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Key processes in the onset and evolution of chronic lymphocytic leukemia (CLL) are
thought to include chronic (antigenic) activation of mature B cells through the B cell
receptor (BcR), signals from the microenvironment, and acquisition of genetic alterations.
Here we describe three families in which two or more siblings were affected by CLL. We
investigated whether there are immunogenetic similarities in the leukemia-specific
immunoglobulin heavy (IGH) and light (IGL/IGK) chain gene rearrangements of the
siblings in each family. Furthermore, we performed array analysis to study if similarities
in CLL-associated chromosomal aberrations are present within each family and screened
for somatic mutations using paired tumor/normal whole-genome sequencing (WGS). In
two families a consistent IGHV gene mutational status (one IGHV-unmutated, one IGHV-
mutated) was observed. Intriguingly, the third family with four affected siblings was
characterized by usage of the lambda IGLV3-21 gene, with the hallmark R110 mutation
of the recently described clinically aggressive IGLV3-21R110 subset. In this family, the CLL-
specific rearrangements in two siblings could be assigned to either stereotyped subset #2
or the immunogenetically related subset #169, both of which belong to the broader
IGLV3-21R110 subgroup. Consistent patterns of cytogenetic aberrations were
encountered in all three families. Furthermore, the CLL clones carried somatic
mutations previously associated with IGHV mutational status, cytogenetic aberrations
and stereotyped subsets, respectively. From these findings, we conclude that similarities
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in immunogenetic characteristics in familial CLL, in combination with genetic aberrations
acquired, point towards shared underlying mechanisms behind CLL development within
each family.
Keywords: CLL (Chronic Lymphocytic Leukemia), Familial CLL, BCR stereotypy, IGLV3-21 R110, CLL development
INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most common
leukemia in Western countries (1). Sex and age are important
risk factors for CLL, with a two-fold increased risk of developing
CLL for men compared to women and a median age at CLL
diagnosis of around 70 years (2). Although no single genetic
lesion drives CLL, a range of recurrent cytogenetic aberrations
and somatic mutations have been identified in CLL (2–4).

Cytogenetic aberrations are common in CLL, with around
80% of CLL patients carrying at least one of the four common
chromosomal alterations, i.e. del(13q), del(11q), del(17p) and
trisomy 12 (2, 5). Of these four alterations, del(13q) is the most
frequent and, as a sole aberration, is associated with indolent
disease (6). Del(11q) and del(17p) are associated with an
unfavorable prognosis, through loss of function of the ATM
and TP53 gene, respectively (3, 7–9). Lastly, trisomy 12 is
associated with an intermediate prognosis (10, 11). Several key
whole-exome sequencing (WES) and whole-genome sequencing
(WGS) studies have revealed over 50 recurrently mutated genes
(4, 12–15). However, the majority of these putative CLL driver
mutations are present at low frequency (<5% of cases), with only
a handful of more common mutations in genes such as TP53,
ATM, SF3B1, NOTCH1 and BIRC3 (4, 12).

Another important facet of risk stratification of patients with
CLL is the somatic hypermutation (SHM) status of the B cell
receptor (BcR) immunoglobulin heavy variable (IGHV) gene
(16). CLL patients with a mutated IGHV-gene (M-CLL), i.e.
showing lower than 98% IGHV gene similarity to its closest
germline counterpart, generally have a more indolent disease
course than CLL patients with an unmutated IGHV gene with a
germline identity equal to or above 98% (U-CLL) (2).
Furthermore, stereotyped or (quasi)identical BcR IGs are
observed in more than 40% of CLL patients (16). Patients with
shared BcR IG motifs can be assigned to distinct stereotyped
subsets associated with particular presentation and outcomes
(17, 18). One of the stereotyped subsets with the worst clinical
outcome is subset #2 (IGHV3-21/IGLV3-21), which displays a
mixed IGHV mutation status and an enrichment of SF3B1
mutations (17–19). An important new subset is the clinically
aggressive IGLV3-21R110 subset, which also includes subset #2,
that is characterized by shared usage of the lambda IGLV3-21*01
or *04 allele, along with a hallmark substitution of Gly to Arg at
amino acid position 110 at the very end of the IGLJ gene (20, 21).
The IGLV3-21*01 and *04 alleles encode a Lys at position 16 and
two Asp residues at position 50 and 52 in the CDR2 region of the
light chain variable region (VL), which interact with the R110
light chain residue, resulting in constitutive autostimulation of
the BcR, putatively contributing to CLL pathogenesis (20).
2

