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miR-873 is a microRNA located on chromosome 9p21.1. miR-873-5p and miR-873-3p
are the two main members of the miR-873 family. Most studies focus on miR-873-5p, and
there are a few studies on miR-873-3p. The expression level of miR-873-5p was down-
regulated in 14 cancers and up-regulated in 4 cancers. miR-873-5p has many targeted
genes, which have unique molecular functions such as catalytic activity, transcription
regulation, and binding. miR-873-5p affects cancer development through the PIK3/AKT/
mTOR, Wnt/b-Catenin, NF-kb, and MEK/ERK signaling pathways. In addition, the target
genes of miR-873-5p are closely related to the proliferation, apoptosis, migration,
invasion, cell cycle, cell stemness, and glycolysis of cancer cells. The target genes of
miR-873-5p are also related to the efficacy of several anti-cancer drugs. Currently, in
cancer, the expression of miR-873-5p is regulated by a variety of epigenetic factors. This
review summarizes the role and mechanism of miR-873-5p in human tumors shows the
potential value of miR-873-5p as a molecular marker for cancer diagnosis and prognosis.
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INTRODUCTION

With the increasing incidence and mortality of cancer worldwide in recent decades, it has become
the second leading cause of human death (1). MicroRNA (miRNA) is a set of non-coding RNA (2)
less than 25 nucleotides in length. miRNAs can bind to the 3’-untranslated region (3’-UTR) of target
mRNA molecules and regulate the expression of target genes, thus playing an important role in
cancer (3). The miR-873 family is located on chromosome 9 (chr9:28888878-28888954). Its family
includes two main members of the human genome, including hsa-miR-873-5p (miR-873-5p) and
hsa-miR-873-3p (miR-873-3p). Their mature sequences are 21 and 22 nucleotides in length,
respectively, and are highly conserved (Figure 1). At present, most researches focus on miR-873-5p.

Studies have found that the expression of miR-873-5p is dysregulated in a variety of cancers and
plays different roles in different cancers. On the one hand, miR-873-5p is upregulated and
carcinogenic in non-small cell lung cancer (NSCLC) (4), and hepatocellular carcinoma (HCC)
(5); on the other hand, miR-873-5p is involved in colorectal cancer (CRC) (6) and gastric cancer
(GC) (7) are down-regulated and exert a tumor suppressor effect. miR-873-5p can affect cell
proliferation (5), apoptosis (6), migration (8), invasion (9), cell stemness (10), and other biological
processes by regulating the expression of its target genes. In addition, miR-873-5p also has important
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clinical significance in drug sensitivity and prognosis of cancer
patients (4, 6). miR-873-5p can also be regulated by a variety of
epigenetic factors. Among them, the interaction between non-
coding RNA (lncRNA or circRNA) and miR-873-5p is mainly
researched. This review focuses on studying the biological role of
miR-873-5p in tumors, exploring themolecular functional network
of its targetedgenes, andpredicting thepotential roleofmiR-873-5p
in the diagnosis and prognosis of human cancer.
THE BIOLOGICAL FUNCTION OF
MIR-873-5P TARGET GENES

miR-873-5p can directly bind to the 3’-UTR of target gene
mRNA and regulate gene expression after transcription. The
target gene of miR-873-5p has unique molecular functions,
including catalytic activity, transcription regulation, binding,
etc. (Figure 2).

Among the miR-873-5p target genes, CDK3 is a catalytically
active gene. CDK3 is a cyclin-dependent kinase, which can
phosphorylate the estrogen receptor (ER) and enhance ER
activity, thereby promoting the occurrence and development of
breast cancer (BC) (11).

Among themiR-873-5p target genes, genes with transcriptional
regulatory activity are ELK1, DEC2, ZEB1, and ZIC2. ELK1 is a key
transcriptional regulator that mediates the MEK-ERK signal
Frontiers in Oncology | www.frontiersin.org 2
transduction, and it can activate early oncogene expression (12,
13). DEC2 is the basic helix-loop-helix transcription factor of the
clock gene. It plays an important role in the circadian rhythm, cell
proliferation, and apoptosis, and thus participates in tumor
progression (14). ZEB1 is a member of the zinc finger E-box
binding protein (ZEB) transcription factor family (15). ZEB1 can
bind to the promoter of the liver cancer-derived growth factor
(HDGF) and increase the level of HDGF transcription, leading to
the pathogenesis of endometrial cancer (EC) (16). ZIC (Cerebellar
Zinc Finger Protein) protein has five highly conserved Cys2His2
motifs, which can bind toDNAand thus function as a transcription
factor (17). As a member of the ZIC family, ZIC2 can promote
tumor growth and metastasis of hepatocellular carcinoma through
transcriptional regulation of p21-activated kinase 4 (18). In
addition, ZIC2 can bind to the DNA-binding high mobility base
box of TCF4, thereby inhibiting the transcriptional activity of
b-catenin (19).

