding class labels by
adaptively learning deep abstract features in the consecutive
convolutional layers.

It has been shown that factors such as nodules’ size and
heterogeneities in the intensity and textures of nodules are
strongly associated with nodule malignancy (16). Radiomic
features are often designed to capture such critical features
2

from the nodule structures. The extracted radiomic features
from lung nodules were employed to train learning algorithms
such as logistic regression (17), linear discriminant analysis (18),
random forests (19), and support vector machines (20) for
malignancy identification. It has been shown that radiomic
textural features are able to quantify the intra-tumor
heterogeneities that appeared in CT volumes (21). In this
context, several studies have investigated the ability of the
textural features such as Gray Level Co-occurrence Matrix
(GLCM), Gray Level Run Length Matrix (GLRLM), and Gray
Level Zone Length Matrix (GLZLM) to distinguish malignant
lung nodules from benign ones (17, 18, 20, 22). In addition,
shape-based features were employed to quantify the
morphological characteristics of lung nodules with irregular
appearance (23, 24). Although each of the radiomics family
can capture specific characteristics, their combination could
cover different nodule attributes, and several promising results
for lung cancer prediction have been reported (25–29).

Gaining from large-scale training image data, CNN models
provide a uniform framework for jointly learning the hierarchical
representative features extracted directly from the images and
classification weights (30). Numerous 2D and 3D CNN networks
have been developed for lung nodule classification tasks which
were trained with either cropped volumetric patches or 2D slices
extracted from multiple views (15, 31, 32). To conquer the
challenges of small-scale CT images and the small size of the
lung nodules, an Agile-CNN model was proposed based on a
hybrid setting of conventional AlexNet and LeNet networks and
achieved competitive classification performance (33). To further
improve the classification power, recent methods rely on
ensemble learning in which multiple different deep learning
models are developed, and their outcomes are integrated into a
single classification model (34). In this context, Xu et al. (14)
employed three shallow 3D networks trained with multi-scale
cropped CT volumes to preserve contextual information. By
further modifying the training procedure and objective function,
they achieved a malignancy prediction score of 0.94 in terms of
Area Under the Receiver Operating Characteristic Curve
(AUROC) in an unbalanced dataset. To make the learned deep
features interpretable, Lei et al. (15) developed a Soft Activation
Mapping (SAM) to enable the analysis of fine-grained lung
nodule features with a CNN model and then combined the
high-level deep features with SAM to improve the classification
accuracy to 0.99. Xie et al. (35) developed a semi-supervised
adversarial classification model that consists of an unsupervised
December 2021 | Volume 11 | Article 737368
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adversarial autoencoder network, a supervised classification
network, and learnable transition layers to integrate both
labeled and unlabeled CT volumes and achieved a classification
accuracy of 0.92.

Both deep learning and radiomics have shown great potential
to identify lung nodule malignancy in CT volumes and resulted
in comparable performance in different datasets. However, there
is a lack of conclusive evidence to support one type of method
being better than the other. Most of the previous studies were
done on relatively small datasets, which may not be considered a
fair comparison as it is known that deep-learning based methods
require a greater number of training images to achieve optimal
performance. Also, many of those studies were performed on
private datasets, which does not allow validation by other groups.
This study aims to present an objective comparison among a
series of carefully selected conventional radiomics methods, end-
to-end deep learning models, and deep-feature based radiomics
pipelines for pulmonary nodule malignancy prediction on an
open database that consists of 1297 manually delineated lung
nodules (both source code and annotation labels will be made
publicly available upon acceptation). In addition to the
prediction models, we also investigated the complementary
role of the context region of lung nodules. Finally, a hybrid
model was developed by pooling the extracted radiomic features
and learned deep features to assess their compatibility with
respect to nodule malignancy prediction. Finally, optimization
steps such as feature selection methods and balancing the class
labels were applied on radiomics, deep features, and their
combination to improve the discrimination power.
MATERIALS AND METHODS

The investigated models consist of three major components: a
radiomics module, a deep learning module, and a hybrid module.
Frontiers in Oncology | www.frontiersin.org 3
The radiomics module incorporates the radiomics analysis
starting with feature extraction, followed by feature
engineering steps, and finally, building predictive models. The
deep learning module consists of the development of a dual-
pathway CNN model to predict nodule malignancy by
simultaneously training nodule target and nodule context
images. The deep learning module was investigated thoroughly
in our previous research (36) on the same dataset; therefore, in
the current study, we adopt the results of already examined
models. Finally, the hybrid module represents the approach of
pooling the radiomic features and deep features together.