Although the aforementioned genetic features mostly occur
sporadically, evidence exists for germline predisposition for CLL
(17, 22). The incidence of CLL varies geographically, with highest
incidence among individuals with European ancestry (23). This
hereditary element of CLL is also reflected in familial
predisposition, as relatives of CLL patients have an increased
risk of developing CLL as well as other B-cell malignancies (24).
Furthermore, monoclonal B-cell lymphocytosis (MBL), the
asymptomatic pre-stage to CLL, is more often seen in first-
degree relatives of CLL patients and is particularly common
among healthy relatives of patients with high-risk familial CLL
(i.e. families with two or more relatives with CLL) with a
prevalence of around 15% among individuals older than 40
years (23, 25). Genome-wide association studies (GWAS) have
captured part of this familial predisposition by screening for
single nucleotide polymorphisms (SNP) associated with familial
CLL, yielding low-risk SNPs distributed over nearly 30 loci
(22, 26–33).

In this context, through a combination of immunogenetic,
SNP-array and WGS analysis, we here aimed to gain insight into
the contribution of BcR composition, cytogenetic aberrations
and CLL driver mutations to familial CLL occurrence by
studying three families with multiple siblings diagnosed
with CLL.
MATERIALS AND METHODS

Samples
Peripheral blood was obtained from ten CLL patients from three
families (Figure 1). Informed consent was provided in accordance
with the declaration of Helsinki and the study was approved
by the hospital medical ethics committee (METC2015-741).
Familial connection was confirmed through STR analysis.
Peripheral blood mononuclear cells (PBMCs) were isolated by
Ficoll Paque (GE Healthcare, Little Chalfont, UK) gradient
centrifugation. CLL cells and T lymphocytes were sorted from
PBMCs using a FACSAria cell sorter (BD Biosciences, San Jose,
CA, USA). Immediately after sorting, cells were lysed in RLT+
buffer (Qiagen, Valencia, CA, USA) complemented with b-
mercapto-ethanol and stored at -80°C until further processing.
DNA and RNA was isolated with the DNA/RNA/miRNA easy
kit (Qiagen) according to the manufacturer’s protocol. In the event
that DNA was isolated from total PBMC, spin-column kits and the
QIAcube platform (Qiagen) were used. cDNA was synthesized
using the SuperScript™ III First-Strand Synthesis System
(Thermo Fisher Scientific, Waltham, MA, USA), according to
manufacturer’s instructions.
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FIGURE 1 | Family trees and BcR IG characteristics of familial CLL cases. (A) Family 1 consists of two brothers and two sisters who carry mutated IGHV genes.
(B) Family 2 consists of two brothers who both carry unmutated IGHV genes. (C) Family 3 consists of two brothers and two sisters. In all four siblings, the CLL clone
utilizes the IGLV3-21*04 gene with the characteristic R110 mutation and the K16 and YDSD motifs. Additionally, siblings 3B and 3C express similar IGHV genes, i.e.
IGHV3-21 and IGHV3-48, and belong to stereotyped subsets #2 and #169, respectively.
Frontiers in Oncology | www.frontiersin.org August 2021 | Volume 11 | Article 7400833

