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Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer
with a low 5-year survival rate. The heterogeneity of HCC makes monotherapy unlikely.
The development of diagnostic programs and new treatments targeting common genetic
events in the carcinogenic process are providing further insights into the management of
HCC. The aim of this study was firstly to validate key genes that are involved in promoting
HCC development and as biomarkers for early diagnosis and, secondly, to define their
links with antitumor immunity including inhibitory checkpoints.

Methods: Multiple databases including Gene Expression Omnibus (GEO), Gene
Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier Plotter, UALCAN, and
Oncomine were used for target gene screening and establishment of a co-expression
network. Clinical data and RNAseq of 367 HCC patients were downloaded from the
Cancer Genome Atlas (TCGA) database. The diagnostic and prognostic value of screened
genes were tested by receiver operating characteristic (ROC) curve and correlation
analysis. The links with the key genes in HCC and antitumor immunity were defined
using both blood and liver tissue collected prospectively from HCC patients in our center.

Results: Upregulation of CCNB1, CDC20, and CENPF was commonly observed in HCC
and are involved in the p53 signal pathway. The hepatic mRNA expression levels of these
three genes were strongly associated with patients’ prognosis and expressed high value
of area under the ROC curve (AUC). Further analysis revealed that these three genes were
positively correlated with the gene expression levels of IFN-y, TNF-o, and IL-17 in
peripheral blood. In addition, the expression of CENPF showed positive correlation with
the percentage of CD8P°® T cells and negative correlation with the percentage of CD4P°®
T cells in the peripheral blood. In the HCC microenvironment, the transcript levels of these
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three genes and inhibitory checkpoint molecules including PD-1, CTLA-4, and TIM-3 were

positively correlated.

Conclusion: The upregulation of CCNB1, CDC20, and CENPF genes was a common
event in hepatocarcinogenesis. Expression levels of CCNB1, CDC20, and CENPF
showed potential for early diagnosis and prediction of prognosis in HCC patients. There
is a close association between three genes and Th1/Th17 cytokines as well as the count
of CD4P°® and CD8P°® T cells. The positive correlation between the three genes and
inhibitory checkpoint genes, PD-1, CTLA-4, and TIM-3, indicates that these genes are
linked with weakened antitumor immunity in HCC. Our findings may provide further
insights into developing novel therapies for HCC.

Keywords: HCC, prognosis, antitumor immunity, inhibitory checkpoint, hepatocarcinogenesis

INTRODUCTION

Hepatocellular carcinoma (HCC) represents more than 90%
of primary liver cancers and is a global health problem (1). It
is ranked as the fourth leading cause of cancer-related death in
the world with a growing incidence (2). Surgery including
resection and liver transplantation remains the most effective
treatment and could achieve a 5-year survival of 60% to
80%. HCC is usually asymptomatic in the early stage. At
diagnosis, many patients have advanced disease with limited
treatment options.

There is increasing evidence that genetic alterations play an
important role in the development of HCC (3). With the advent
of deep sequencing technology, increasing information regarding
genetic mutations in HCC has identified several important
pathways related to cancer formation (4-7). Attention is being
focused on genes involved in key events in hepatocarcinogenesis,
such p53, which has been identified as the most frequently
mutated tumor suppressor gene in HCC. Research on p53 gene
mutations has provided models for developing clinical
treatments for HCC.

To date, several specific markers and key pathways involved
in the HCC development have been identified potentially to
assist early diagnosis and to predict prognosis. Although
immunoregulatory therapies such as anti-PD-1 and CAR-T
have made progresses in the treatment of solid tumors, the
anti-PD-1/CTLA-4 therapy in HCC appears as a challenge. We
aim to identify the key genes in the HCC environment, which are
associated with the antitumor immunity including adaptive
immunity, such as Th1/Th17, and immunoregulation with
inhibitory checkpoints.