Experimental Data
The Kaggle Data Science Bowl 2017 (37) contains a total number
of 2101 clinical chest LDCT scans from which 1397, 198, and 506
subjects belong to the training, validation, and test sets,
respectively. The objective of this challenge was to
automatically predict lung cancer status; for that, each image
was labeled as “1” if the patient was diagnosed with lung cancer
within one year from the scan and “0” otherwise. The challenge
organizer provided only the target labels of the training set at the
patient level, and the validation/test labels are not accessible
anymore as the challenge platform is closed. It should be noted
that additional information, such as nodule segmentation masks,
associated clinical data, and laboratory examinations, was
not supplied.

In this study, out of 1397 training scans, 968 LDCT volumes
were manually inspected by an expert radiologist, which led to
the delineation of 1297 pulmonary nodules for further analyses.
In addition to the segmentation masks, image patches that best
cover each nodule context were cropped and extracted. For each
nodule, visual radiological features including “cavitation with
thick/thin wall”, “attached to the artery/fissure/pleura”,
“calcification or fat content” , “dragging the pleura” ,
“spiculation” as well as “size >3cm” were extracted. Figure 1 in
A B

FIGURE 1 | Illustration of (A) benign and (B) malignant pulmonary nodules in chest LDCT scans. The manually identified nodules are highlighted with yellow contours.
The examples show that benign and malignant pulmonary nodules present similar visual characteristics. The cropped patches around the nodules (context images)
provide the relative location of the nodules with respect to nearby structures.
December 2021 | Volume 11 | Article 737368

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Astaraki et al. Lung Nodule Malignancy Prediction
Supplementary Material indicates the distribution of the
studied nodules.

Image Pre-Processing
Prior to radiomic feature extraction, all the cropped patches were
preprocessed in three steps. First, original patches were
resampled isotropically to a unified inner plane spacing as
0.2mm3 using a bicubic interpolation function. Then the
intensity ranges were clamped to [-1000,500] in terms of
Hounsfield Units. A further step was applied only for deep
learning module analyses in which the image patch was
rescaled by zero-padding the original sizes into 128×128×128
voxels followed by intensity normalization in the range of [0,1].

Radiomics Analysis
We adopted the radiomics descriptors to quantify the geometric,
intensity, and textural characteristics of the nodules by extracting
a total number of 1334 3D descriptors using the standard
PyRadiomics package (38). Specifically, 14 geometric, 18 First-
Order Statistics (FOS), and 70 Second-Order Statistics (SOS)
features were extracted from the target nodules. In addition, FOS
and SOS features were also extracted from multi-scale
transformed nodules filtered with Wavelet and Laplacian of
Gaussians (38) (Table 1 in Supplementary Material). The
mentioned features were extracted from both target nodules
and context images to capture intra-nodule characteristics as
well as nodule context attributes (Figure 2- Radiomics Module).

As irrelevant or partially relevant features can adversely
impact the classification performance, and in order to
minimize the risk of overfitting, filter-based Feature Selection
(FS) methods, as well as a wrapper FS method, were employed. In
particular, filter-based FS algorithms include (1) Constant (CST):
removing constant features; (2) Correlation (Corr): removing
linearly related features; (3) Mutual Information (MI): removing
nonlinearly related features; (4) RELevance in Estimating
Features (RELIEF): estimating the quality of the features based
on how well the features can distinguish the subjects that are
close to each other; and (5) Least Absolute Shrinkage and
Selection Operator (LASSO): applying coefficients to the
features and shrink to zero those features which are less
predictive (39). On the other hand, Forward Feature Selection
(FFS) as a wrapper FS method was adopted to evaluate the
performance of the learning algorithms in different combinations
of feature subsets. In addition, Principal Component Analysis
(PCA) was employed as well to transform the high-dimensional
feature set into a lower dimension (26). The prediction power of
the selected features was then evaluated with 8 different learning
algorithms: Adaptive Boosting (Adab), Decision Tree (DT),
Random Forest (RF), K-Nearest Neighbor (KNN), Support
Vector Machines (SVM), Linear/Quadratic Discriminant
Analysis (LDA/QDA), as well as Naïve Bayesian (Table 1).

End-to-End Deep Learning Model
In our previous study on the same dataset (36), we proposed a
dual pathway network architecture to train both the nodule
target images and nodule context images simultaneously in a
unified network. This unified network consists of two
Frontiers in Oncology | www.frontiersin.org 4
convolutional pathways for representation learning, each
followed by a few dense layers and a shared final dense layer.
In other words, while the nodule target pathway is assumed to
mainly learn the association between the intra-nodule
representations and class labels, the role of the nodule context
pathway is primarily to learn the correlations between the
context information and the class labels. Therefore, having
concatenated the learned features from each of the pathways in
a last shared dense layer, the model is enforced to predict the
class labels by adaptively learning the intra- and context-nodules
attributes simultaneously. Different supervised models, including
VGG (40), ResNet (41), DenseNet (42), EfficientNet (43), and a
variational autoencoder (44) as an unsupervised model, were
employed for the convolutional backbones. Moreover, the
conventional single pathway models were trained with either
nodule target or nodule context images separately to extract
features from the corresponding regions. More details of the
studied method can be found in (36).