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kolijn et al. Immunoglobulin Features in Familial CLL
IG Gene Rearrangement Analysis
Immunoglobulin heavy (IGH) and IG kappa/lambda (IGK/IGL)
gene rearrangements were amplified from 100 ng gDNA isolated
from the total PBMC fraction with multiplex PCR utilizing the
BIOMED-2 IGH primers and IG light chain consensus primers,
following ERIC guidelines (34, 35). Clonal PCR products were
separated by heteroduplex gel electrophoresis and were purified by
gel extraction. Rearrangements were determined through Sanger
sequencing on anABI 3130xl instrument (ThermoFisher Scientific,
Waltham, MA, USA). Sequencing results were analyzed using the
IMGT/V-QUEST tool on the IMGT website (www.imgt.org,
version 3.3.1). Stereotyped subsets were defined by the following
parameters: (1) usage of IGHV genes from the same phylogenetic
clan, (2) aminimumof 50% amino acid identity and 70% similarity
within the heavy chain CDR3, (3) identical heavy chain CDR3
length and, (4) identical offset of the shared amino acid pattern (28).
The IGLV3-21R110 mutation was confirmed using IGLV3-21
primers on cDNA for 3 out of 4 members of family 3. As no RNA
was available for sibling 3C, the R110 mutation was instead
confirmed based on the WGS results analyzed by an extension of
the ARResT/Interrogate immunoprofiler for the analysis of IG/TR
rearrangements in non-amplicon sequencing data such as from
WGS, WES and RNA-seq (36, 37).

SNP Array Analysis
Two hundred fifty ng of genomic DNA was used for single
nucleotide polymorphism (SNP) array analysis on the Illumina
Human OmniExpress Beadchip (Illumina, San Diego, CA, USA).
Data were analyzed with Beadstudio software (Illumina). The log
R ratio and B allele frequency data were analyzed using Nexus
Copy Number (Nexus BioDiscovery, El Segundo, CA, USA). The
results were compared with a database of known copy-number
variations (Department of Clinical Genetics, Erasmus MC,
Rotterdam, The Netherlands) and a public copy-number
variations dataset containing approximately 3500 healthy
controls (dataset of genomic variants). The affected locations
detected were analyzed in Ensembl Genome Browser 95 (www.
ensembl.org) and screened for loci previously linked to CLL in
GWAS studies. The used SNP array contained more than 700K
probes, and the genome was analyzed with an average resolution of
150 kb, or smaller when it contained at least 10 consecutive probes.

Whole-Genome Sequencing
One hundred ng of genomic DNA was used for construction of
WGS libraries using the TruSeq Nano Kit (Illumina Inc.) and
sequenced in paired-endmode (2x150bp) on the IlluminaHiSeqX
Ten system (Illumina Inc.) with 30× target coverage. The bcl files
were converted to FASTQ using bcl2fastq and subsequently
processed using Piper, a pipeline built on top of GATK queue.
Reads from each library were aligned to the Grch37 reference
genome using BWA mem and merged and de-duplicated using
Picard. Re-alignment around known and novel indel-sites was
performed with GATK. All SAM/BAM-conversion steps were
completed using SAMtools. Germline samples (T-lymphocytes or
PBMC) were compared to reference genome GRCh37 using
GATK. However, as the PBMC samples also included CLL cells,
Frontiers in Oncology | www.frontiersin.org 4
no distinction could bemade between somatic mutations or novel
germline variants for these patients; instead, the PBMC samples of
patients 1B and 2B were used to confirm if germline variants
identified in sibling(s)were shared. Somatic variation inCLL clone
vs germline was annotated by the Strelka2 Small Variant Caller.
The Variant Call Format (VCF) files were filtered for PASS
variants, annotated with VEP and converted to Mutation
Annotation Format (MAF) files using VCF2MAF. MAF-files
were analyzed using the maftools R package (38). Somatic
mutations in CLL-associated genes were annotated by the
Ensembl Variant Effect Predictor (VEP, ensembl.org/info/docs/
tools/vep/index.html). The panel of CLL driver genes was based
on landmark WGS and WES studies (4, 12), for the full panel see
Supplementary Table 1. Additional screening was then performed
for genes in KEGG pathways related to DNA replication, DNA
repair, BcR, p53 signaling, cell cycle and the spliceosome. Germline
variants were filtered based on clinical significance in ClinVar
(https://www.ncbi.nlm.nih.gov/clinvar/), allele frequency, SIFT,
PolyPhen and CADD score. All somatic mutations were screened
for disease recurrence in CLL and cancer in COSMIC (39)
(cancer.sanger.ac.uk) and Intogen (www.intogen.org). The WGS
dataset and immunogenetic sequencing data are available upon
request to the corresponding author through the SciLifeLab
repository (DOI: 10.17044/scilifelab.14932062).
RESULTS