We conducted an analysis to screen gene markers related to
the development of HCC. Using clinical data and RNA-seq
(TCGA open-source data) from 367 HCC patients to confirm
their diagnostic and prognostic value. In addition, we defined the
relationship of these genes with anti-tumor immunity
represented by the transcript levels of IFN-y, TNF-o, and
IL-17, the portion of T cell subsets in peripheral blood, and the
expression level of inhibitory checkpoint molecules: PD-I,
CTLA-4, and TIM-3 in HCC tumor tissue, as well as PD-1
plasma level in peripheral blood.

MATERIALS AND METHODS

Common Differentially Expressed

Genes Screening

Four GSE profiles (7-10) from platform GPL570 ([HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array) were used to select differentially expressed genes
(DEGs) between normal liver tissue (from healthy donor) and
HCC cancer tissue (11). The condition was set at |log FC| > 2,
p-value < 0.05. All DEGs were uploaded to Venn Diagram online
software (http://bioinformatics.psb.ugent.be/webtools/Venn/) to
detect commonly co-expressed genes.

Central Cluster Selection and

Enrichment Analysis

The STRING online database (available at https://string-db.org/)
was used to detect the functional PPI networks (12). Central cluster
from the PPI network was identified through MCODE plug-in of
Cytoscape (Node Score > 2, K-Core Value > 2, Max Depth = 100)
(13). Genes of central cluster were submitted to the Kaplan-Meier
Plotter (https://kmplot.com/analysis/) (14). Liver cancer database
was chosen to detect poor prognosis-associated genes (lower overall
survival) in HCC patients (log rank p-value < 0.05, FDR < 5%). Gene
Expression Profiling Interactive analysis (GEPIA) (15) online
database (http://gepia.cancer-pku.cn/) was used to further
validate the expression of survival-related genes.

Gene Ontology (GO) enrichment analysis was conducted on
three main functions: Biological Process (BP), Molecular
Function (MF), and Cellular Component (CC). For the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis,
ClueGo in Cytoscape was used to perform single cluster analysis.
Bonferroni step down method was used by default for multiple
testing correction. Only results with a p-value < 0.05 and false
discovery rate (FDR) < 5% were selected (16). Genes commonly
involved in the enriched pathways were screened as core genes.

Expression and Correlation Network of
Core Genes

UALCAN (http://ualcan.path.uab.edu) (17), GEPIA and
Oncomine (https://www.oncomine.org) (18) databases were
searched for the relative expression of core genes across HCC and
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normal liver tissue, as well as in different tumor sub-groups based on
tumor stages (AJCC-TNM), tumor grade (histology), or other
settings. The correlations between core genes and cancer immune
infiltrates were investigated via Tumor Immune Estimation
Resource (TIMER) (http://timer.compgenomics.org/) (19).
Principal component analysis (PCA) was performed to compare
the distribution differences between LIHC tumor, LIHC normal
(HCCadjacent non-tumor liver), and donors’ normal liver tissue on
the expression of core genes. Raw data downloaded from TCGA
database and processing were conducted by R studio software
(version 3.6.1; R studio, Boston, Massachusetts); RNAseq and
related clinical data of a total of 367 tumor tissues and 50 normal
liver tissues were used to construct a co-expression network.

Validation Cohort: Patients and

Sample Collection

Blood samples were accessed via King’s College Hospital, Liver
Biobank (n = 50). Non-identifying clinical features are summarized
in Table 1. Patients were stratified into three groups according to
whether having received treatment including loco-regional therapy
(microwave ablation, chemoembolization), radiation therapy,
chemo-/biological therapy, immunotherapy, and surgery as well as
tumor status before sample collection: (1) untreated group (n = 30),
(2) treated HCC with active/residual tumor (n = 8), and (3) treated
HCC without active/residual tumor (n = 12). Peripheral blood
mononuclear cells (PBMCs) were isolated using density gradient

centrifugation technique (20). Sixteen paired tumor tissue and
adjacent liver tissue, as well as 12 normal liver tissue samples from
patients with hemangioma or focal nodular hyperplasia (FNH) were
accessed via the Liver Biobank, Institute of Liver Studies, King’s
College Hospital (REC NOS). This study was approved by the Ethics
Committee of King’s College Hospital (Ethic REC No. 15/LO/0363,
IRAS No.169524) and full consent was obtained from each
participant before blood and liver tissue sampling.