Deep Feature Extraction
In addition to end-to-end training of the deep networks, the
learned deep features from each network were extracted to train
a separate learning algorithm. In specific, for the dual pathway
models, 2048 deep features were extracted from the last but one
dense layer representing the target and context nodule attributes.
Moreover, with the same approach,1024 deep features were
extracted from the single pathway networks for each of the
nodule target and nodule context images. The extracted deep
features were then analyzed by different learning algorithms.
Experimentally, random forest was selected as the learning
algorithm to train the extracted deep features after feature
augmentation, as it consistently led to more stable results than
the other classifiers (36).

Nodule Classification
Radiomic features and deep features were used separately to
distinguish the benign nodules from malignant ones. In addition,
the same task was done by combining the extracted deep features
with radiomic features in a hybrid model. In particular, the
extracted radiomic features from target nodule images were
analyzed both independently and in combination with deep
features learned from the target nodule images. Similar
analyses were conducted by combining the features extracted
and learned from the context nodule images. Finally, to examine
how context and target nodule images would complement each
other, the prediction power of a combination of target nodule
features and context nodule features was investigated as well.

From 1297 studied lung nodules, 876 cases belong to the
benign group, and 421 nodules are labeled as malignant. Such an
unequal distribution of the class labels leads to a high bias toward
the majority class and, in turn, degrades the prediction power of
the learning algorithms and will result in poor prediction of the
minority class. To tackle this issue, we employed Synthetic
Minority Oversampling Technique (SMOTE) (45) to
synthesize new samples from the minority class. In specific,
SMOTE fits a hypercube among some instances in the feature
space of malignant nodules to interpolate new samples.
December 2021 | Volume 11 | Article 737368
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FIGURE 2 | Graphical demonstration of the study pipeline. To predict lung nodule malignancy, three modules were studied. In the CNN module (red color), deep
networks were trained with context and target nodule images separately and simultaneously. In the Radiomics module (blue color), handcrafted features were
extracted from both target and context nodule images to train the learning algorithms. In the hybrid module (green color), extracted radiomic features were combined
with learned deep features to form the hybrid sets.
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Balancing the dataset with SMOTE yields the generation of 455
new instances belong to the malignant nodule class, which
increased the total number of studied data to 1752. All the
analyses were performed with a 5-fold cross-validation fashion,
and the performance of the model was assessed by using the Area
Under the Receiver Operating Characteristic Curve (AUROC)
metric calculated as averages of corresponding cross-validation
folds. Finally, to test statistical significances between different
experiments, a pairwise AUROC comparison method proposed
by Delong et al. (46) was employed. Figure 2 shows a graphical
illustration to visualize the feature analysis workflow for all the
examined modules.
RESULTS

In this section, the performance of the radiomic features for lung
nodule malignancy prediction is presented and compared against
the prediction power of deep learning models. In addition, the
classification power of the hybrid feature pools is quantified
as well.

Handcrafted Radiomics
Radiomics analysis was performed by using 1334 3D quantitative
descriptors with and without feature selection methods over 8
Frontiers in Oncology | www.frontiersin.org 6
distinct learning algorithms. The analyses were conducted over the
original imbalanced dataset and augmented, balanced set as well.
Comparing the results between the balanced (Tables 1–3) and
imbalanced datasets (Tables 2–4 in Supplementary Material),
one can observe that synthesizing new samples in the feature space
from the minority class resulted in a remarkable improvement in
classification performance. For instance, the prediction power of
the Adab learning algorithm without any FS method before and
after augmenting the data are AUROCunbalanced = 0.779 and
AUROCbalanced = 0.889, respectively.

In addition, comparing Tables 1, 2 reveals the fact that target
nodule and context nodule images represent different nodule
characteristics that carry distinct prediction powers. However, as
can be seen in Table 3, combining the target nodule features with
context features improved the accuracy and yielded the highest
classification power in radiomics analyses. Among the employed
learning algorithms, Adab method embedded on decision trees
yielded the highest prediction power when feature selection
methods were not applied. Comparing the performance of the
models after applying different feature selection methods, one
can infer that FFS method consistently improved the prediction
power and outperformed other feature selections except the two
cases of KNN and QDA. Accordingly, the highest predictive
value of the target radiomics set was achieved from a subset of
features selected with FFS and trained with Adab classifier
TABLE 2 | The prediction power of the radiomic features extracted from context nodule images with different learning algorithms and feature selection methods over
the balanced dataset.

