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Cholesterol is an essential substance in mammalian cells, and cholesterol metabolism
plays crucial roles in multiple biological functions. Dysregulated cholesterol metabolism is
a metabolic hallmark in several cancers, beyond the Warburg effect. Reprogrammed
cholesterol metabolism has been reported to enhance tumorigenesis, metastasis and
chemoresistance in multiple cancer types, including ovarian cancer. Ovarian cancer is one
of the most aggressive malignancies worldwide. Alterations in metabolic pathways are
characteristic features of ovarian cancer; however, the specific role of cholesterol
metabolism remains to be established. In this report, we provide an overview of the key
proteins involved in cholesterol metabolism in ovarian cancer, including the rate-limiting
enzymes in cholesterol biosynthesis, and the proteins involved in cholesterol uptake,
storage and trafficking. Also, we review the roles of cholesterol and its derivatives in
ovarian cancer and the tumor microenvironment, and discuss promising related
therapeutic targets for ovarian cancer.
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1 INTRODUCTION

Ovarian cancer is one of the most aggressive malignancies worldwide (1). Due to the lack of obvious
symptoms of early-stage ovarian cancer, newly diagnosed patients often present in advanced stages
of disease, leading to the designation “silent killer” (2). Epithelial ovarian cancer can be classified
into type I and type II ovarian tumors mainly on the basis of their cellular morphology and genetic
alterations (3). Type I tumors consist of low grade serous, endometrioid, clear cell, and mucinous
carcinomas, which are genetically characterized by BRAF, Kras, PTEN, or PI3KCA mutations
primarily affecting PI3K/AKT/mTOR signaling (4–7). However, type II tumors mainly include high
grade serous and undifferentiated carcinomas, typically with TP53 mutation and BRCA1/2
mutation (3, 8).

Metabolism in ovarian cancer shows heterogeneity, because the viability of ovarian cancer cells is
maintained in a manner dependent not solely on metabolism but on the outside environment.
Accumulating evidence indicates not only the active expression of aerobic glycolysis or oxidative
phosphorylation (OXPHOS) in ovarian cancer but also aberrant lipid metabolism, which is strongly
associated with ovarian cancer progression (9–12).
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Patients with late-stage disease commonly display tumor
metastases with an accumulation of ascites. The tumor
microenvironment (TME) in ovarian cancer is composed of non-
malignant cells, mainly including cancer-associated fibroblasts
(CAF), cancer-associated adipocytes (CAA), immune-related cells,
malignant cells, and secreted cytokines or other soluble molecules in
ascites, which facilitate immunosuppression through crosstalk
interactions among one another (13). Given that the major site of
metastasis is the omentum, the TME in ovarian cancer is different
from that in other cancers and is characterized as an adipocyte- and
lipid-rich milieu, which has been shown to contribute to
tumorigenesis, tumor immune escape, chemoresistance, and cancer
recurrence (13–15). Other typical features of the tumor
microenvironment include an insufficient supply of glucose and
oxygen, which are non-beneficial for survival of tumor cells. To
overcome this limitation, tumor cells and tumor-associated cells act
in concert to develop reprogrammed adaptive metabolism (16).
Ovarian tumor cells in this lipid-rich environment also tend to
predominantly utilize lipid-dominant and alternative metabolic
pathways (17). In addition, studies using co-culture of adipocytes
and ovarian tumor cells have indicated that adipocytes promote
tumor growth and metastasis of ovarian tumors, on the basis of the
stimulation of adipocytes by the altered lipid metabolism in ovarian
cancer, thus resulting in upregulation of lipid uptake fromadipocytes
and lipolysis in ovarian cancer cells (14).

Fatty acids and cholesterol are two main types of lipids.
Multiple fatty acids and enzymes involved in fatty acid
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metabolism, such as fatty acid-binding protein 4 (FABP4),
CD36 and stearoyl-CoA desaturase 1 (SCD1), significantly
enhance ovarian cancer proliferation, survival, drug resistance
and metastasis, and even contribute to stemness maintenance
(14, 18–21). Recently, considerable evidence supporting the
importance of reprogrammed cholesterol metabolism in
ovarian cancer has been reported. Highly expressed proteins
and enzymes involved in cholesterol metabolism promote
ovarian cancer progression; cholesterol and its derivatives also
contribute to proliferation and chemoresistance in ovarian
cancer and have roles in the immunosuppressive tumor
microenvironment (22–25). Here, we have systematically
summarized the most recent findings on cholesterol and its
derivatives in ovarian cancer, with the aim of comprehensively
understanding their specific functions to facilitate the
identification of novel markers and therapeutic targets.
2OVERVIEWOFCHOLESTEROLMETABOLISM

Cholesterol is a fundamental metabolite of mammalian cells to
maintain structural integrity and fluidity of the plasma
membrane, and regulates cells or cell-to-cell interactions by
mediating alterations in signaling involved in cell proliferation,
immunity, and inflammation (26). Several routes of cholesterol
metabolism within cells have been determined (Figure 1),
including (i) de novo cholesterol synthesis, (ii) exogenous
FIGURE 1 | Schematic illustration of cholesterol metabolism homeostasis and potential drugs. (i)Cholesterol bio synthesis. (ii) Cholesterol uptake. (iii) Cholesterol
storage. (iv) Cholesterol conversion. (v) Cholesterol efflux. (i) De novo cholesterol synthesis involves nearly 30 enzymatic reactions, in which HMGR and SQLE are two
key rate-limiting enzymes. FPP and GGPP, intermediates in this process, contribute to the prenylation of RAS and Rho proteins, which is necessary for RAS and
Rho signaling activation. (ii) Cholesterol uptake is mediated by LDL-LDLR binding, which is followed by endocytosis of LDL by cells. However, high cholesterol
accumulation leads to intracellular lipo-toxicity. High intracellular cholesterol levels suppress SREBP2 transcription factor activity, thereby restricting the expression of
enzymes involved in cholesterol synthesis or cholesterol uptake. (iii) Excess cholesterol is converted into cholesterol ester by SOAT1 enzyme, then stored in lipid
droplets. (iv) Excess cholesterol is converted to oxysterol through multiple enzymatic or non-enzymatic process. (v) Oxysterol activates LXR-RXR signaling and results
in expression of ABCA1, ABCG1, and IDOL, which promote the cholesterol efflux pathway.
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cholesterol uptake, (iii) cholesterol storage, (iv) cholesterol
conversion, and (v) cholesterol trafficking (27).