Real-Time PCR

Cellular total RNA was isolated using RNeasy Plus Mini kit (Thermo
Fisher Scientific, Waltham, USA). The RNA content was determined
by measuring the optical density at 260 nm, and ¢cDNA was
synthesized according to the instruction described in Prime Scripts
RT Master Mix kit. Real-time PCR was performed using SYBRs
Premix Ex TaqTM kit (Thermo Fisher Scientific, Waltham, USA). The
relative expression of target genes was normalized to GAPDH,
analyzed by 27**“" method and given as ratio compared with
control. Commercial primers for IFN-y, TNF-o, and IL-17 were
purchased from Qiagen (Product No. 249900); primer sequences for
other target genes are listed in Supplementary Table S1.

Phenotypic Analysis of PBMCs Using

Flow Cytometry

PBMCs were stained for 20 min at 4°C using monoclonal
antibodies (mAbs) specific for CD3/Vio-Green, CD4/Alexa

TABLE 1 | Baseline characteristics of HCC patients.

Parameter Untreated HCC Treated HCC with active tumor cells Treated HCC without active tumor cells Healthy control p-value
(n =30) (n=8) (n=12) (n =15)
Male, n (%) 27 (90%) 7 (87.5%) 8 (66%) 6 (60%) 0.112
Age, years 66.33 + 9.11 62.88 + 10.43 66.17 + 9.54 35 (19-65) 0.645
Cirrhosis 0.145
Y 18 6 4 N/A
N 12 2 8 N/A
Hepatitis 0.820
HBV 4 2 2 N/A
HCV 8 1 4 N/A
None 18 5 6 N/A
TNM stage 0.023
Tla-b 10 2 5 N/A
T2 6 4 0 N/A
T3-T4 6 2 0 N/A
IR 8 0 7 N/A
Tumor size, mm 46.29 + 42.89 36.88 + 20.83 35.75 + 26.63 N/A 0.644
Tumor number 0.0016
Solitary 21 2 12 NA
Multiple 9 6 0 NA
Albumin, g/L 41.50 + 6.93 42.25 + 6.16 44.08 + 3.13 NA 0.473
Platelets, 10%/L 194.5 + 81.88 149.1 +£ 62.80 208.1 + 54.27 NA 0.203
INR 1.083 + 0.166 1.053 + 0.067 1.026 + 0.127 NA 0.539
TB, pmol/L 1217 £ 7.90 11.63 = 10.67 9.00 + 4.11 NA 0.254
AST, IU/L 50.33 + 31.84 58.57 + 54.22 33.92 + 24.95 NA 0.786
Creatinine, g/dl 86.00 + 28.07 78.88 + 21.48 88.58 + 42.47 NA 0.896
TP, mg/di 74.33 + 4.57 73.00 + 7.67 73.83 + 4.47 NA 0.644
ALP, IU/L 130.6 + 73.90 141.3 £ 51.17 144.8 + 151.9 NA 0.473
MELD 8.32+£2.74 7.75 +1.39 7.72 + 3.47 NA 0.777

Numbers are presented as mean value + standard deviation. ALP, alkaline phosphatase; AST, aspartate aminotransferase; HBV, hepatitis B virus; HCV, hepatitis C virus; INR, international
normalized ratio; MELD, model for end-stage liver disease; TB, total bilirubin; TNM, tumor (T), nodes (N), and metastases (M), TP, total protein; NA, not available.