The miR-873-5p target genes with binding activity include
DEC2, NDFIP1, STRN4, TNNT1, and CXCL16. DEC2 can
inhibit its downstream molecules by binding to the E-box (20).
NDFIP1 is a membrane protein with small endosomes containing
PY motifs, which can transport E3 ligase and its substrate to
endosomes (21). STRN4 is a member of the striatin family. It can
combinewithMINK1of thegerminal centerkinase family to forma
large complex, which is essential for the process of cytokinesis (22,
23). Troponin T1 (TNNT1) is a subunit of troponin T, which can
FIGURE 1 | The sequence structure of the miR-873 family. Hsa-mir-873 is located on chromosome 9 (chr9:28888878-28888954). It has two mature sequences,
hsa-miR-873-5p (MIMAT0004953, miR-873-5p) and hsa-miR-873-3p (MIMAT0022717, miR-873-3p).
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bind to tropomyosin and anchor the troponin complex at a specific
location on striated muscle filaments (24). CXCL16-CXCR6 are
chemokines and chemokine receptors, respectively, which can bind
to each other (25). The mutual binding of CXCL16 and CXCR6
involves avarietyofbiological activities, including cell adhesion (26)
and anti-tumor immunity (27).
MIR-873-5P DYSREGULATION
IN VARIOUS CANCERS

As shown in Table 1, miR-873-5p is abnormally expressed in 18
types of cancers. Among them, miR-873-5p is up-regulated in 4
types of cancers, including NSCLC (4), lung adenocarcinoma
(LUAD) (28, 29), lung cancer (LCA) (5, 8, 30), and Merkel cell
carcinoma (MCC) (24627810). miR-873-5p is down-regulated in
14 types of cancers, including nasopharyngeal carcinoma (NPC)
(32), lung cancer (LCA) (33), cervical cancer (CC) (34, 35), EC
(36), BC (10, 11, 37, 38), pancreatic ductal adenocarcinoma
(PDAC) (39), glioblastoma (GM) (9, 40–42), osteosarcoma (OS)
(43), papillary thyroid carcinoma(PTC) (44), CRC (6, 45–49),
esophageal cancer(ESCA) (50),GC (7, 51, 52), tongue squamous
cell carcinoma (TSCC) (53), and pancreatic cancer(PC) (54).

Highly expressed miR-873-5p can inhibit cell proliferation,
induce cell apoptosis, inhibit EMT, metastasis, and invasion
process, thereby promoting the occurrence and development of
cancer. Among the four types of cancers (NSCLC, LUAD, HCC,
and MCC), miR-873-5p can promote their progression,
indicating that miR-873-5p has tumor suppressor and cancer-
promoting effects.
Frontiers in Oncology | www.frontiersin.org 3
THE BIOLOGICAL ROLE OF MIR-873-5P
IN HUMAN CANCER

MiR-873-5p and Different
Signaling Pathways
miR-873-5p can affect the occurrence and development of cancer
by participating in the PIK3/AKT/mTOR, Wnt/b-Catenin, NF-
kb, MEK/ERK, and other signaling pathways (Figure 3).

The PIK3/AKT signaling pathway is often overactivated in
malignant tumors. The PIK3/AKT signaling pathway can
participate in cell cycle regulation, promote cell proliferation
and metastasis, and inhibit cell apoptosis (55). In HCC, miR-
873-5p promotes the development of HCC through the NDFIP1/
AKT/mTOR axis (5). miR-873-5p can directly activate PIK3/
AKT to promote HCC progression (30). miR-873-5p can down-
regulate TUSC3 expression, inhibit the AKT signaling pathway,
and thus hinder CRC development (49). In PC, miR-873-5p
targets PLEK2 and inhibits the AKT signaling pathway, thereby
inhibiting the development of cancer (54).