(i)De novo cholesterol synthesis is initiated from acetyl-CoA via
a complex enzymatic process. Within these reactions, 3-hydroxy-3-
methylglutaryl-CoA (HMG-CoA) reductase (HMGCR), farnesyl-
diphosphate farnesyltransferase 1 (FDFT1) and squalene epoxidase
(SQLE) are key rate-limiting enzymes that convert HMG-CoA to
mevalonate and squalene to 2,3-epoxysqualene (27). HMGCR,
FDFT1 and SQLE are transcriptionally regulated by sterol
regulatory element-binding protein 2 (SREBP2) (28). (ii)
Mammalian cells take up exogenous cholesterol via low-density
lipoprotein (LDL)-LDL receptor (LDLR) interactions, which
internalizes cholesterol via endocytosis (12). However, free
intracellular cholesterol levels require stringent control within the
cytoplasm, because high levels lead to lipo-toxicity (26). An
increased free cholesterol concentration >5% activates binding of
SREBP cleavage-activating protein (SCAP) and Insig-1 on the
endoplasmic reticulum (ER) membrane, leading to the retention
of the SCAP-SREBP complex in the ER and preventing cholesterol/
fatty acid synthesis and transportation, and thus lipid toxicity (29).
(iii) Sterol O-acyltransferase (SOAT) is allosterically activated by
elevated intracellular free cholesterol levels, promoting the
conversion of cholesterols to cholesterol esters (CE), which is
stored in lipid droplets (LD) (30). (iv) Oxysterol from excess
cholesterol as a ligand directly activates the liver X receptor
(LXR) transcription factor to regulate the (v) cholesterol efflux
pathway by mediating the expression of the ATP-binding cassette
(ABC) transporters, such as ABCA1 and ABCG1 (31). Excess
cholesterol is exported outside the cell by ABC transporters at the
cell surface, among which ABCA1 and ABCG1 are ubiquitously
expressed in human cells (32). The cholesterol exported by ABCA1
is loaded onto lipid-free apolipoprotein A-I, thus producing
nascent high-density lipoprotein (HDL), which in turn is
converted into mature HDL by lecithin:cholesterol acyltransferase
(LCAT) in the plasma (33). However, cholesterol exported by
ABCG1 can directly become mature HDL (33), which can be
Frontiers in Oncology | www.frontiersin.org 3
ingested by liver cells or steroidogenic cells via binding to the HDL
receptor, Scavenger receptor type B1 (SR-B1), thus resulting in
selective CE uptake for subsequent synthesis of bile salts or steroid
hormones (33, 34).
3 PROTEINS INVOLVED IN
CHOLESTEROL METABOLISM IN
OVARIAN CANCER

Several abnormally expressed proteins mediate cholesterol
metabolism alterations to promote tumor cell viability,
proliferation, migration, and invasion in ovarian cancer (Table 1).
Therefore, the development of strategies targeting such proteins
could lay the foundation for novel therapeutic treatment options.

3.1 Cholesterol Biosynthesis
3.1.1 HMG-CoA Reductase (HMGCR)
HMGCR, a glycoprotein located in the ER, is one of rate-limiting
enzymes in the mevalonate pathway that catalyzes the generation of
mevalonate fromHMG-CoAwith the consumption of twoNAPDH
molecules (26, 47). In addition to cholesterol generation to meet
nutritional and membrane structure demands, intermediates of the
mevalonate pathway are essential for the regulation of well-
characterized oncogene-mediated signaling molecules, such as
farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate
(GGPP), which are essential for prenylation of the small GTPase
proteins, Ras and Rho (48). Prenylation of Ras or Rho is critical for
their membrane localization and activity (49). Oncogenic roles of
HMGCR have been reported in various tumor types, including
gastric, liver, and breast cancers (50–53).

The Keto and Wolf groups have reported higher HMGCR
expression in cell lines and primary cultures from ovarian cancer
than in normal ovarian epithelial cell lines and ovarian tissues
(35, 54). Immunohistochemical expression was observed in the
TABLE 1 | The roles of enzymes and proteins involved in cholesterol metabolism in ovarian cancer.

Pathway of cholesterol
metabolism

Involved enzyme
or protein

Expression Role in ovarian cancer References

Cholesterol synthesis HMGCR Upregulated Enhances ovarian cancer proliferation by activating Rho/Ras signaling (35–37)
FDFT1 Upregulated Contributes to chemoresistance (23)
SQLE Upregulated High expression correlates with poor-progression-free survival and overall survival rates

in patients with ovarian cancer
(38)

SREBP2 Upregulated Contributes to chemoresistance; enhances ovarian tumor progression via SIK2 and
MIEF2-activated PI3K/AKT/mTOR signaling

(23, 39, 40)

Cholesterol uptake LDLR Upregulated Enhances chemoresistance through the LDLR/LPC/FAM83B/FGFR axis (23, 41)
Cholesterol storage SOAT 1 Upregulated Promotes ovarian tumor progression, SOAT1 inhibition impaired tumor cell proliferation,

migration and increased chemosensitivity
(42)

Cholesterol trafficking ABCA1 Upregulated Promotes tumor cell proliferation, migration and invasion, chemoresistance and
stemness maintenance

(43, 44)