Bold values mean lower than 0.05, significant difference.
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Fluor®700, CD8/PE-Vio770, CD38/PE-Cyanine5, CD69/APC,
PD-1/BV786, CTLA-4/BV421, TIM-3/PE, CXCR3/PE-Vio615,
CXCR6/BV711, and CCR5/PE-Vio770. 7-Aminoactinomycin D
was used to exclude dead cells from the analysis. Cells were acquired
ona5-laser BD LSRFortessa' " Flow Cytometer. FACS data analysis
was performed using FlowJo software (Tree Star Inc., Ashland,
USA). The comparisons on the percentages of three T-cell subsets
(CD3+CD4+, CD3+CD8+, CD3+CD4-CD8-) were conducted
between healthy control and HCC patients (Supplementary
Figure S2 showing the gating strategy for T-cell subsets).

ELISA

Plasma PD-1 levels were detected using commercial ELISA kits
(DuoSet® ELISA Development Systems, Minneapolis, USA) in
patients with HCC. Plates were coated overnight at room
temperature with capture antibody and then blocked for 1 h at
room temperature with 300 pl of filtered 1% BSA in DPBS. For
ELISA assays, recombinant PD-1 standards were run with 1:2
serial dilutions. Streptavidin-HRP antibody was used and ELISA
plates were developed with SureBlue TMB Microwell Peroxidase
Substrate. TMB Stop Solution was added to halt the reaction. The
absorbance at 450 nm was measured on a microplate reader
(FLUOstar® Omega, BMG Labtech Ltd, Great Britain).

Statistical Analysis

Statistical analysis was conducted by GraphPad Prism software
(version 9.0; GraphPad Software Inc., San Diego, CA). For
comparison between two groups, Student’s f-test was used
while one-way ANOVA was performed for multiple groups.
For correlation analysis, linear regression test was carried out.
Receiver operator characteristic (ROC) curve was performed to
validate diagnostic value. p-value <0.05 was considered as
statistically different.

RESULTS

Data Extraction and Gene Screening

The detailed study design is shown in the flow chart
(Supplementary Figure S1). Of the large number of DEGs,
there were 52 upregulated (Log FC >2) and 150 downregulated
genes (Log FC < -2) which were found to be commonly
expressed in all GSE files (Figures 1A, B and Supplementary
Table S2). The PPI network of DEGs was exported to Cytoscape
and 37 central genes were identified through MCODE module
analysis (Figure 1C). The 37 central genes were further analyzed
in the Kaplan-Meier Plotter and GEPIA (Supplementary
Figures S3 and S4). A group of 12 genes were identified to be
associated with poor prognosis and were significantly
upregulated in HCC cancer tissue (Figure 1D).

Enrichment Analysis and Core

Gene Selection

KEGG pathway and GO enrichment analysis were performed for
the 12 selected genes through ClueGO (GO Term Fusion),
Cytoscape. The (KEGG:04115) p53 signaling pathway was
found to be the most representative pathway (p = 9.60E-6)

involved, while negative regulation of mitotic sister chromatid
separation (GO: 2000816, p = 9.27E-8), chromosome separation
(GO:0051304, p = 2.18E-8), and mitotic spindle assembly
checkpoint (GO:0007094, p = 5.97E-6) were the most
representative GO terms involved (Table 2). CCNB1, CDC20,
and CENPF were identified to play an important role in the
above pathways and screened as core genes.

Co-Expression Network of Three

Core Genes

Based on the TCGA data, the expression levels of CCNB1, CDC20,
and CENPF varied slightly according to different classifications
(TNM staging/Histology Grade/Vascular invasion), but were all
upregulated compared with normal liver tissue. With disease
progression, their expression levels seemed to increase and
showed significant differences from early HCC (T1 stage, G1
grade, none vascular invasion) (Figure 2A). In all HCC with p53
mutation, these three genes presented with higher transcription
levels. The meta-analysis of two datasets from Oncomine indicated
that in comparison with normal liver tissue, the above three genes’
expression demonstrated no statistical differences between normal
liver tissue and cirrhotic liver (Figures 2B, C).