Families With Multiple CLL Patients
In family 1 (Figure 1A) four (out of a total ten) siblings, i.e. two
brothers and two sisters, suffered from CLL. They were
diagnosed at advanced age [85 (1A), 86 (1B), 79 (1C), and 60
(1D)] and were followed until late age (98, 91, 84 and 82 years,
respectively) (40). All ten siblings grew up on a Dutch farm,
where cattle breeding and agriculture were practiced. No record
was kept of pesticide use at the farm. All of the other six siblings
had passed away at time of inclusion, without showing clinical
signs of hematological or immunological disease. Both male
patients (1A and 1B) moved out during adolescence, while the
female patients 1C and 1D remained at the farm until they were
middle-aged. Only patient 1A, who also presented with
lymphadenopathy, received treatment for CLL (chlorambucil),
twelve years after diagnosis (40). The two brothers of family 2
(Figure 1B) were diagnosed with CLL at age 77 (2A) and 71 (2B)
years. Family 3 also consisted of two brothers and two sisters
with CLL, who were diagnosed in the age range from 64 until 81
years (Figure 1C). Sibling 3B was treated with fludarabine.
Members of both family 2 and family 3 had the Dutch
nationality and were Caucasian. Additional clinical data and
descriptive information were unfortunately not available for
families 2 and 3.

Familial CLL Shows Consistent
BcR IG Characteristics
Through IG Sanger sequencing of genomic DNA from total
PBMC fractions from CLL patients in each of the three CLL
August 2021 | Volume 11 | Article 740083
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families, we discovered strikingly similar immunogenetic features
within each family (Figure 1). For family 1, a consistent somatic
hypermutation (SHM) status of the IGHV gene was observed, with
each of the four siblings harboring a M-CLL clone with an IGHV
gene germline identity below 98% (Table 1). Moreover, two siblings,
1B and 1D had multiple CLL clones, each of which expressed a
mutated IGHV gene. Although CLL is generally of monoclonal
origin, multiple productive IGH rearrangements have been
observed in around 2% of CLL cases (16). These can arise from a
single CLL clone (biallelic rearrangement) or reflect biclonal CLL
disease (41, 42). Interestingly, family member 1D appeared to have
biclonal CLL consisting of a SmIgk+ and a SmIgl+ CLL clone as
determined by flow cytometry (data not shown). Since we detected
three productive IGH rearrangements, one of the two CLL clones
likely expresses two IGH alleles. The multiple productive IGH
rearrangements identified for family member 1B may also be
biallelic but could not be discerned as only one rearranged Ig
light chain gene was expressed. Previously, multiple additional IGH
bands were detected for these family members in Southern blot
analysis (40), but these were now all found to be unproductive.
Altogether, family 1 is characterized by M-CLL, with multiple
productive and unproductive rearrangements in two individuals.

In family 2, both siblings expressed unmutated IGHV genes
(U-CLL). Notably, each sibling expressed IGHV4 (IGHV4-31 or
IGHV4-34), IGHJ6 and IGK light chain genes, but no BcR IG
stereotypy was observed (Table 1). Hence, the key defining
feature of family 2 is the U-CLL type.

Finally, the CLL clone of all siblings of family 3 expressed an
IGHV gene with (near) borderline IGHV mutational status
(germline identity ranging from 96.4 - 98.2%; borderline IGHV
mutational status is classically defined as 97-97.9% germline
identity) (43). Notably, the CLL clone in all four siblings utilized
the lambda IGLV3-21*04 gene, suggestive of membership of the
recently discovered IGLV3-21R110 subset (20, 21), which usually
has a borderline mutation status. As the BIOMED-2 IGLV/IGLJ
light chain consensus primers did not capture the essential final
nucleotide of the IGLJ gene to verify the R110 status, we repeated
sequencing with adapted primers on cDNA in cases where RNA
was available. We confirmed the somatic R110 mutation and
Frontiers in Oncology | www.frontiersin.org 5
germline configuration of the K16 and YDSD motifs in all four
members of family 3 (Supplementary Figure 1). Regarding the
heavy chain, two family members (3B and 3C) belonged to the
closely related and clinically aggressive subsets #2 and #169,
respectively (44). The respective IGHV genes of these heavy
chain stereotypic CLL subsets, IGHV3-21 and IGHV3-48, were
97% identical. The CLL clone of sibling 3B also expressed the
IGHV3-48 gene, though the variable heavy CDR3 (VH CDR3) of
this patient did not match a stereotyped subset (Table 1). Thus,
family 3 is paradigmatic for the IGLV3-21R110 subset with a
borderline IGHV mutation status.