Learning Algorithm Context Radiomic Prediction Performance (AUROC)

Feature Selection

None CST Corr LASSO RELIEF MI PCA FFS

Adab 0.895 ± 0.007 0.867 ± 0.022 0.866 ± 0.020 0.871 ± 0.009 0.580 ± 0.017 0.643 ± 0.078 0.852 ± 0.009 0.916 ± 0.011
DT 0.718 ± 0.011 0.697 ± 0.025 0.695 ± 0.015 0.702 ± 0.032 0.571 ± 0.021 0.550 ± 0.039 0.697 ± 0.031 0.744 ± 0.027
RF 0.881 ± 0.008 0.843 ± 0.024 0.855 ± 0.009 0.864 ± 0.011 0.645 ± 0.025 0.613 ± 0.044 0.845 ± 0.007 0.901 ± 0.014
KNN 0.852 ± 0.007 0.824 ± 0.019 0.811 ± 0.010 0.843 ± 0.021 0.625 ± 0.015 0.590 ± 0.023 0.827 ± 0.019 0.779 ± 0.029
SVM 0.777 ± 0.012 0.757 ± 0.010 0.689 ± 0.010 0.716 ± 0.008 0.685 ± 0.012 0.571 ± 0.020 0.715 ± 0.009 0.817 ± 0.023
LDA 0.682 ± 0.040 0.727 ± 0.018 0.774 ± 0.014 0.758 ± 0.017 0.743 ± 0.017 0.746 ± 0.022 0.751 ± 0.016 0.842 ± 0.027
QDA 0.841 ± 0.013 0.705 ± 0.033 0.777 ± 0.032 0.751 ± 0.025 0.770 ± 0.012 0.863 ± 0.067 0.739 ± 0.024 0.872 ± 0.010
Naive 0.767 ± 0.014 0.690 ± 0.006 0.757 ± 0.029 0.745 ± 0.009 0.682 ± 0.010 0.609 ± 0.038 0.728 ± 0.020 0.820 ± 0.013
December 20
21 | Volume 11 |
For each feature selection algorithm, the highest value is marked in bold.
TABLE 1 | The prediction power of the radiomic features extracted from target nodule images with different learning algorithms and feature selection methods over the
balanced dataset.

Learning Algorithm Target Radiomic Prediction Performance (AUROC)

Feature Selection

None CST Corr LASSO RELIEF MI PCA FFS

Adab 0.889 ± 0.016 0.863 ± 0.021 0.881 ± 0.031 0.864 ± 0.026 0.671 ± 0.019 0.531 ± 0.037 0.868 ± 0.015 0.911 ± 0.016
DT 0.723 ± 0.011 0.733 ± 0.027 0.703 ± 0.019 0.711 ± 0.028 0.642 ± 0.013 0.523 ± 0.024 0.712 ± 0.026 0.730 ± 0.032
RF 0.871 ± 0.008 0.849 ± 0.025 0.846 ± 0.028 0.856 ± 0.023 0.765 ± 0.018 0.517 ± 0.031 0.862 ± 0.026 0.891 ± 0.011
KNN 0.850 ± 0.016 0.846 ± 0.016 0.807 ± 0.036 0.833 ± 0.017 0.735 ± 0.021 0.671 ± 0.089 0.846 ± 0.017 0.870 ± 0.023
SVM 0.777 ± 0.011 0.774 ± 0.029 0.752 ± 0.025 0.775 ± 0.027 0.751 ± 0.020 0.522 ± 0.040 0.775 ± 0.028 0.802 ± 0.008
LDA 0.655 ± 0.045 0.680 ± 0.032 0.785 ± 0.017 0.75 ± 0.027 0.741 ± 0.031 0.735 ± 0.018 0.771 ± 0.028 0.796 ± 0.011
QDA 0.778 ± 0.172 0.696 ± 0.181 0.747 ± 0.016 0.738 ± 0.024 0.753 ± 0.031 0.840 ± 0.020 0.752 ± 0.026 0.865 ± 0.006
Naive 0.763 ± 0.006 0.759 ± 0.023 0.742 ± 0.030 0.731 ± 0.022 0.756 ± 0.034 0.583 ± 0.046 0.739 ± 0.024 0.808 ± 0.010
For each feature selection algorithm, the highest value is marked in bold.
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(AUROC = 0.911), which accounts for an improvement of 2.2
percent from the same classifier but without feature selection.
Similar behavior was observed in context radiomics where
integrating FFS into the Adab classifier improved the
discrimination power from 0.895 to 0.916. The classification
accuracy was even more improved from 0.908 to 0.921 when the
combination of context and target radiomics were analyzed with
the same method.