ABCG1 Upregulated Upregulated in only high grade serous ovarian cancer; further research needed (45)
LXR ———— Inhibition of ovarian tumor proliferation after LXR agonist treatment (46)
SR-B1 Upregulated High expression positively associated with patient survival rates (38)
November 2021 | Volume 11 | A
HMGCR, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase; FDFT1, Farnesyl-Diphosphate Farnesyltransferase 1; SQLE, Squalene epoxidase; SREBP2, Sterol regulatory element-
binding protein 2; LDLR, Low-density lipoprotein receptor; SOAT 1, Sterol O-acyltransferase; LXR, Liver X receptor (LXR); ABCA1, ABC subfamily A member 1; ABCG1, ABC subfamily G
member 1; SR-B1, Scavenger receptor type B1.
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majority of ovarian cancer tissues (55). Mechanistically, gain-of-
function TP53 variants displayed ectopic expression in SKOV-3,
while the lack of endogenous p53 expression or native TP53
mutations in OVCAR-3 resulted in elevated HMGCR mRNA
levels and protein expression (36, 54). HMGCR inhibition with
specific statin-like drugs has been found to inhibit monolayer
and ovarian tumor spheroid cellular proliferation and tumor
growth in xenograft mouse models, enhance autophagy, induce
cellular arrest in G0/G1, promote extrinsic and mitochondrial
(intrinsic) apoptosis with increased activity of caspase-3, 8, 9 and
elevated Poly (ADP-ribose) polymerase (PARP) cleavage, and
increase the sensitivity of ovarian cancer cells to carboplatin (35,
37, 56, 57). However, the addition of GGPP or mevalonate
instead of cholesterol rescued the anti-proliferative effect
mediated by statin and activated Ras/Rho signaling (35, 37).

3.1.2 Farnesyl-Diphosphate
Farnesyltransferase 1 (FDFT1)
FDFT1, also known as squalene synthase, is located in the ER and
acts downstreamofHMGCR to synthesize squalene fromFPP (58).
The role of FDFT1 in cancer development is ambiguous at present.
Reports to date suggest oncogenic effects of FDFT1, such as
promoting proliferation, increasing anti-apoptotic protein levels,
and preventing ferroptosis by increasing squalene levels in some
cancer types, and conversely, plays an anti-oncogenic role in other
cancers. For instance, overexpression of FDFT1 has been shown to
induce the suppression of glycolysis through the blockage of AKT/
mTOR/HIF-1a signaling in colorectal cancer (59).

FDFT1 is highly expressed in ovarian cancer. Zheng et al.
showed a nearly 7-fold upregulation of FDFT1 in A2780
cisplatin-resistant ovarian cancer cells relative to sensitive cells
(23). Interestingly, siRNA mediated FDFT1 inhibition in A2780
cells slightly augmented tumor cell proliferation, while its
overexpression impaired migration and invasion of SKOV3
and 3AO cells (60). These findings may be attributed to
squalene accumulation inducing cytotoxicity within cells (61).

3.1.3 Squalene Epoxidase (SQLE)
SQLE, also known as squalene monooxygenase, is located in the
ER and is a rate-limiting enzyme in the mevalonate pathway that
mediates the conversion of squalene into 2,3-epoxysqualene via
usage of NADPH and a molecular oxygen (62). SQLE
overexpression has been observed in multiple cancers, including
breast cancer, liver and lung cancer, and is correlated with their
aggressive behaviors and poorer prognosis (63–67). High
expression and gain of the SQLE locus have been reported in
ovarian cancer (63). Furthermore, the Kaplan-Meier analysis of
ovarian cancer has shown that high SQLE expression is correlated
with relatively poor progression-free survival and overall survival
rates in patients with ovarian cancer (38). Therefore, further
research on the potential involvement of SQLE in the
pathogenesis of ovarian cancer should be considered.

3.1.4 Sterol Regulatory Element-Binding
Protein 2 (SREBP2)
SREBP2 is a key transcription factor of enzymes involved in
cholesterol synthesis and transport, including HMGCR, FDFT1,
Frontiers in Oncology | www.frontiersin.org 4
SQLE and LDLR (28). Under conditions of cholesterol
sufficiency, SREBP2 is located in the ER in an inactive state
(28). Upon depletion of cholesterol, SREBP2 translocates to the
Golgi apparatus and is cleaved by site 1 protease (S1P) and S2P to
an active state. The active protein subsequently enters the
nucleus to bind other regulatory factors at the promotor
regions of target genes (68).

SREBP2 can enhance chemotherapeutic drug resistance in
ovarian cancer cells via the upregulation of cholesterol synthesis
(23). Zheng et al. (23) reported that the levels of SREBP2 and
SREBP-targeted genes, such as HMGCR, FDFT1 and LDLR, in
A2780 cells were proportionally correlated with cisplatin doses.
Karashcuk and co-workers additionally reported that SREBP2
mediates ovarian cancer recurrence and escape from cell cycle
arrest after paclitaxel treatment (69).The inhibitionofSREBP2with
CRISPR technology in OVCAR-8 cell lines led to slower recovery
rates of cell growth following paclitaxel treatment, compared to
control cells (70). Thus, targeting of SREBP2 may improve drug
sensitivity and lower the recurrence of ovarian cancer.

In addition to being regulated by the free intracellular
cholesterol level, SREBP2 expression is also regulated by the
PI3K/AKT/mTOR signaling pathway (71). In the cholesterol
synthesis pathway, SREBP2 is upregulated by salt-inducible
kinase 2 (SIK2), an AMPK-related kinase, and mitochondrial
elongation factor 2 (MIEF2)-activated PI3K/AKT or ROS/AKT/
mTOR signaling, thus, leading to the promotion of ovarian
tumor growth (39, 40).

3.2 Cholesterol Uptake
3.2.1 Low-Density Lipoprotein Receptor (LDLR)
Binding of LDLR, a transmembrane glycoprotein located on the
cell plasma membrane, to LDL facilitates cholesterol uptake via
endocytosis (72). Based on TCGA data, high LDLR expression is
significantly associated with poor overall survival rates of ovarian
tumor patients (22). IHC findings have revealed a strong
intensity of LDLR in endometrioid and clear cell types of
ovarian cancer (41). Zheng et al. showed that LDLR was
upregulated in an ovarian cancer cell line resistant to cisplatin
(23). Silencing of LDLR improved the sensitivity of ovarian
tumor cells to cisplatin treatment by mediating the LPC
(lysophosophatidylcholine)/FAM83B (family with sequence
similarity 83 member B)/FGFR (fibroblast growth factor
receptor) axis (41). Therefore, LDLR may be recognized as a
marker of cisplatin treatment response to ovarian tumors, and in
particular, the endometrioid and clear-cell types.