CLL Families Show Similar Genomic
Profiles
To further explore the genomic profiles in these immunogenetically
paradigmatic families, we utilized SNP array analysis. We detected
genomic aberrations in all three families (Table 2). For family 1 and
3 we observed the most common deletion in CLL, del(13q), in the
CLL clone(s) of all members, whereas the two brothers of family 2
carried trisomy 12. Additionally, sibling 3C carried del(11q), which
is in line with previous reports of subset #2 patients having an
increased incidence of 11q deletions (45). Lastly, sibling 1C carried a
2q34-2q35 deletion, a chromosomal aberration not previously
associated with CLL, though deletions of 2q37 encompassing
SP140 and SP110 have been reported (12, 46). Furthermore, the
SNP array revealed a distinct loss of heterozygosity (LOH) profile
for each family, composed of loci previously linked to CLL in
GWAS (Supplementary Table 3) (26, 29–33). All three families
shared LOH in the MHC locus (6p22.1) and the CASP8 and
CASP10 locus (2q33.1). LOH of chromosome region 11q22.3,
where the ATM gene is located, was detected in members of
family 1. Additionally, we observed LOH of 14q32.2-q32.33 in
family 2, which is interesting as 10% of CLL patients with trisomy 12
were previously observed to have an additional translocation in
14q32 (11). Furthermore, we observed LOH in the 2q22.1 locus in
family 2 and family 3, which was recently identified as a novel CLL
risk locus using shared genomic segment analysis and was found to
include the full CXCR4 gene. Although there were no cytogenetic
data available, we have used SNP array data to define genomic
TABLE 1 | Overview of BcR IG sequencing results.

Family member Stereotyped subset IGHV gene HCDR3 IGLV/IGKV gene LCDR3

1A – V1-3 CARGVRFLEFLLYGDDAFDIW IGKV1-33
IGK1-9

CQQYDNLPPALATVCQQVNSYPRITF

1B – V4-34
V3-15

CARSLVVPAAYGPNSWFDSW
CATGGHCGGACYSPYFDYW

IGLV2-18 CSLYTGTKTIF

1C – V3-7 CAKHDNTGDFHLDNW IGKV1-16
IGLV2-11

CQQYNSYPALTF
CCSYAGSHTYVF

1D – V1-8
V2-5
V3-15

CARHPSRRCSGDFCSTGNWFDPW
CLGHWVRGIMTPFDYW

CNYYVMDVW

IGKV3-20
IGLV2-14

CQQYGSSPNTF
CSSYTSSNTLVF

2A – V4-31 CARLLAGLHYYYYYAMDVW IGKV1-33 CQQYDNLPPYTF
2B – V4-34 CARERRDSNYGSGIFYYYYGMDVW IGKV4-1 CQQYYSTPRTF
3A IGLV3-21R110 V1-46 CARAWSSAWKYYFDY IGLV3-21 CQVWDSGSDHPWVF
3B IGLV3-21R110/#169 V3-48 CARDGVGAPY IGLV3-21 CQVWDSGTDHPWVF
3C IGLV3-21R110/#2 V3-21 CARDQNGMDV IGLV3-21 CQVWDSSSDHPWVF
3D IGLV3-21R110 V3-48 CARDGGPCGDCYQ IGLV3-21 CLVWDSGSDHPYVF
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complexity. In none of the patients a high genomic complexity was
indicated (Table 2), defined as 5 or more unbalanced aberrations
according to Leeksma et al. (47–49). Only two patients (1C and 3C)
presented with three or four aberrations (Supplementary Table 4).
In conclusion, SNP-array analysis revealed shared CLL-associated
chromosomal aberrations within each family and LOH in several
CLL risk loci, and no complex karyotype cases in any of the families.