End-to-End Deep Learning Models
Table 4 shows a summary of the best results achieved by the deep
learning-based analyses, which were published in our previous
study (36). The first column represents the prediction power
achieved by end-to-end training of the networks on the
imbalanced datasets. In other words, for each of the target
nodule, context nodule, and their combined (dual-pathway)
images, 5 different networks were trained, and the best
performance for each nodule image type is reported in
Table 4. Comparing the performance of the end-to-end deep
networks trained with the target and context nodule images, one
can infer that context features were more informative than target
nodules. Furthermore, similar to radiomics, integrating the target
and context nodule images into a unified network resulted in a
slightly higher prediction power. In fact, the AUROC values of
dual-pathway models outperformed each of the single pathway
models trained with context and target images separately. These
enhancements imply that the two distinct image types can
become complementary. In other words, the combined features
achieved the highest AUROC value by virtue of the joint use of
context and target deep features that can adequately complement
the intricate characterizations of shape, intensity, and textural
heterogeneity of the nodules.
Frontiers in Oncology | www.frontiersin.org 7
Deep Features
The last column of Table 4 indicates the results of the deep
feature-based radiomics pipeline. Strictly speaking, after training
the networks, the imbalanced learned deep features were
extracted from one to last dense layer of each model and
augmented after applying the SMOTE algorithm. The balanced
deep features were then used to train an RF model. More details
over the deep feature analyses and the effects of employed
different optimization techniques on the prediction powers of
deep features were examined and reported in our previous
study (36).

Comparing the first column of Table 4 with Tables 2–4 in
Supplementary Material indicates that end-to-end training the
deep classifiers with the unbalanced dataset could predict the
class labels of the lung nodules more accurately than radiomics
analyses over the imbalanced feature set without applying the FS
methods. For instance, while integrating the imbalanced target
and context radiomic features led to achieving an AUROC of
0.773 with the RF learning algorithm, end-to-end training a dual-
pathway model resulted in an AUROC value of 0.824 that
accounts for 5.1% of improvement. Besides, significant
improvements were achieved when the extracted deep features
were employed in a radiomics-based pipeline. Specifically,
applying the SMOTE algorithm to the unbalanced extracted
deep features could successfully boost the discrimination power
of the RF model by up to 12.1% (AUROCcontext-imbalanced = 0.806
vs. AUROCcontext-balanced = 0.927). In addition, balancing the deep
features seems to be more constructive than balancing the
radiomic features in terms of discrimination power. In
particular, AUROC values achieved by the RF model on
balanced deep features outperformed the performance of the
RF model trained with balanced radiomic features with rather
TABLE 4 | The prediction power of the deep learning-based analyses.

Feature Type Deep Features Prediction Performance (AUROC)

End-to-end training Feature augmentation

Target nodule 0.801 [0.777,0.824] 0.906 [0.890,0.921]
Context nodule 0.806 [0.788,0.827] 0.927 [0.912,0.940]
Combined 0.824 [0.798,0.837] 0.936 [0.921,0.950]
December 2021 |
The combined model refers to a dual-pathway network that was fed by context and target nodule images simultaneously. Lower and upper limits of confidence interval at 95% level are
indicated in square brackets.
TABLE 3 | The prediction power of the joint context and target radiomic with different learning algorithms and feature selection methods over the balanced dataset.

Learning Algorithm Combined Radiomic Prediction Performance (AUROC)

Feature Selection

None CST Corr LASSO RELIEF MI PCA FFS

Adab 0.908 ± 0.014 0.883 ± 0.021 0.883 ± 0.016 0.888 ± 0.014 0.570 ± 0.043 0.676 ± 0.005 0.876 ± 0.014 0.921 ± 0.010
DT 0.739 ± 0.032 0.699 ± 0.018 0.728 ± 0.011 0.720 ± 0.014 0.568 ± 0.030 0.594 ± 0.020 0.702 ± 0.016 0.772 ± 0.013
RF 0.897 ± 0.016 0.858 ± 0.032 0.877 ± 0.019 0.865 ± 0.028 0.620 ± 0.045 0.621 ± 0.021 0.880 ± 0.011 0.910 ± 0.008
KNN 0.872 ± 0.014 0.844 ± 0.014 0.804 ± 0.013 0.860 ± 0.007 0.650 ± 0.018 0.604 ± 0.029 0.848 ± 0.012 0.816 ± 0.028
SVM 0.756 ± 0.023 0.711 ± 0.019 0.709 ± 0.035 0.722 ± 0.022 0.625 ± 0.038 0.574 ± 0.574 0.724 ± 0.022 0.818 ± 0.022
LDA 0.711 ± 0.027 0.726 ± 0.012 0.802 ± 0.023 0.759 ± 0.011 0.730 ± 0.019 0.647 ± 0.032 0.768 ± 0.012 0.827 ± 0.020
QDA 0.862 ± 0.014 0.711 ± 0.015 0.827 ± 0.028 0.766 ± 0.020 0.736 ± 0.017 0.903 ± 0.007 0.744 ± 0.010 0.887 ± 0.015
Naive 0.783 ± 0.023 0.702 ± 0.020 0.741 ± 0.019 0.731 ± 0.024 0.628 ± 0.020 0.544 ± 0.013 0.736 ± 0.021 0.825 ± 0.021
Volume 11 |
For each feature selection algorithm, the highest value is marked in bold.
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significant margins. (AUROCtarget: 0.906 vs. 0.891, AUROCcontext:
0.927 vs. 0.901; and AUROCcombined: 0.936 vs. 0.910).