3.3 Cholesterol Storage
3.3.1 Sterol O-Acyltransferase (SOAT)
Sterol O-acyltransferase (SOAT), also designated as acyl-
coenzyme A cholesterol acyltransferase (ACAT), converts
cholesterol and acyl-CoA to cholesterol esters (CE) in the ER,
which are then stored in lipid droplets (33). SOAT exists as two
isoforms, including SOAT1 and SOAT2. SOAT1 is generally
detectable in all tissues, while SOAT2 is limited to the liver or
intestinal tissue (73). SOAT1, but not SOAT2, is expressed highly
in liver cancer, brain cancer, prostate cancer, and pancreatic
cancer tissues and associated with their low overall survival rates
November 2021 | Volume 11 | Article 738177
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(74–77). These findings suggest an oncogenic role for SOAT1
and support its utility as a potential therapeutic target.

Ayyagari et al. (42) reported higher SOAT1 expression levels
than SOAT2 expression levels, and elevated CE levels in ovarian
cancer cell lines compared to normal cell lines. Mechanistically,
SOAT1 inhibition by shRNA or Avasimibe suppressed
proliferation, migration and invasion of SKOV3, OC-314, and
IGROV-1 cell lines by promoting mitochondrial apoptosis; the
cells showed decreased mitochondrial potential, high activity of
caspase 3/7, and increased ROS and p53 expression, regardless of
mutation status. Furthermore, knockdown of SOAT1 improved
the cisplatin sensitivity of ovarian cancer cells (42).

Of note, SOAT1 deficiency in CD8+ T cells augments their
tumor-killing ability via increasing the cholesterol content on the
plasma membrane and subsequently promoting T-cell receptor
(TCR) clustering and immunological synapse formation in CD8+
T cells (78). SOAT1 depletion in mesothelin-directed chimeric
antigen receptor T cells (CART) can strengthen their anti-tumor
response against pancreatic carcinoma in vitro or in vivo (79).
Therefore, SOAT1 inhibition may mediate dual anti-tumor effects
in cancer treatment in terms of tumor inhibition and immunity
enhancement, and is likely to have value in combination
with immunotherapy.

3.4 Cholesterol Trafficking
3.4.1 ABC Subfamily A Member 1 (ABCA1)
ATP-binding cassette (ABC) transporters in the cell membrane
mainly consisting of ABC subfamily A member 1 (ABCA1) and
ABC subfamily G members 1, 5 and 8 (ABCG1, ABCG5,
ABCG8) contribute to cholesterol efflux (80). Unlike ABCG5
and ABCG8 that are restricted to hepatocytes and enterocytes,
ABCA1 and ABCG1 are ubiquitously expressed throughout the
body (81). Hedditch et al. reported that high ABCA1 expression
in ovarian cancer tissue was significantly correlated with poor
survival outcomes of patients. In terms of functional analyses,
depletion of ABCA in A2780, 27/87 and SKOV3 ovarian cancer
cell lines via siRNA attenuated colony formation, migration, and
invasion (43). Moreover, ABCA1 promoted ovarian cancer drug
resistance and tumorigenesis. Silencing of ABCA1 in MCP2
platinum-resistant cells led to improved cisplatin sensitivity
(82). In addition, ABCA1 was upregulated in EPCAM+CD45+
tumor cells derived from ascites of patients with ovarian cancer
with aggressive features (44). Chou et al. showed that
hypermethylation of ABCA1 was correlated with a poorer
prognosis of ovarian cancer patients (83). Specifically, in vitro
treatment of MCP3 and HeyC2 cell lines with shABCA1, or an in
vivo HeyC2 cell-based xenograft mouse model mimicking
hypermethylation enhanced tumor cell growth (83). Thus, the
roles of ABCA1 in ovarian cancer require further investigation.

3.4.2 ATP Binding Cassette Subfamily G Member 1
(ABCG1)
ABCG1, located at the cell membrane surface, mediates cholesterol
export from cells by mature HDL. High expression of ABCG1 has
been observed in pancreatic cancer, breast cancer, lung cancer, and
colon cancer (84–87). ABCG1 promotes cell proliferation,
migration, and invasion in lung cancer cells, and is associated
Frontiers in Oncology | www.frontiersin.org 5
with expression of anti-apoptotic proteins (B-cell lymphoma 2
(BCL2) or Myeloid-cell leukemia 1 (MCL1), stemness markers
(CD133 and ALDH), and proliferative markers (such as c-Myc)
(87).ABCG1 inhibition byknockdown suppresses tumor growth in
a colon tumor mouse model by blocking extracellular vesicle (EV)
lipid efflux, thereby leading to the accumulation of EVs, which
mediate cellular toxicity (86). In addition,ABCG1 is associatedwith
tumor immunity. ABCG1 contributes to the macrophage
phenotype shift from M1 to M2 (88). Macrophages with ABCG1
deficiency have higher cytotoxicity with NF-kB activation (88). In
addition, depletion ofABCG1 causes hyperproliferation ofCD4+T
cells in the peripheral blood in mice (89). These findings illustrate
that ABCG1 may be a promising anti-tumor target. However, the
high expression of ABCG1 has been observed in only high grade
serous ovarian carcinoma (HGSC) (45). Its detailedmechanisms in
ovarian cancer should be further explored.

3.4.3 Liver X Receptor (LXR)
LXR, which belongs to the nuclear receptor family, plays an
important role in maintaining intracellular cholesterol
homeostasis (31). LXR is activated by LXR agonists and
subsequently forms a heterodimer with retinoid X receptor
(RXR). This LXR-RER heterodimer combined with co-activator
binds LXR-responsive-elements (LXREs) in the nucleus and
mediates the expression of cholesterol metabolism-related genes,
such as ABCA1, ABCG1, and inducible degrader of LDLR (IDOL)
(90). LXR activation mediates anti-tumor effects in multiple
cancers (91). LXR activation induces expression of inducible
degrader of LDLR (IDOL), which decreases the LDLR
expression induced by EGFR/SREBP-1 signaling in glioblastoma
tumor cells (92). Likewise, LXR activation by its agonists
significantly suppresses ovarian tumor cell proliferation (46).