Whole-Genome Sequencing Identifies
Germline Variants in CLL-Related
Pathways in All Three Families
To investigate somatic mutations in the CLL clones and review
potential contributing germline variants, we performed WGS on
both sorted CLL samples and normal T cells of all three families.
Unfortunately, for patients 1B, 2B and 3B, sufficient CLL-derived
genomic material for WGS was not available (Supplementary
Table 3). However, for patient 1B and 2B, we were able to
sequence leftover DNA from unsorted PBMCs, allowing us to
screen for potential shared germline variants that were found in
the families or their members. We performed an initial screen for
germline variants and somatic mutations and in CLL driver
genes previously identified in WGS and WES studies and then
followed up with KEGG pathway analysis to screen for novel
CLL-related genes (Figure 2 and Supplementary Table 5).

First, we catalogued the germline variants in each of the families.
We identified a germline frameshift deletion in CHEK2
(p.T410Mfs*15) in siblings 1A, 1B and 1D, but not in sibling 1C
(Figure 2A and Supplementary Table 5). Deleterious germline
CHEK2 variants have been associated with an increased risk of
developing primarily breast cancer and colorectal cancer (50).
Moreover, somatic CHEK2 alterations have been reported in CLL
(4, 51). Additionally, we identified a rare germline missense variant
(p.R325C) in PIK3R3 in sibling 1A, 1C and 1D, but not in sibling
1B. PIK3R3 is a regulatory subunit of phosphatidylinositol 3-kinase
(PI3K) and thus an essential part of the PI3K/AKT signaling
pathway involved in cell survival and proliferation (52–54).

Notably, we observed a rare germline missense variant in
NFKBIA (p.T185M) in both siblings of family 2, predicted to be
pathogenic by variant effect predictor tools. NFKBIA inhibits
NF-kB/REL complexes during inflammatory response. NFKBIA
is also a part of the BcR signaling pathway (55). In family 3,
sibling 3A and 3C carried a germline missense variant in the
ERCC6 gene (p.R666C), which encodes a protein involved in the
Frontiers in Oncology | www.frontiersin.org 6
base excision repair pathway. Altogether, some interesting
germline variants were observed, but many were of unknown
significance and most variants were not shared by all siblings
with CLL, making a strong causal relationship in familial CLL
less straightforward than for previously described somatic
mutations in CLL.

Known and Novel Somatic Mutations in
CLL-Driver Genes and Related Pathways
in All Three Families
Next, we characterized somatic mutations specific to the CLL
clone (Figure 2B). We encountered a somatic frameshift deletion
and missense mutation in ATM in sibling 1A, which in
combination with the LOH of chromosome region 11q22.3
results in bi-allelic loss of ATM. This same clone had an
additional p.G13D somatic missense KRAS mutation and a
somatic frameshift deletion in the BAX gene. Lastly, we
observed a somatic missense mutation (p.D470H) in sibling 1A
in the PRKCB gene, involved in many different signaling
pathways, including B-cell activation.

The CLL clone of sibling 1C carried two somatic missense
mutations of interest, a p.D594N mutation in BRAF previously
observed in CLL, and a novel CD19 mutation (p.L495P). Sibling
1D presented with biclonal CLL, one SmIgk+ and one SmIgl+

CLL clone. In each CLL clone, a known CLL driver gene was
affected; the IGK+ clone carried a truncating mutation inMED12
(56), while the IGL+ clone carried a missense mutation at the
CLL hotspot (L273P) inMYD88 (57). Furthermore, we observed
a somatic missense mutation (p.G2R) in both the SmIgk+ and
SmIgl+ clones in LYN, a gene directly downstream of the BcR.

In family member 2A we detected somatic frameshift deletions
in FBXW7 and NOTCH1 and a missense mutation in KRAS, all of
which have been previously associated with the occurrence of
trisomy 12 in CLL (11, 58–60). Unfortunately, the lack of somatic
data from patient 2B prevented us from confirming if the somatic
mutational profile matched between siblings.