Hybrid Feature Analysis
To investigate whether the learned deep features would
complement radiomics descriptors, a hybrid model was
developed by pooling the radiomics and deep features into a
mixture set. Accordingly, for each of the target, context, and
combined radiomics pools, corresponding learned features from
single-pathways and dual pathway deep networks were merged
for both the raw features and augmented features (see Figure 3).
It should be noted that assessing the capability of hybrid feature
pools was performed by employing the Adab learning algorithm
integrated with the FFS method because the highest prediction
performance of the radiomics was achieved by this method. The
results show that incorporating the imbalanced deep features
into imbalanced radiomics could slightly improve the
performance of imbalanced radiomics alone by up to 1.9%
(AUROCradiomics_combined: 0.774 vs. AUROChybrid_combined: 0.793
vs. 0.891). However, this combination was not led to enriching
the performance of the end-to-end deep learning methods. On
the other hand, noticeable improvements were observed in the
performance of the hybrid models after augmenting both the
radiomics and deep features. In particular, merging the balanced
deep features with balanced radiomics not only successfully
improved the prediction power of radiomics alone but also
slightly enhanced the performance of deep features as well.
These improvements were observed for both target and context
nodule images. In addition, the balanced hybrid feature pools of
combined target and context features resulted in an AUROC
value of 0.929, which is superior to the combined radiomic
features alone with an AUROC value of 0.921. Besides, even with
the hybrid model, context pools were more representative than
Frontiers in Oncology | www.frontiersin.org 8
the target pools, which is in line with both the radiomics and
deep feature pools individually. Last but not least, the best
prediction accuracy (AUROC=0.938) among all the analyses
was achieved by a hybrid model in which the balanced context
radiomics merged with the balanced deep features learned from
context images which point to the complementary role of context
radiomics and context deep features. Table 8 in Supplementary
Material indicates the pairwise statistical comparison between
radiomic features and deep features. Finally, Table 9 in
Supplementary Material shows the same statistical assessment
between target, context, and combined feature sets in the
hybrid module.

Feature Importance and Class Separability
Figure 2 in Supplementary Material demonstrates the top 20
important features that contributed to explaining the class labels
when training the RF classifier for different sets of radiomics, and
hybrid feature sets. As can be seen, textural features cast the
majority of the important features in radiomics analysis in both
the target and context nodules. However, the contribution of
shape-based features in context radiomics indicates the fact that
shape descriptors could be involved in quantifying the context
information of the regions covered the nodules. The same figure
for the hybrid sets illustrates that most of the important
attributes in the hybrid target set derived from radiomics
features, while deep features contributed more in the hybrid
context set. Moreover, the most informative radiomic features
identified from FS methods are reported in Table 5 in the
Supplementary Material.

Figure 3 in Supplementary Material shows the scatter plots
of the class separability of different feature pools. In practice, T-
distributed Stochastic Neighbor Embedding (TSNE) (47)
statistical method was employed to nonlinearly reduce the
dimensionality of the feature space and visualize the
distribution of the data points based on their similarity in a 2D
space. Because the dimension of the feature sets was larger than
1000, we first applied the PCA to project the feature sets into a
70D space and then apply the TSNE method. Interestingly, the
class separability of deep features is more obvious than
radiomics. These scatter plots are consistent with the
quantitative results reported in Tables 1, 2, 4, and Figure 3.

Finally, to study the impact of the size of training samples on
the prediction performance, the feature pools were split
randomly into training and test subsets with varying
proportions. In specific, the learning algorithm was trained
with 25%, 50%, and 70% of the feature pools as training
samples, while the rest of 75%, 50%, and 30% were dedicated
to test sets. The discrimination scores were then calculated on the
test set by applying a 5-fold cross-validation scheme. Figure 4
shows the results of feature fractioning achieved from the hybrid
feature pools, and Tables 6, 7 in Supplementary Materials
demonstrate the same evaluations calculated from radiomics
and deep features separately. As was expected, increasing the
size of the training samples leads to higher prediction powers.
Besides, the discrimination powers of different fractions of deep
features were higher than those of the radiomic features, while
the performance on fractions of hybrid sets and deep features
FIGURE 3 | The prediction power of the hybrid model: combinations of deep
and radiomic features.
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were relatively close. Such results are in agreement with the
prediction scores reported in Figure 3.