3.4.4 Scavenger Receptor Type B1 (SR-B1)
SR-B1 recognizes HDL and then selectively takes up CEs into
cells without the apolipoprotein moiety. SR-BI is commonly
expressed in the liver cells and steroidogenic cells. SR-BI is highly
expressed in multiple cancer cell lines including ovarian cancer
cells lines (93). High SR-BI expression has been observed in lung
cancer and breast cancer, and it is associated with malignancy
and poor prognosis (94, 95). SR-BI is recognized as a biomarker
of melanoma progression in patients and has been associated
with STAT5 expression in clinical samples (96). However, SR-B1
expression in patients with ovarian cancer patients is positively
correlated with survival rate (38). To provide further
clarification, its detailed mechanisms require further exploration.
4 ROLES OF CHOLESTEROL AND
CHOLESTEROL DERIVATIVES IN
OVARIAN CANCER AND TUMOR
MICROENVIRONMENT

4.1 Cholesterol
Previous studies have shown high cholesterol levels in ascites fluid
in ovarian tumors (97). Helzlsouer et al. initially reported that the
November 2021 | Volume 11 | Article 738177
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cholesterol concentration in blood was proportionally correlated
with the risk of ovarian cancer (98). In addition, LDL, amain blood
carrier of cholesterol, and large amounts of cholesterol are
associated with aggressiveness and poor survival outcomes of
ovarian cancer (99). In the murine ID8 model of ovarian cancer,
mice subjected to a high cholesterol diet exhibited increased tumor
growth compared to that observed in the control groups (24).
Dysregulated cholesterol homeostasis has been reported to enhance
platinumresistance inovarian cancer (22). Besides, high cholesterol
levels in aggressive ascites were shown to contribute to cisplatin
resistance in ovarian tumor cells by activating an LXR a/b nuclear
receptor, with sequential upregulation of multidrug resistance
protein 1 (MDR1) (100). High cholesterol loading in
mitochondria perturbs mitochondrial function, inhibiting
mitochondrial membrane permeabilization and the release of
cytochrome c, a pro-apoptotic signal, thus contributing to
chemotherapy resistance in liver cancer cells (101). The effects of
dysregulated cholesterol homeostasis in mitochondria on drug
resistance in ovarian cancer requires further investigation.

Cholesterol also influences energetic metabolism, thus
contributing to tumor progression. In breast cancer cells,
exogenous cholesterol alters metabolic pathways and
consequently enhances cell proliferation in an estrogen-related
receptor alpha-dependent manner, thus increasing oxidative
phosphorylation and the tricarboxylic acid cycle (TCA) cycle
(102). Aerobic glycolysis has been found to be augmented by
exogenous cholesterol in only triple-negative breast cancer cell
lines (102). Furthermore, high mitochondrial cholesterol loading
increases hexokinase translocation to the mitochondria and may
contribute to aerobic glycolysis in cancer cells (103). However,
the relationship between cholesterol and energetic metabolism is
less clear in ovarian cancer and requires further study.

Other than its effects on tumor cells, cholesterol may
contribute to the immunosuppressive TME. Evidence has
shown that cholesterol influences tumor-associated
macrophages (TAM) in the microenvironment. Peritoneal
TAMs in the ovarian cancer mouse model were reported to
show increased cholesterol efflux activated by high molecular
weight hyaluronic acid secretion from ID8 ovarian tumor cells,
in turn, augmenting IL-4/PI3K/Akt/STAT6 signaling. However,
attenuation of the IFN-g-induced gene signature in TAM
contributes to immunosuppression and the energetic needs of
tumors (25). Specific knockout of ABCA1 or ABCG1 with the
inhibition of cholesterol efflux in TAM effectively reversed the
pro-tumorigenic effect of TAM in ovarian cancer, which could be
applied to develop a novel therapeutic strategy. In addition, a
large amount of cholesterol secreted from tumor cells impairs the
cytotoxicity of CD8+ effector T cells and induces exhausted
CD8+ T cells. HMGCR knockdown or statin treatment in B16
melanoma cells significantly decreases the frequency of
exhausted CD8+ T cells at tumor sites (104). Mechanistically,
high cholesterol augments endoplasmic reticulum (ER) stress in
CD8+ T cells and consequently results in XBP-1 activation,
which elevates the expression of immune checkpoint proteins,
such as T cell immunoglobulin and mucin domain-containing
protein 3 (TIM-3), Programmed cell death protein 1 (PD-1),
Frontiers in Oncology | www.frontiersin.org 6
Lymphocyte activation gene 3 protein (LAG-3), and 2B4
(CD244), in CD8+ T cells (104).

4.2 Oxysterol
Oxysterol, the hydroxylation product of cholesterol, participates in
numerous cellular processes, such as cell signaling, membrane
fluidity, and the activation of membrane proteins, similar to
cholesterol (105). The 27-Hydroxycholesterol (27HC), a type of
oxysterol, is catalyzed from cholesterol by Cytochrome P450
Family 27 Subfamily A Member 1 (CYP27A1) (106). High
CYP27A1 expression is associated with poor prognosis at the
early stages of disease and poorer progression-free survival but
serves as a positive predictor in late-stage ovarian cancer (24).
Functionally, exogenous 27HC treatment could abolish the
proliferative capacity of ovarian cancer cell lines via LXR
activation-induced cholesterol efflux in tumor cells. Intriguingly,
however, CYP27A1 or exogenous 27HC treatment in the ovarian
cancer mouse model has also been shown to augment peritoneal
tumor spread and carboplatin resistance, consistent with Kaplan–
Meier analyses of CYP27A1 in ovarian cancer patients (24). These
data suggest that CYP27A1 and its product 27HC promote
ovarian cancer progression by influencing the tumor
microenvironment, rather than intrinsic effects on the tumor itself.