PCA showed a good diagnostic value using the three core genes.
Based on the hepatic expression level of these three core genes, HCC
could be clearly distinguished from normal liver tissue and LTHC
normal tissue through dimensionality reduction. ROC plots
validated that the expression levels of CCNB1 (AUC = 0.905, p <
0.001), CDC20 (AUC = 0.793, p < 0.0001), and CENPF (AUC =
0.872, p < 0.0001) had good diagnostic capabilities in both overall
and early-stage (T1) HCC (Figure 2D). Further ROC plot also
revealed good performance for non-AFP secretor (AFP <7) HCC
diagnosis (Supplementary Figure S7).

Expression of Target Genes in Liver Tissue
and Blood Samples of Patients

To further verify the results obtained from the gene screening, Real-
time PCR was conducted using liver tissues and blood samples
collected from HCC patients from King’s College Hospital. The
expression levels of the three genes were all upregulated in HCC
tumor tissue compared with normal liver (p = 0.029; p = 0.047;
p = 0.027). In contrast, all three were downregulated in PBMCs
from HCC patients (p = 0.034; p = 0.039; p = 0.0132). Furthermore,
as the tumor status changed with treatment, the expression levels of
these genes changed correspondingly in PBMCs; treated HCC
patients without active/residual tumor cells had higher transcript
levels of CCNB1, CDC20, and CENPF compared with the other
two subgroups of HCC patients (Figure 3A).

Cytokine Gene Expression and Plasma
PD-1 Levels

Treated HCC patients without active/residual tumor cells had
higher mRNA expression levels of antitumor cytokines,
including IFN-y, TNF-0, and IL-17 when compared with
untreated HCC patients (p = 0.016; p = 0.041; p = 0.0146).
With tumor response to treatment, the transcript levels of these
genes further increased (Figure 3B). Soluble PD-1 levels in
plasma measured by ELISA were not significantly different
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FIGURE 1 | Identify central cluster and gene expression validation: (A) Volcano plots of differentially expressed genes. (B) Venn Diagram of commonly up-/
downregulated genes. (C) Screening of central cluster using MCODE plug-in. (D) Validation of central cluster genes expression in LIHC (liver hepatocellular
carcinoma); red boxplot represents HCC tissue, and black box represents normal liver tissue. *P < 0.05.

between patients with untreated and treated HCC with active/ T Cell Profiling

residual tumor cells. However, untreated HCC patients had  The percentages of peripheral blood T cell subsets were defined
higher plasma PD-1 levels compared with healthy controls (p < by flow cytometry and showed significant differences between
0.05) and treated HCC patients without active/residual tumor  untreated HCC patients and healthy controls. The percentages of
cells (p < 0.01) (Figure 3B). both CD8+ and double-negative (CD8-CD4-) T cells were lower

TABLE 2 | Enrichment analysis of the 12 selected genes using ClueGO plug-in.

GO Term Term p- Gene Gene GO Levels Associated genes found
Value* Count ratio
G0:2000816 negative regulation of mitotic sister chromatid ~ 5.55928E-07 4 0.33 [5,6,7,8,9 10 [CCNB1, CDC20, CENPF, PTTG1]
separation
G0:0051304 chromosome separation 1.03679E-07 5 0.42 [3, 4] [CCNB1, CDC20, CENPF, PTTGT,
TOP2A]
GO:0007094 mitotic spindle assembly checkpoint 2.09111E-05 4 0.33 [5,6,7,8,9, 10,11, 12, [CCNB1, CDC20, CENPF, PTTG1]
13]
KEGG:04115 p53 signaling pathway 2.87859E-05 4 0.33 [-1] [CCNB1, CDK1, RRM2, TOP2A]
G0:0030261 chromosome condensation 2.00749E-05 3 0.25 7 [CCNB1, CDK1, TOP2A]
GO:0051985 negative regulation of chromosome 1.10394E-06 4 0.33 [3, 4, 5] [CCNB1, CDC20, CENPF, PTTG1]
segregation
G0:1905819 negative regulation of chromosome separation  6.03072E-07 3 0.25 [4,5,6,7] [CCNB1, CDC20, CENPF]
G0O:0051306 mitotic sister chromatid separation 1.60737E-06 3 0.25 [4,5,6,7,8] [CCNB1, CDC20, CENPF]
GO:0051784 negative regulation of nuclear division 2.06113E-06 3 0.25 [5,6,7] [CCNB1, CDC20, CENPF]