Conventional Radiomics vs. End-to-End
Deep Learning Model vs. Deep-Feature-
Based Radiomics
In this study, four different strategies, including conventional
radiomics analysis, end-to-end deep learning classifiers, deep
feature based radiomics as well as the combination of radiomics
and deep features, were investigated to predict lung nodule
malignancy. Moreover, the effect of fine-tuning steps such as
feature augmentation and feature selection on the model
performance were examined as well. To better compare the
performance of each method, Table 5 shows a summary of the
discrimination powers. In this table, ‘fine-tuning’ refers to the feature
augmentation step, and ‘context-info’ indicates whether the context
nodule images were included or not. Accordingly, the best results
achieved by analyzing the radiomic features are presented in ‘best
conventional radiomics’ column, and the best performance achieved
by end-to-end training of deep learning models are showed in ‘best
end-to-end deep learning model’ column. In addition, the extracted
deep features from the learned networks were analyzed with the
Frontiers in Oncology | www.frontiersin.org 9
radiomics pipeline, i.e., feature selection and feature augmentation
steps were applied and followed by training the learning algorithms.
The best performance of such analyses is summarized in ‘best deep-
feature-based radiomics’ column. Finally, an overview of the
prediction powers achieved by concatenating the radiomic features
with the extracted deep features is shown in the last column of the
table ‘best hybrid model’.
DISCUSSION

The separation of benign from malignant pulmonary nodules on
chest LDCT scans is an important step toward the early detection
of lung cancers which in return offer the best chance for cure. In
clinical practice, this vital step is done manually by expert
radiologists on a slice by slice basis. However, the possibility of
operator bias on one side, and the presence of highly similar visual
characteristics shared between the benign and malignant nodules
on the other side, can potentially lessen the accuracy of manual
nodule classification. Therefore, many computer-aided models for
automatic/semi-automatic classification of pulmonary nodules
have been developed as assistant tools to facilitate such a
demanding task. In a general view, these models can be
categorized into two groups: handcrafted radiomics and end-to-
end deep learning models. In this study, we conducted a
comprehensive comparison of the performance of radiomics and
deep learning models for lung nodule malignancy prediction on a
relatively large-scale dataset consists of 1297 manually delineated
lung nodules. In addition, we applied several optimization steps on
both extracted radiomic features and learned deep features to
improve the prediction performance. In this context, to reliably
distinguish intra-nodule characteristics from nodule contextual
attributes, both radiomics and deep features were extracted from
target nodule images and context nodule images. Moreover, in
order to efficiently capture the critical nodule characteristics
such as shape, intensity, and textural heterogeneities, a hybrid
feature set was constructed by pooling deep and radiomic
features together.

The high correspondence between intra-nodule heterogeneity
and malignancy alludes to the privilege of textural radiomic
features. From 1334 radiomic descriptors, almost 73% of them
represent textural features from the original and multi-scale
filtered images. Interestingly, having performed the radiomics
analysis with/without FS methods, textural features contributed
FIGURE 4 | Effect of training size on the prediction power of the hybrid
feature sets.
TABLE 5 | Comparing the prediction power of the employed methods.

Prediction Performance Comparison (AUROC)

Fine-
tuning

Context-
info

Best conventional
radiomics

Best end-to-end deep learning
model

Best deep-feature-based
radiomics

Best hybrid
model

Before No 0.792 ± 0.025 0.801 [0.777,0.824] 0.753 [0.743,0.775] 0.817 ± 0.032
After No 0.911 ± 0.016 – 0.906 [0.890,0.921] 0.914 ± 0.015
Before Yes 0.777 ± 0.017 0.806 [0.788,0.827] 0.761 [0.736,0.779] 0.780 ± 0.022
After Yes 0.916 ± 0.011 0.824 [0.798,0.837] 0.927 [0.912,0.940] 0.929 ± 0.013
December 2021 | Volume
Note that the “best end-to-end deep learning model” column presents the performance of two single pathway models trained with target and context nodule images separately and one
dual pathway model trained with both target and context images simultaneously. Lower and upper limits of confidence interval at 95% level are indicated in square brackets.
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significantly to classification results. In fact, a majority of the
informative features without FS and a majority of the selected
features with the FFS method come from textural families, which
is in agreement with the reported results by other studies (30, 32,
48). Performing the filter-based FS methods on radiomics has
not always yielded the improvement of the prediction power. In
other words, statistically less correlated feature subset selected
from Corr, LASSO, RELIEF, and MI methods were not
necessarily informative with respect to the class labels and
therefore lessened the prediction power in some cases. On the
other hand, the greedy FFS method reduces the dimensionality of
radiomic pools by selecting a combination of feature subsets with
the highest prediction performance. In addition, as was expected,
combining multiple weak classifiers into a single robust learning
algorithm, the Adab method outperformed the rest of the
classifiers in terms of prediction power (49). As the underlying
training procedures of the RF classifier, to some extent, are close
to that of Adab, it achieved the second strong prediction power.
Moreover, 35% of the features selected from FFS are repeated
between these two classifiers (Table 5 in Supplementary
Material). Furthermore, fractioning the radiomics training set
to even 25% of all the features resulted in satisfactory prediction
power (AUC25%= 0.827 vs. AUC80%= 0.889). While the target
nodule images hold intra-nodule attributes such as intensity and
textural heterogeneities, shape and morphological features, as
well as size-based properties, the context nodule images include
the characteristics of surrounding tissues as well. Such differences
in the image contents led to slightly higher prediction
performance for context images. These results are in
agreement with clinical practices in which the expert
radiologists not only focus on the visual attributes of the
nodules but also closely examine the contextual information
around the nodules by inspecting the same nodule in three
different orthogonal views in several prior and succeeding
slices. The important features which contributed to malignancy
prediction in context nodule images consist of several shapes and
FOS-based features instead of focusing only on textural
radiomics, which implies the fact that the model could capture
the changes in the geometry and intensity heterogeneities in the
nodule images after including context information. In addition,
the observed improvements in the prediction power of combined
nodule features point to the complementary role of nodule target
and nodule context images. Of course, it should be noticed that
applying the FS methods could reduce the risk of overfitting that
would occur after combining context and target nodule features.
More importantly, employing the SMOTE as an augmentation
technique could successfully hinder the classification bias toward
the majority class by balancing the class labels, which in return
improved the classification accuracy significantly in all the
radiomics experiments. In general, our analyses show that
radiomic features are capable of quantifying the differences
between challenging benign and malignant pulmonary nodules
and have a great potential to achieve promising results.