Reprogrammed macrophage patterns have been observed in
ovarian tumors in the presence of exogenous 27HC, including
increased concentrations of monocytic myeloid-derived
suppressor cells (MDSC) and decreases in antigen-presenting
macrophages (24). Genetic depletion of CYP27A1 could reverse
the immunosuppressive effect of 27HC. In addition, a
combination of the CYP27A1 inhibitor, GW273297X, and
anti-PDL1 antibodies induced a significant decrease in ovarian
tumor growth in mouse models compared to either treatment
alone (24). In addition, the oxysterol secreted by tumor cells has
been shown to impair the antigen presentation of dendritic cells
(DC) by LXR-a signaling activation, thus mediating
downregulation of the expression of C-C chemokine receptor
type 7 (CCR7), a lymphoid homing marker of DC, on the DC cell
surface (107). LXR-a activation in DCs compromises DC
migration to lymph nodes, thus decreasing T cell priming
(107). Treatment with Sulfotransferase 2B1b (SULT2B1b), an
LXR ligand-inactive enzyme, relieves the CCR7 inhibition in
DCs, and restores DC function and the anti-tumor response
(107). LXR signaling activation suppresses the proliferation and
expansion of T cells (108). However, Tavazoie et al. have shown
that LXR activation suppressed the immunosuppressive effect of
myeloid-derived suppressor cells (MDSC) by inducing
Apolipoprotein E (ApoE) expression and consequently
augmenting the T cell killing ability (109).

Another type of oxysterol, 25-hydroxycholesterol (25HC), is
synthesized by cholesterol 25-hydroxylase (CH25H) (110). The
specific role of 25-hydroxycholesterol (25HC) in ovarian cancer
remains to be established. The 25HC is reported to stimulate the
proliferation of BG-1 ovarian cancer cells in an estrogen
receptor-a-activation-dependent manner (110). However,
25HC combined with statin reduced the viability of OVCAR-8
and SKOV3 cell lines via the suppression of SREBP2. SREBP2
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suppression was greater following the combined treatment
compared to that observed with statin treatment alone (111).
Therefore, future studies should focus on the precise
mechanisms of action of 25HC in ovarian cancer.
5 POTENTIAL THERAPEUTIC DRUGS
IN OVARIAN CANCER

5.1 Statins
Statins are specific inhibitors ofHMGCR that block themevalonate
pathway (112). Statins were originally used to lower the cholesterol
level in blood and were found to be well-tolerated. Freed-Pastor
et al. demonstrated that upregulation of the mevalonate pathway
was mostly mediated by TP53 mutations, which is a dominant
genetic mutation profile in ovarian cancer. Several reports have
confirmed that lipophilic statins (Table 2), such as simvastatin and
lovastatin, but not hydrophilic statins, significantly suppressed cell
viability and proliferation, stemness, invasion and migration, and
enhancemitochondrial apoptosis and chemotherapeutic sensitivity
of ovarian cancer cell lines and primary ovarian cancer samples
derived frompatients ormousemodels, without causing damage to
normal cells (35, 37, 54, 56, 57). Statins exert pluripotent effects
against cancer. Göbel and co-workers showed that lipophilic statins
attenuated the expressionof IL-6, IL-8,Vascular endothelial growth
factor (VEGF), and Transforming growth factor beta (TGF-b),
which contributed to ovarian tumor progression (115).Meanwhile,
statin treatment of ovarian cancer cell lines activated c-Jun N-
terminal kinase (JNK) signaling and induced the pro-apoptotic
protein, Bim, reduced c-Myc phosphorylation, and blocked Ras/
Rho signaling (37, 57, 113).

In addition to promoting resistance against tumor growth,
statins are reported to enhance antigen presentation in dendritic
cells (DC) and T cell cytotoxic functions in a B16 melanoma
mouse model by attenuating Rab5 protein prenylation by GGPP
or FPP, which are involved in the endosomal trafficking process;
Frontiers in Oncology | www.frontiersin.org 7
thus, reducing antigen internalization and degradation at the cell
surface (116). Notably, the combination of statin with anti-PD1
antibodies exerted a stronger synergistic anti-tumor effect
comparison with the alone treatment (116). Therefore, statin-
like drugs present potent therapeutic options for ovarian cancer.

Several clinical trials (NCT04457089 and NCT00585052) on
ovarian cancer have been conducted. Statins, and in particular,
lipophilic statins are clearly associated with a lower risk of
ovarian cancer occurrence (117).

5.2 Avasimibe
Avasimibe, an inhibitor of SOAT and a cholesterol-lowering drug,
can suppress CE generation. Accumulating preclinical studies have
revealed the inhibitory effects of Avasimibe on tumor growth in
various cancer types, including hepatocellular carcinoma,
glioblastoma, pancreatic adenocarcinoma, and prostate cancer
through the regulation of intracellular cholesterol metabolism
(74–77). Ayyagari et al. (42) demonstrated the anti-tumor
growth effect of Avasimibe in ovarian cancer cell lines.

In addition to its tumor suppression activity, Avasimibe is
also an immunomodulatory agent. Avasimibe can augment the
tumor-killing function of CD8+ T cells via the enhancement of T
cell receptor (TCR) signaling and immunological synapse
formation of CD8+ T cells by enhancing the cholesterol level
of the plasma membrane (78). Consequently, many combined
therapeutic strategies have been developed for Avasimibe and
other immunotherapies, such as anti-PD1 antibodies, cancer
stem cell-dendritic cell (CSC-DC) vaccines, and Kras peptide
vaccines (78, 118, 119).

In earlier atherosclerosis clinical trials, Avasimibe exhibited a
well-tolerated safety profile (120), and thus, should be strongly
considered for ovarian cancer clinical trials.

5.3 LXR Agonist
Liver X receptor, a nuclear receptor, senses alterations in cholesterol
metabolism (33). Natural ligands of this receptor include different
TABLE 2 | Potential drugs for targeting cholesterol metabolism in ovarian cancer.