The Wnt/b-Catenin signaling pathway is important for
tumor development, and the dysregulation of the Wnt/b-
Catenin signaling pathway may lead to cell proliferation and
malignancy (56). miR-873-5p inhibits the expression of HOXA9
and STRA6, and blocks the Wnt/b-Catenin signaling pathway,
thereby inhibiting the development of OS and GC (43, 52).

The NF-kb signaling pathway can inhibit cell apoptosis, and
it is closely related to tumor occurrence, growth, and metastasis
(57). By inhibiting the expression of JMJD8, TNF receptor-
related factor 5 (TRAF5) and TGF-b activated kinase 1
(MAP3K7) binding protein 1 (TAB1), miR-873-5p can inhibit
FIGURE 2 | The molecular functions of miR-873-5p target genesThe target genes of miR-873-5p have the molecular functions of binding, catalytic, and
transcription regulator activity.
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TABLE 1 | miR-873-5p dysregulation and its target genes in cancer.

Cancer
type

Clinical Samples Cell lines (Cancer cells and Normal
cells)

In vitro In vivo Expression Target
gene

Reference

NSCLC PC9 and BEAS-2B, HEK293T Proliferation↑ Upregulation GLI1 (4)
LUAD 30 LUAD tissues and 30

matched non-tumor tissues
H23, H1299, A549, SPC-A1 Proliferation↑; migration

and invasion↑
Upregulation SRCIN1 (28)

481 LUAD tissues and 47
normal tissues

Upregulation — (29)

HCC 86 HCC tissues and 86
matched non-tumor tissues

SMMC-7721, HepG2, Hep3B, SK-
HEP-1, MHCC97H and L02, 7701,
7702

Proliferation↑; glycolytic
metabolism↑

Upregulation NDFIP1 (5)

25 HCC tissues and 25
adjacent non-tumor tissues

HuH6, THLE-2 and ATCC, Manassas,
VA, USA

Proliferation↑; migration
and invasion↑

Upregulation TRIM25 (8)

70 HCC tissues and 70
adjacent non-tumor tissues

Hep3B, HepG2, SMMC-7721, Huh-7
and L02

Proliferation↑; migration
and invasion↑

Upregulation TSLC1 (30)

MCC 3 MCC tissues, 1 SCC
tissue, 1 BCC tissue,1
normal skin

Upregulation — (31)

NPC 134 NPC tissues and 40
non-NPC tissues

5-8 F, 6-10B, HNE-3, C666-1 and
NP69SV40T

Cell stemness↓ Downregulation ZIC2 (32)

LCA 31 NSCLC tissues and 31
matched normal tissues

Cell stemness↓ Downregulation CDK3 (33)

CC 306 CC tissues and 3
normal tissues

Caski, HeLa, C33a, SiHa Proliferation↓ Downregulation ULBP2 (34)

20 CC tissues and 20
matched normal tissues

C33A, HeLa, SiHa and Ect1/E6E7 Proliferation↓; migration
and invasion↓; EMT↓

Downregulation GLI1 (35)

EC 47 EC tissues and 47
adjacent non-tumor tissues

AN3CA, HEC-59, HEC-1B, KLE and
HUM-CELL-0111

Proliferation↓ Downregulation HDGF (36)

BC 4 BC tissues and 4 adjacent
mammary gland epithelial
tissues

Cell stemness↓ Cell
stemness↓

Downregulation PD-L1 (10)

43 BC tissues and 10
adjacent non-tumor tissues

MCF-7, ZR75-1, T47D, SKBR3, MDA-
MB-231 and HEK293T

Proliferation↓ Tumor
growth↓

Downregulation CDK3 (11)

MDA-MB-231, BT549 and 293 —— Downregulation ZEB1 (37)
30 TNBC tissues and 30
adjacent normal tissues

MDA-MB-453, BT-549, MDA-MB-231,
HCC1937 and HBL-100

Proliferation↓; migration
and invasion↓; EMT↓

Downregulation DCST1-
AS1

(38)

PDAC/
TNBC

MDA-MB-436, MDA-MB-231, MDA-
MB-453, BT-20, HCC1937, SKBR3,
T47D, HEK293 and HPDE

Proliferation↓; migration
and invasion↓

Proliferation↓;
tumor
growth↓

Downregulation KRAS (39)