In family 3, we observed a somatic mutation in one of the CLL
hotspots (p.G742D) of SF3B1 for sibling 3A. SF3B1 mutations
are common in CLL and particularly associated with subset #2
and the IGLV3-21R110 subset (20, 21). Sibling 3C carried somatic
mutations in several low-frequency mutated genes in CLL:
IGLL5, DYRK1A and BAZ2A (4, 12). The somatic mutation in
IGLL5 is likely the result of aberrant SHM (61). Additionally,
TABLE 2 | Cytogenetic aberrations encountered for each of the three families.

Family member del(13q) +12 del(11q) del(17p) del(2)(q34q35) total abberations*

Sibling 1A yes no no no no 2
Sibling 1B yes no no no no 1
Sibling 1C yes no no no yes 4
Sibling 1D yes no no no no 1
Sibling 2A no yes no no no 1
Sibling 2B no yes no no no 1
Sibling 3A yes no no no no 1
Sibling 3B yes no no no no 1
Sibling 3C yes no yes no no 3
Sibling 3D yes no no no no 1
August 2021 | Volume
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sibling 3C carried a somatic truncating mutation in RPA2, a gene
involved in DNA replication and repair. In contrast, no
noteworthy somatic mutations were observed in sibling 3D.

In summary, the WGS results yielded several somatic
mutations in recurrently mutated genes in CLL, as well as four
germline variants in genes in CLL-associated pathways, though
there was limited overlap in the genes affected by the somatic
mutations in members within and across families.
DISCUSSION

In this study, we describe three families that represent distinct
immunogenetic subgroups of CLL, presenting a unique opportunity
to study the contribution of genetics and immunogenetics in CLL
pathobiology. Each of the three families developed CLL with a
consistent IGHV SHM status, encompassing one of three
prototypes of the IGHV SHM spectrum: i.e. U-CLL, M-CLL and
borderline mutated CLL. While families 1 and 2 reflect the M-CLL
and U-CLL subgroups, respectively, family 3 presented with
borderline mutated CLL and all family members carried the
lambda IGLV3-21 light chain. Furthermore, family 3 expressed
Frontiers in Oncology | www.frontiersin.org 7
the IGLV3-21*04 allele and displayed the R110 mutation
characteristic of the IGLV3-21R110 subset. This light chain was
paired with a stereotyped VH CDR3 of the immunogenetically
related subsets #2 and #169, both of which belong to the broader
IGLV3-21R110 category. We observed distinct profiles of genetic
alterations for each of these families, with further unique somatic
mutations for each sibling. While our results are consistent with
previous associations between IGHV SHM mutational status and
specific genetic aberrations in CLL driver genes, the similarities in
(immuno)genetic features within each family highlight their
important contribution to the onset and evolution of familial CLL.

The dichotomy between U-CLL and M-CLL is thought to
originate from the B-cell maturation process after antigen
activation (62). For M-CLL, the antigen-activated B cell follows
the traditional path of T cell-dependent germinal center B cell
maturation. For U-CLL, the antigen-activated B cell is thought to
mature largely independent of the T cell influence (62).
Throughout these processes, chronic antigenic stimulation
through (auto)antigens would keep the B cell in a constant
state of activation. For the IGLV3-21R110 subset, this constant
activation is most probably the result of autostimulation through
BcR aggregates on the cell surface.
A

B

FIGURE 2 | Somatic mutations and germline variants detected by whole genome sequencing of the CLL families. In this figure, both germline variants (A) and
somatic genetic alterations (B) detected in the CLL families are shown. The genes highlighted in bold text are genes, which have previously been identified as CLL
driver genes. Genes that are not in bold text were identified during KEGG pathway analysis. Only mutations/variants with likely functional consequences related to
CLL development are shown; mutations/variants that were previously reported to be benign or evaluated as benign by variant effect predictors were not shown.
August 2021 | Volume 11 | Article 740083

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kolijn et al. Immunoglobulin Features in Familial CLL
Aswouldhavebeenexpectedbasedontheassociationof IGLV3-
21 with CLL with limited SHM activity, the IGLV3-21R110 subset is
characterized by a (near) borderline mutational status (63).
Correspondingly, no cases of IGLV3-21R110 with 100% IGHV
germline identity have been encountered, thus supporting SHM
as the mechanism for the introduction of the somatic R110
mutation (20). The IGHV germline identities of the IGLV3-
21R110 CLL family 3 follow a similar pattern, ranging from a
germline identity of 96.4% to 98.2%. Interestingly, usage of the
IGLV3-21*01 or *04 alleles gives an inherent risk of IGLV3-21R110-
related CLL, due to the germline presence of the K16 and YDSD
motifs (20). Our findings in the current study would support the
theory that this inherent risk contributes to the increased incidence
of CLL among relatives of CLL patients.