*Corrected with Bonferroni step down.
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in untreated HCC patients (p = 0.01; p = 0.0009), while the
portion of CD4+ T cells was higher in untreated HCC (p =
0.0014) (Figure 3C) compared with healthy controls. No
difference was found in the percentage of cells positive for
exhaustion/activation markers (CD38, CD69, CTLA-4, Tim-3,
and PD-1). High levels of expression of CXCR3 and CCR5 were
observed in peripheral blood T cells, although there was no
difference between the three HCC untreated or treated subsets
(Supplementary Figure S5).

Correlations Between the Three Target
Genes and Immunity
Correlation matrix revealed that the expression levels of CCNBI,
CDC20, and CENPF were all correlated with CD8+ and CD4+ T
cells to an extent, but only CENPF showed statistical significance
(p = 0.033; p = 0.026). Though CCNB1 showed a trend, no
significance was observed (p = 0.067; p = 0.065). In addition, the
three genes expressed positive association with antitumor
cytokine mRNA expression level in PBMCs (Figure 3D).
Increasing expression of these three genes in HCC tumor
tissue was associated with decreased overall and disease-free
survival (Figure 4A). Though the expression levels of three core
genes in PBMCs illustrated no correlation with the plasma PD-1
levels (Figure 4B), in HCC tumor tissue, all of them were
positively associated with tumor purity (percentage of tumor
cells within HCC tissue); the higher the expression in HCC
tissue, the more tumor cells were present in the tissue with fewer
infiltrating immune cells (Figure 4C). Moreover, a significant

T T T 1
0 20 40 60 80 10¢
100% - Specificitv%

FIGURE 2 | Expression of three core genes across HCC and normal liver tissue: (A) Expression of three genes in HCC tumor tissue based on tumor stage, tumor
grade, and other classifications. (B) Meta-analysis on the expression of three genes in liver tissue based on whether they have cirrhosis or not. (C) Expression of
three genes in HCC based on whether they have the p53 mutation or not. (D) Validation of diagnostic role of three genes using PCA and ROC analysis. Gene
expression profiles were downloaded from TCGA database. *P < 0.05, ***P < 0.001, ***P < 0.0001. ns, no significance.

association between the transcript levels of these three genes and
inhibitory checkpoint molecules was observed in the tumor
environment (Supplementary Figure S6).

DISCUSSION

In this study, joint screening of multiple databases including GEO,
TCGA, GEPIA, and Kaplan-Meier Plotter identified CCNBI,
CDC20, and CENPF, three mutated gene markers. These three
genes were found to be widely expressed and highly upregulated in
HCC samples, and their upregulation was significantly associated
with poor prognosis. By using meta-analysis through the Oncomine
database, the influence of liver cirrhosis on the expression of above
three genes was excluded. Our findings may be useful in tackling the
difficulties caused by the heterogeneity of HCC, which contributes
to the failure of precision therapy with targeted drugs (21-23). The
differential expression of various genes in the tumor tissue makes it
unlikely that a single treatment will be effective in all patients. For
example, although anti-PD1 therapy is an effective cancer treatment,
the overexpression or mutations of LAMA3, CXCR2, and JAK1/2
could prevent the immune system from boosting effective antitumor
immunity (24, 25). Therefore, identifying genes that are commonly
upregulated in HCC tissue may provide new targets for
HCC treatment.