GM 6 GM tissues and 3 non-
tumor brain tissue

—— Downregulation — (40)

12 high-grade GM tissues
and 7 normal brain tissues

U87, U251 —— Downregulation Bcl-2 (9)

50 GM tissues and 50
normal tissues

—— Downregulation (41)

6 GBM tissues and 6
adjacent normal tissues

A172, T98G, U87, U373, U251, U138 Proliferation↓; migration
and invasion↓; apoptosis↑

apoptosis↑ Downregulation IGF2BP1 (42)

OS 49 OS tissues and 49
adjacent normal bone
tissues

MG-63, SAOS-2, HOS, U2OS and
hFOB1.19

Proliferation↓; migration
and invasion↓

Tumor
growth↓

Downregulation HOXA9 (43)

PTC 30 PTC tissues and 30
adjacent normal tissues

KTC-1, TPC-1, BCPAP, K1, BHP10-3
and Nthy-ori3-1

Proliferation↓; migration
and invasion↓

Downregulation CXCL16 (44)

CRC 50 CRC tissues and 50
adjacent normal tissues

HCT116, H29, SW620, LOVO, SW480
and NCM460

Proliferation↓; migration
and invasion↓; EMT↓;
apoptosis↑; cell cycle↑

Downregulation JMJD8 (6)

10 CRC tissues and 10
adjacent non-tumor tissues

SW620, SW480, DLD1, HCT116,
LoVo, HT-29 and NCM460

Proliferation↓ Downregulation TRAF5/
TAB1

(45)

DLD-1, HCT-116, SW-480, HT-29,
SW-620 and HIEC

Migration and invasion↓;
EMT↓

Downregulation ZEB1 (46)

55 CRC tissues and 55
adjacent normal tissues

SW620, HCT116, HCT8, SW480,
LS174T, HT29, RKO

Proliferation↓; migration
and invasion↓; EMT↓

Cell growth↓;
liver
metastasis↓

Downregulation ELK1/
STRN4

(47)

45 CRC tissues and 45
adjacent normal tissues

HT29, SW480, HCT116 and CRL1790 Proliferation↓; migration
and invasion↓

Downregulation TNNT1 (48)

Downregulation TUSC3 (49)

(Continued)
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the NF-kb signaling pathway, thereby hindering the progression of
CRC (6, 45). InPTC,miR-873-5p candown-regulate the expression
of CXCL16, and can also inhibit the development of PTC through
down-regulating the NF-kb signaling pathway (44).

The MEK/ERK signaling pathway can promote cell
proliferation and migration and is involved in the occurrence
and development of a variety of cancers (12). In CRC, miR-873-
5p targets ELK1 and STRN4, and exerts a tumor suppressor
effect through the ERK signaling pathway (47). By down-
regulating KRAS expression, miR-873-5p can also inhibit the
ERK signaling pathway to suppress the development of PDAC
and TNBC (39). In addition, miR-873-5p can also deactivate the
PI3K/AKT and ERK signaling pathways to inhibit the
development of BC (58).

MiR-873-5p and Cell Cycle
The regulation of the cell cycle is of great significance to the
proliferation and apoptosis of cancer cells (Figure 4). Increased
expression of miR-873-5p can inhibit the expression of GLI1 and
cyclin B, thereby inducing GC cells to arrest the G2/M cell cycle
(51). After miR-873-5p targets to inhibit JMJD8, it blocks CRC
HCT116 and SW480 cells in the G1-S cell cycle (6). miRNA-873-
5p can accelerate the S phase process of HCC cells, thereby
promoting cancer cell proliferation (30). Other studies have
shown that miR-873-5p can down-regulate STRA6, thereby
inducing GC cells to arrest in the G0/G1 cell cycle and
increasing cell mortality (30). After miR-873-5p targeted
IGF2BP1, GM cells showed significant G0/G1 block and S
phase reduction (42).

MiR-873-5p and Cell Proliferation
and Apoptosis
The targeted genes of miR-873-5p are closely related to the
process of tumor cell proliferation and apoptosis (Figure 4).
Frontiers in Oncology | www.frontiersin.org 5
STRN4 directly acts on protein kinases such as MINK1,
TNIK, and MAP4K4. The knockdown of STRN4 inhibits the
proliferation of PDAC and CRC cancer cells (59). miR-873-5p
can target ELK1 and STRN4 and inhibit the proliferation of CRC
LoVo and HCT116 cells through the regulation of the ERK-
CyclinD1 signaling pathway (47).