We additionally observed a somatic mutation in SF3B1 for
sibling 3A. SF3B1mutations are common in CLL and particularly
associated within the IGLV3-21R110 subset (20, 21). As the SF3B1
protein is a component of the spliceosome, we screened for
additional mutations in the spliceosome pathway. We discovered
that sibling 3C carried a splice site alteration in SF3B2. Unlike
SF3B1, SF3B2 has never been independently linked to CLL. The
finding of a splice site alteration in SF3B2 in sibling 3C suggests that
the alterations in other genes involved in the spliceosome may be
relevant for the IGLV3-21R110 subset as well, although this awaits
further confirmation in larger cohorts.

We identified several germline variants of unknown
significance (VUS) in each of the families by KEGG pathway
analysis. Family 1 presented with germline variants in CHEK2
and PI3KR3, while family 2 carried a germline variant in
NFKBIA and two siblings of family 3 carried a germline
variant in ERCC6. CHEK2 is a gene associated with DNA
damage and repair as well as cell cycle regulation and
apoptosis in response to DNA damage (51). Somatic CHEK2
mutations have been identified as putative CLL drivers, while
CHEK2 germline variants have recently been indicated as a novel
predisposition gene in CLL, implying that CLL may belong to the
spectrum of malignancies associated with germline variant in
CHEK2 (54). In addition, three out of four siblings with CLL
carried a rare germline variant in PIK3R3, an essential
component of the PI3K/AKT signaling pathway. Recently,
altered activation of the PI3K/AKT signaling-pathway was
identified as a critical component of sustained proliferation
and survival in CLL (64). During this process, autonomous
autoreactive BcR signaling typically converges with activation
of the PI3K/AKT signaling-pathway (64). While germline
variants in components of the PI3K/AKT pathway could
theoretically contribute to this aspect of CLL development, no
convincing supporting evidence for a role of any germline
variant has this far been reported. NFKBIA is part of the NF-
kB and BcR signaling pathways and its expression has been
suggested as a biomarker for risk stratification in DLBCL (55).
ERCC6 has a role in base excision repair, particularly
during transcription.

Our study was limited by its sample size as well as by the
amount of material available for each patient. Additionally,
clinical follow up data was not available for family 2 and 3 and
Frontiers in Oncology | www.frontiersin.org 8
no material was available from healthy family members. Lastly,
the absence of conventional chromosomal analysis may have
affected the identification of complex rearrangements (>3
abnormalities), a prognostic factor in CLL, although we feel
that based on SNP array data we could exclude the occurrence of
complex karyotype cases. Nevertheless, we feel that the three
families are paradigmatic for the main CLL subgroups and as
such provide a platform for further studies into the link between
immunogenetics and genetic predisposition. That said,
environmental factors like pesticides, herbicides and pathogens
could be relevant risk factors in familial CLL as well. This would
especially apply to the siblings of family 1, who all grew up on the
same farm (65). Unfortunately, as no toxicological or biological
measurements were done, the contribution of these factors to
CLL development in family 1 remains unclear.

In summary, we evaluated immunogenetic, cytogenetic,
germline and somatic lesions in familial CLL. In each family, a
consistency of IGHV mutational status was observed, with the
particularly intriguing finding that all individuals in one of the
families belonged to the IGLV3-21R110 CLL subset. Furthermore, we
highlight the co-occurrence of specific genetic aberrations and
germline variants within each family, pointing towards shared
underlying mechanisms in CLL development. Our data warrants
a more comprehensive evaluation of this potential association
between germline predisposition and immunogenetic features in
the development of CLL.
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