Involved
proteins

Drug Function Mechanism Cell source Clinical trial References

HMGCR Atorvastatin Inhibit proliferation, stemness, migration,
invasion; enhance apoptosis, cell cycle
arrest and chemotherapy sensitivity

Decrease p-S6 and p-c-Myc Hey, SKOV3. NCT02201381,
Phase 3
(Recruiting)

(57)

Simvastatin Block Ras/Rho signaling via reduction of FPP
and GGPP, attenuate stemness by
inactivating Hippo/YAP/TAZ/signaling

A2780, Hey8,
primary ovarian
cancer cells

NCT04457089,
Early Phase 1
(Recruiting)

(35, 56)

Lovastatin Upregulate Bim (pro-apoptotic protein)
expression, induce autophagy, anti- Ras/Rho
signaling

Hey1B, SKOV3,
OVCAR5,
mouse model

NCT00585052,
Phase 2
(Terminated)

(37, 113)

SOAT1 Avasimibe Anti-proliferative effect ——————— OC314,
SKOV3,
IGROV-1

————— (42)

Liver X
receptor

GW3965 Induce apoptosis Decrease LD accumulation induced by
hypoxia

IGOVR-1,
SKOV3

————— (114)

T0901317 Anti-tumor growth, induce cell cycle arrest Upregulate p21, p27. expression in an FXR
activation dependent manner

CaOV3, A2780,
SKOV3

————— (46)
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types of oxysterol, such as 22-hydroxycholesterol (22HC), 20-
hydroxycholesterol (20HC), and 27HC (121). The 27HC is
known to exert anti-proliferative effects in ovarian tumors.
GW3965 and T0901317 are synthetic LRX ligands (121) and
Curtarello et al. showed that GW3965 could significantly promote
apoptosis of SKOV3 and IGROV1 cell lines by reducing LD
accumulation under hypoxic conditions to a similar degree as the
anti-VEGF antibody, bevacizumab (114). Combination treatment
with GW3965 and bevacizumab further promoted treatment
efficiency. Additionally, T0901317 exerted a significant inhibitory
effect on ovarian cancer cells in a dose- and time-dependentmanner
via interactions with farnesoid-X receptor (FXR), rather than via
LXR activation (46). However, limited research has focused on the
involvement of LXR, and further experiments are required to
determine the role of LXR agonists in ovarian cancer.
6 CONCLUSIONS

Numerous studies have implicated essential enzymes or proteins
involved in cholesterol metabolism in ovarian cancer, thus,
supporting the theory that aberrant cholesterol metabolism
contributes to disease progression. Cholesterol and oxysterol, its
derivative, are not only intrinsic tumor-promoting factors but also
extrinsic tumor-promoting factors via reprogramming the tumor
Frontiers in Oncology | www.frontiersin.org 8
microenvironment. Elevated levels of cholesterol and oxysterol
also contribute to the immunosuppressive environment. High
cholesterol level in TME contributes to the generation of
exhausted CD8+T cells. Oxysterol can reprogramme the TAM
pattern and influence the antigen presentation ability of DC in the
tumor site. Thus, drugs targeting cholesterol metabolism may
present potential treatments and even overcome the
immunotherapy resistance, as a combined therapy with immune
checkpoint blockades. Further studies are needed to clarify the
specific roles and associated mechanisms of action of these
proteins in the pathogenesis of ovarian cancer to facilitate the
development of therapeutic clinical agents.
AUTHOR CONTRIBUTIONS

Writing the original draft preparation, JH. Writing—review and
editing, MS and KC. Supervision, MS, HN, and KC. All authors
contributed to the article and approved the submitted version.
FUNDING

The work was funded by the University of Hong Kong
(202011159187).
REFERENCES

1. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD,
et al. Ovarian Cancer Statistics, 2018. CA Cancer J Clin (2018) 68(4):284–96.
doi: 10.3322/caac.21456

2. Lengyel E. Ovarian Cancer Development and Metastasis. Am J Pathol (2010)
177(3):1053–64. doi: 10.2353/ajpath.2010.100105

3. Shih Ie M, Kurman RJ. Ovarian Tumorigenesis: A Proposed Model Based on
Morphological and Molecular Genetic Analysis. Am J Pathol (2004) 164
(5):1511–8. doi: 10.1016/s0002-9440(10)63708-x

4. Kaldawy A, Segev Y, Lavie O, Auslender R, Sopik V, Narod SA. Low-Grade
Serous Ovarian Cancer: A Review. Gynecologic Oncol (2016) 143(2):433–8.
doi: 10.1016/j.ygyno.2016.08.320

5. Pierson WE, Peters PN, Chang MT, Chen LM, Quigley DA, Ashworth A,
et al. An Integrated Molecular Profile of Endometrioid Ovarian Cancer.
Gynecologic Oncol (2020) 157(1):55–61. doi: 10.1016/j.ygyno.2020.02.011

6. Gemignani ML, Schlaerth AC, Bogomolniy F, Barakat RR, Lin O, Soslow R,
et al. Role of KRAS and BRAF Gene Mutations in Mucinous Ovarian
Carcinoma. Gynecologic Oncol (2003) 90(2):378–81. doi: 10.1016/S0090-
8258(03)00264-6

7. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A
Mutations in Endometriosis-Associated Ovarian Carcinomas. New Engl J
Med (2010) 363(16):1532–43. doi: 10.1056/NEJMoa1008433

8. Kurman RJ, Shih Ie M. The Dualistic Model of Ovarian Carcinogenesis:
Revisited, Revised, and Expanded. Am J Pathol (2016) 186(4):733–47. doi:
10.1016/j.ajpath.2015.11.011

9. Siu MKY, Jiang YX, Wang JJ, Leung THY, Han CY, Tsang BK, et al.
Hexokinase 2 Regulates Ovarian Cancer Cell Migration, Invasion and
Stemness via FAK/ERK1/2/MMP9/NANOG/SOX9 Signaling Cascades.
Cancers (2019) 11(6):813. doi: 10.3390/cancers11060813