Human cytomegalovirus glycoprotein UL16 binding protein
2 (ULBP2) is an important activation receptor on the surface of
natural killer cells. In normal tissues, low levels of ULBP2 can
lead to the activation of immune cells (60, 61). In CC C33a cells,
miR-873-5p activates immune cells by inhibiting ULBP2
expression, thereby attenuating cell proliferation (34).

Jumonji domain-containing protein 8 (JMJD8) contains a
JmjC domain (62) at 74-269 amino acid residues. miR-873-5p
can inhibit the NF-kb signaling pathway by down-regulating the
expression of JMJD8 in CRC cells, thereby inhibiting cell
proliferation, blocking the G1-S transition, and enhancing the
apoptosis of CRC HCT116 and SW480 cells (6). miR-873-5p
directly targets the 3’-UTR of TUSC3 to down-regulate its
expression and inhibit AKT signaling pathway and CRC cell
proliferation (49). TNNT1 expression is closely related to the
clinical stage of tumor tissues and can promote the proliferation
of cancer cells through metastatic G1/S transition (63). miR-873-
5p down-regulates TNNT1 and may inhibit the proliferation of
CRC cells (48). Besides, TRAF5 and TAB1 are both key
components of the NF-kb signaling pathway (45). miR-873-5p
directly targets TRAF5 and TAB1 to inhibit the NF-kb signaling
pathway, thereby inhibiting the cell proliferation of CRC (45).

KRAS can enhance the AKT and ERK signaling pathways that
are related to cell proliferation (64). miR-873-5p inhibits the cell
proliferation of PDAC and TNBC tissues (38) by targeting
KRAS, thereby inhibiting the ERK and PI3K/AKT signaling
pathways (39). miR-873-5p can induce apoptosis of PDAC and
TNBC by regulating the Caspase-dependent apoptotic pathway
TABLE 1 | Continued

Cancer
type

Clinical Samples Cell lines (Cancer cells and Normal
cells)

In vitro In vivo Expression Target
gene

Reference

96 CC tissues and 96
adjacent normal tissues

HCT116, SW620, RKO, HCT8, HT29
and NCM460

Proliferation↓; migration
and invasion↓; EMT↓

Proliferation↓;
metastasis↓

ESCA 36 EC tissues and 36
adjacent normal tissues

EC-109, EC-1, TE-1, TE-10, KYSE-150
and HEEC

Proliferation↓; migration
and invasion↓; EMT↓

Downregulation DEC2 (50)

GC 80 GC tissues and 80
adjacent non-tumor tissues

SGC-7901 Proliferation↓; apoptosis↑;
cell cycle↑

Downregulation GLI1 (51)

15 GC tissues and 15
adjacent non-tumor tissues
and 15 normal tissues

Downregulation — (7)

80 GC tissues and 80
adjacent normal tissues

BGC823, SGC7901, MKN45, MGC803
and GES-1

Proliferation↓; migration
and invasion↓; EMT↓; cell
cycle↑

Proliferation↓;
metastasis↓

Downregulation STRA6 (52)

TSCC 35 TSCC tissues and 35
adjacent normal tissues

SCC9, SCC15, SCC25, UM1, CAL-27
and HOEC

Apoptosis↑ Downregulation SEC11A (53)

PC 30 PC tissues and 45
normal tissues

PANC-1, SW1990, MIA PaCa-2 and
hTERT-HPNE

Cell stemness↓ Downregulation PLEK2 (54)
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(39). DCST1-AS1 is an oncogenic lncRNA (38). DCST1-AS1 can
sponge miR-873-5p and thus reduce the inhibition of miR-873-
5p on the expression of IGF2BP1, thereby up-regulating the
expression of MYC and promoting the proliferation of TNBC
cells (38).

Tripartite motif-containing protein 25 (TRIM25) is a member
of TRIM protein, which can target the degradation of MTA-1
(65). MTA-1 is a member of the metastasis-related gene (MTA)
family and plays an important role in the proliferation of cancer
cells (66). miR-873-5p can inhibit TRIM25 expression, which
can promote the proliferation of HCC cells (8). TSLC1 is a new
type of tumor suppressor gene, which is related to proliferation,
apoptosis, cell cycle, and tumorigenicity of cancer cell (67). The
inhibition of TSLC1 by miRNA-873-5p can lead to
Frontiers in Oncology | www.frontiersin.org 6
hyperphosphorylation of PI3K/AKT/mTOR and other
signaling pathways to promote HCC cell proliferation (30).