Enrichment analysis revealed that the above three genes
mainly interact with each other in functions related to cell
proliferation and cell cycle (Table 2). It is known that one of
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the distinguishing features of cancer is the dysregulation of the
cell cycle, resulting in unrestricted proliferation of cancer cells
(26, 27). Normally, p53 gene regulates all four checkpoints in the
cell cycle (G1/S; S-phase; G2/M; M) (28, 29). It can halt the cell
cycle when censored DNA damage or other gene mutation
occurs, thereby encouraging repair of damaged DNA (30).
However, in patients with HCC, the p53 gene has always
presented with a degree of loss of function or dysfunction (31),
resulting in cancer cells continually proliferating leading to
tumor growth. The results of our investigation showed that the
expression of CCNB1, CDC20, and CENPF are closely related to
p53 mutations and the p53 signaling pathway (Table 2). In HCC
tissue expressing the p53 mutation, the expression levels of the
three genes are significantly higher than those without p53
mutator (Figure 2C). Meanwhile, it will also increase with the
upgrading of TNM stage/histological grade and the deepening of
vascular invasion degree (Figure 1). Thus, overexpression of
CCNB1, CDC20, and CENPF in liver tissues imply an underlying
cell cycle disorder. The higher the expression, the faster the
proliferation of abnormal cells and the greater the possibility of
tumor development. This was also confirmed in other solid
tumors, not only in HCC. Fang et al. found that downregulation
of CCNBI1 impaired colorectal cancer proliferation in vitro and
tumor growth in vivo (32). Through a long-term follow up, Karra
et al. reported that CDC20 and securin overexpression predict

short-term breast cancer survival (33). Han et al. also found that
CENPF could promote papillary thyroid cancer progression by
mediating cell proliferation and apoptosis (34).

Early stage of HCC is usually asymptomatic, and the
guidelines of American Association for the Study of Liver
Diseases (AASLD) and European Association for the Study of
the Liver (EASL) recommend imaging (ultrasound, CT or MRI)
combined with alpha-fetoprotein (AFP) to identify HCC (35-
37). However, the sensitivity and specificity of AFP in the
diagnosis of liver cancer is not ideal. The specificity of AFP is
low and it can be elevated in pregnant women, acute and chronic
hepatitis, gonadal tumors, and gastrointestinal tumors; in
addition, approximately 40% of patients with HCC are non-
secretors of AFP (38-40). Therefore, it is meaningful to identify
new markers for HCC diagnosis. Some studies reported that
YTH N6-methyladenosine RNA binding protein 1 (YTHDFI)
and DNA primase subunit 1 (PRIM1) might be potential
molecular targets for HCC (41, 42). Those two molecular
targets regulated the proliferation, migration, and invasion of
HCC cells. In the present study, we aim to identify key genes in
HCC that are associated with antitumor immunity and also the
pathways influencing the antitumor immunity, such as inhibitory
checkpoints. Regardless of the classification standards (TNM
staging/Histology Grade/Vascular invasion) used for analysis, all
results revealed that CCNB1, CDC20, and CENPF were already
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significantly upregulated in the early stages of HCC tumor tissues
(T1/G1/Stage I/no vascular invasion). There might be a limitation
due to the fact that the final reading for RNA-seq is from the mean
value of several reads at the same tumor site rather than the
average value from different tumor sites. Further ROC analysis
showed that these three genes have high value for the early
diagnosis of HCC Moreover, even in non-AFP secretors, AUCs
of CCNB1, CDC20, and CENPF can achieve a performance close
to 0.90 (Supplementary Figure S7). Considering that genetic
changes often occur earlier than clinical/pathological changes,
the combination of serum AFP and tumor-related gene
expression may enhance the efficacy of screening and early
diagnosis of HCC (43-45).