Similar to radiomics, augmented deep context features
outperformed the augmented deep target features, and their
Frontiers in Oncology | www.frontiersin.org 10
combination improved the accuracy of malignancy prediction
as well. Training end-to-end deep classifiers could perform
slightly better than radiomics analyses for each of target
nodule images, context nodule images, and their combination.
This can be described by the fact that end-to-end training of the
networks enforces the models to learn to extract the features with
the highest correspondence with respect to the class labels. On
the other hand, radiomic features are extracted regardless of the
class labels so that they would need further carefully designed
processing steps to maximize their discrimination power. Besides
that, augmenting the deep features by synthesizing new data
points in the feature space to balance the class labels effectuates a
terrific improvement in prediction powers. It is noteworthy that
employing the conventional strategies such as including an equal
number of both class labels in each batch of images during the
model training may be helpful to avoid biasing toward the
majority class. However, they often would not be able to
dramatically boost the prediction performance. In general,
although the deep learning models outperformed the radiomics
analyses when the mentioned feature selection and augmentation
techniques were not applied, we can infer that exerting such fine-
tuning steps results in comparable performance.

The classification improvement achieved from integrating
deep features with radiomics points to the fact that the hybrid
descriptors could successfully cover a wide range of nodule
characteristics from quantitative textures to abstract shape
features. Such observed improvements are in agreement with
other studies performed on lung nodule classification tasks (30,
32). Although radiomic descriptors are designed inspired by
radiological quantitative imaging features, CNN models are
trained to capture abstract features with high relevancy with
respect to the class labels. Nevertheless, fusing these two distinct
feature set in order to enhance the prediction power should be
conducted carefully. In other words, simply aggregating the two
feature sets will dramatically increase the length of the features
and potentially increase the risk of overfitting. Such larger feature
sets can even exacerbate the problem of class imbalance.
Additionally, the careless fusion of these feature sets would
increase the number of correlated features, which in return
would afflict the performance of the models. The inferior
performance of the raw hybrid feature sets can be caused by
the described reasons. However, fine-tuning the hybrid feature
sets by balancing the classes and reduce the dimensionality of the
features by employ the proper FS methods can be considered as
beneficial strategies to efficiently gain from the hybrid feature
pools that resulted in the highest prediction power.

In this comparative study, we examined the two most
conventional approaches of radiomics and deep learning
methods to predict pulmonary nodule malignancy in LDCT
images. Despite the promising results achieved and compared
in this paper, in our future studies, we aim to test the proposed
approach on external datasets both as inference models and
transfer learning strategies. In addition, we plan to investigate
other fusion methods to integrate radiomic descriptors into end-
to-end deep learning models efficiently.
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CONCLUSION

We conducted a comparative study to distinguish benign
pulmonary nodules from malignant nodules in LDCT images.
To do so, we performed a comprehensive radiomics analysis by
investigating the prediction power of 1334 extracted radiomic
features trained with 8 learning algorithms integrated with 7
feature selection methods. We compared the radiomics
performance against several deep classifiers trained on the
same datasets. We examined the effect of optimization
strategies such as synthesizing the feature points to balance the
class labels, extracting features from context images, and
combine context features with features extracted from target
nodule images. Our results suggest that effective integration of
radiomics and deep features improves the performance of nodule
classification and produces more accurate results.
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