10. SiuMKY, Jiang Y-x, Wang J-j, Leung THY, Ngu SF, Cheung ANY, et al. PDK1
Promotes Ovarian Cancer Metastasis by Modulating Tumor-Mesothelial
Adhesion, Invasion, and Angiogenesis via a5b1 Integrin and JNK/IL-8
Signaling. Oncogenesis (2020) 9(2):24. doi: 10.1038/s41389-020-0209-0
11. Shen L, Zhou L, Xia M, Lin N, Ma J, Dong D, et al. Pgc1a Regulates
Mitochondrial Oxidative Phosphorylation Involved in Cisplatin Resistance
in Ovarian Cancer Cells via Nucleo-Mitochondrial Transcriptional
Feedback. Exp Cell Res (2021) 398(1):112369. doi: 10.1016/j.yexcr.
2020.112369

12. Chen RR, Yung MMH, Xuan Y, Zhan S, Leung LL, Liang RR, et al. Targeting
of Lipid Metabolism With a Metabolic Inhibitor Cocktail Eradicates
Peritoneal Metastases in Ovarian Cancer Cells. Commun Biol (2019)
2:281. doi: 10.1038/s42003-019-0508-1

13. Worzfeld T, Pogge von Strandmann E, Huber M, Adhikary T, Wagner U,
Reinartz S, et al. The Unique Molecular and Cellular Microenvironment of
Ovarian Cancer. Front Oncol (2017) 7:24. doi: 10.3389/fonc.2017.00024

14. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt
MR, et al. Adipocytes Promote Ovarian Cancer Metastasis and Provide
Energy for Rapid Tumor Growth. Nat Med (2011) 17(11):1498–503. doi:
10.1038/nm.2492

15. Khan SM, Funk HM, Thiolloy S, Lotan TL, Hickson J, Prins GS, et al. In
Vitro Metastatic Colonization of Human Ovarian Cancer Cells to the
Omentum. Clin Exp Metastasis (2010) 27(3):185–96. doi: 10.1007/s10585-
010-9317-0

16. Riscal R, Skuli N, Simon MC. Even Cancer Cells Watch Their Cholesterol!
Mol Cell (2019) 76(2):220–31. doi: 10.1016/j.molcel.2019.09.008

17. Ahmed N, Escalona R, Leung D, Chan E, Kannourakis G. Tumour
Microenvironment and Metabolic Plasticity in Cancer and Cancer Stem
Cells: Perspectives on Metabolic and Immune Regulatory Signatures in
Chemoresistant Ovarian Cancer Stem Cells. Semin Cancer Biol (2018)
53:265–81. doi: 10.1016/j.semcancer.2018.10.002

18. Ji Z, Shen Y, Feng X, Kong Y, Shao Y, Meng J, et al. Deregulation of Lipid
Metabolism: The Critical Factors in Ovarian Cancer. Front Oncol (2020)
10:593017. doi: 10.3389/fonc.2020.593017

19. Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S,
et al. Adipocyte-Induced CD36 Expression Drives Ovarian Cancer
Progression and Metastasis. Oncogene (2018) 37(17):2285–301. doi:
10.1038/s41388-017-0093-z
November 2021 | Volume 11 | Article 738177

https://doi.org/10.3322/caac.21456
https://doi.org/10.2353/ajpath.2010.100105
https://doi.org/10.1016/s0002-9440(10)63708-x
https://doi.org/10.1016/j.ygyno.2016.08.320
https://doi.org/10.1016/j.ygyno.2020.02.011
https://doi.org/10.1016/S0090-8258(03)00264-6
https://doi.org/10.1016/S0090-8258(03)00264-6
https://doi.org/10.1056/NEJMoa1008433
https://doi.org/10.1016/j.ajpath.2015.11.011
https://doi.org/10.3390/cancers11060813
https://doi.org/10.1038/s41389-020-0209-0
https://doi.org/10.1016/j.yexcr.2020.112369
https://doi.org/10.1016/j.yexcr.2020.112369
https://doi.org/10.1038/s42003-019-0508-1
https://doi.org/10.3389/fonc.2017.00024
https://doi.org/10.1038/nm.2492
https://doi.org/10.1007/s10585-010-9317-0
https://doi.org/10.1007/s10585-010-9317-0
https://doi.org/10.1016/j.molcel.2019.09.008
https://doi.org/10.1016/j.semcancer.2018.10.002
https://doi.org/10.3389/fonc.2020.593017
https://doi.org/10.1038/s41388-017-0093-z
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


He et al. Cholesterol Metabolism in Ovarian Cancer
20. Tesfay L, Paul BT, Konstorum A, Deng Z, Cox AO, Lee J, et al. Stearoyl-CoA
Desaturase 1 Protects Ovarian Cancer Cells From Ferroptotic Cell Death.
Cancer Res (2019) 79(20):5355–66. doi: 10.1158/0008-5472.CAN-19-0369

21. Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, et al. Lipid
Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian
Cancer Stem Cells. Cell Stem Cell (2017) 20(3):303–14.e5. doi: 10.1016/
j.stem.2016.11.004

22. Criscuolo D, Avolio R, Calice G, Laezza C, Paladino S, Navarra G, et al.
Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian
Cancer. Cells (2020) 9(4):828. doi: 10.3390/cells9040828

23. Zheng L, Li L, Lu Y, Jiang F, Yang XA. SREBP2 Contributes to Cisplatin
Resistance in Ovarian Cancer Cells. Exp Biol Med (Maywood NJ) (2018) 243
(7):655–62. doi: 10.1177/1535370218760283

24. He S, Ma L, Baek AE, Vardanyan A, Vembar V, Chen JJ, et al. Host
CYP27A1 Expression Is Essential for Ovarian Cancer Progression.
Endocrine-Related Cancer (2019) 26(7):659–75. doi: 10.1530/ERC-18-0572

25. Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V,
et al. Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage
Reprogramming and Tumor Progression. Cell Metab (2019) 29(6):1376–
89.e4. doi: 10.1016/j.cmet.2019.02.016

26. Luo J, Yang H, Song BL. Mechanisms and Regulation of Cholesterol
Homeostasis. Nat Rev Mol Cell Biol (2020) 21(4):225–45. doi: 10.1038/
s41580-019-0190-7

27. Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol Metabolism: New Functions
and Therapeutic Approaches in Cancer. Biochim Biophys Acta Rev Cancer
(2020) 1874(1):188394. doi: 10.1016/j.bbcan.2020.188394
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