Though the RNA-seq data from TCGA did not have detailed
background information for patients’ underlying liver diseases,
we found that the expression levels of the three genes were
closely related to the survival of patients with HCC. Tumor
immune infiltrate analysis through the TIMER database
demonstrated that the expression levels of the three genes were
proportional to the tumor purity. As mentioned above, due to
the close relationship between CCNB1, CDC20, and CENPF and
P53, overexpression of these three genes represents an imbalance
in cell cycle regulation. In HCG, it indicates that cancer cells are
rapidly proliferating, and the tumor is in an aggressive state. This
feature could be used to assess the prognosis of HCC patients
after surgery, to indicate the risk of recurrence, to stratify
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follow-up imaging, and to guide clinicians regarding
adjuvant treatment.

Intriguingly, the expression levels of CCNB1, CDC20, and
CENPE in PBMCs were completely opposite to those observed in
tumor tissues. Compared with healthy controls, the expression of
the three genes in PBMCs from untreated HCC was significantly
downregulated, and with treatment, the expression levels in PBMCs
gradually increased. The discrepancy in expression pattern between
peripheral blood and liver tissue prompted us to set up the
correlation network of three target genes in the peripheral blood
with immune cells and antitumor cytokines, which showed that the
three target genes not only correlated with the percentage of T-cell
subtypes, but also showed a positive correlation with the
transcription levels of antitumor cytokines (IFN-y, TNF-c, and
IL-17). It can be speculated that the discrepancy in the expressions
of CCNBI1, CDC20, and CENPF between tumor tissue and
peripheral blood may be related to differences in the immune
environment: the peripheral circulation has higher percentage of
T effectors, such as CD8+T cells, representing cytotoxic T cells, NK
cells, and other anti-tumor immune cells than that in HCC tissue
where it was dominated by cancer cells and tumor-promoting
lymphocytes. Therefore, the overall microenvironment in
peripheral blood often presents an immune state of promoting
antitumor activity while the HCC tissue shows a state of
immunosuppression. The different immune status of peripheral
blood and tumor tissue could also explain why the expression levels
of the three genes in PBMCs have no correlation with the soluble
PD-1 level, while in HCC, all of them were strongly associated with
the mRNA expression of immune checkpoint molecules: PD-1,
CTLA-4, and TIM-3. The close association between these three
genes and p53 as well as inhibitory checkpoint molecules suggests
that those genes are potentially treatment targets for HCC. The
transcription level changes of the three genes in peripheral blood
may assist in establishing rapid, reliable, and reproducible detection
assays to assess the immune status and treatment response of
HCC patients.

Given the fact that the mRNA expression of three target genes in
PBMC:s was opposite to that in tumor tissues, single-cell omics and
spatial transcriptomics might be applied in future studies. The
establishment of new models and algorithms (46, 47) allows
information from various single-cell omics databases to be
mutually compatible and integrated even though the
experimental conditions, platforms, and omics types are different.
Meanwhile, high-throughput spatial transcriptomics makes it
possible to measure all genetic activity in the tissue samples and
to locate the position of the activity. It looks encouraging that more
novel methods have been developed to deconvolute spatial
transcriptomics for decomposition of cell mixtures in the spatially
resolved transcriptomics data (48, 49). Moreover, combining
single-cell RNA-seq and spatial transcriptomics could be a
promising new method to comprehensively analyze the spatial
cell composition of tumor tissue, to characterize tumor cells and
their immune microenvironment, and, more importantly, to define
the interactions between tumor and microenvironment. Such
applications have been found in cancer studies other than HCC
(50, 51). Further integrative analysis by using both single-cell omics

and spatial transcriptomics might provide a more comprehensive
understanding about the cellular process in HCC development.

In conclusion, we confirmed that the three genes, CCNBI,
CDC20, and CENPF, are commonly involved in the
carcinogenesis of HCC and showed potential for early
diagnosis. More importantly, the expression of these three
genes is closely associated with Th1/Th17 cytokine gene
expression and CD4P**/CD8P T-cell percentage in peripheral
blood and inhibitory checkpoints in tumor microenvironment.
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