Src is a tyrosine kinase that is frequently up-regulated in
cancer and is very important for cancer cell proliferation (68, 69).
Src Kinase Signaling Inhibitor 1 (SRCIN1) is a tumor
suppressor gene that suppresses cancer by inactivating Src in
cancer (70). miR-873-5p activates the Src signaling pathway by
down-regulating of SRCIN1 expression and promotes the
proliferation of LUAD cells (28).

Insulin-like growth factor 2 mRNA binding protein 1
(IGF2BP1) is a carcinoembryonic protein that is expressed in
various cancers including leukemia (71). IGF2BP1 can stabilize
and enhance the expression of c-MYC and MKI67, which are
both effective regulators of cell proliferation and apoptosis (72).
FIGURE 3 | miR-873-5p related signaling pathways in cancer. miR-873-5p can influence cancer development by participating in the PIK3/AKT/mTOR, Wnt/b-
Catenin, NF-kb, MEK/ERK signaling pathways. Blue, signaling pathway; Orange, target gene; Red, miR-873-5p.
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Overexpression of miR-873-5p in GM cells can significantly
down-regulate the expression of IGF2BP1, MKI67, and c-
MYC, and lead to cell proliferation inhibition and apoptosis
(42). ZEB2 is a transcription factor containing zinc fingers, which
is essential in early embryonic development (73). ZEB2 can
increase the expression of cyclin A1, cyclin D1, and Bcl-2 in
GM cells, thereby promoting the growth of GM cells (74). miR-
873-5p down-regulates ZEB2 expression, which can promote
GM cell apoptosis (74).

HOXA9 is a member of the mammalian HOX family (75),
which is abnormally activated in a variety of cancers such as CRC
(76) and GC (77). miR-873-5p directly targets HOXA9 and
reduces the expression levels of b-catenin and cyclin D1
through the inactivation of the Wnt/b-catenin signaling
pathway, thereby inhibiting OS cell proliferation (43).

Hedgehog (Hh) signaling pathway can participate in the cancer
process through mechanisms such as promotion of tumor invasion
and metastasis (78, 79). GLI1 is a transcription factor of the Hh
signaling pathway and downstream target genes and is usually used
as a marker to activate the Hh signaling pathway (80). Studies have
found that increased expression of miR-873-5p can inhibit the
expression of GLI1 and inhibit the cell proliferation of NSCLC (4),
GC (51), and CC (35) through the Hh signaling pathway. STRA6, as
a transmembrane protein of RA, is overexpressed in many cancer
types (81). Overexpression of STRA6 can upregulate Wnt pathway-
related genes, such as b-catenin, MMP-7, and c-myc. miR-873-5p
down-regulates the expression of STRA6 in GC and can inhibit GC
cell proliferation (52).

The estrogen receptor (ER) is a member of the nuclear
receptor superfamily of ligand-activated transcription factors
and plays an important role in BC (82). miR-873-5p inhibits
Frontiers in Oncology | www.frontiersin.org 7
ER activity by targeting CDK3, thereby inhibiting the growth of
BC cells (11).

As a chemokine, the binding of CXCL16 to its sole receptor
CXCR6 can involve biological activities such as cell adhesion (26)
and anti-tumor immunity (27). Silencing CXCL16 can inhibit
the proliferation and invasion of cancer cells by regulating the
NF-kb signaling pathway (83). Overexpression of miR-873-5p
targets CXCL16 and suppresses the NF-kb signaling pathway in
PTC cells, thereby inhibiting PTC cell proliferation (44).

HDGF is a secreted growth factor (84), which can interact
with the b-catenin pathway and promote cancer cell proliferation
(85). Therefore, miR-873-5p targeted down-regulation of HDGF
may inhibit EC cell proliferation through the b-catenin signaling
pathway (36). DEC2 plays an important role in circadian
rhythm, cell proliferation, and apoptosis, and is also closely
related to tumor progression (14). In ESCA, miR-873-5p can
inhibit ESCA cell proliferation by targeting the DEC2 gene,
thereby affecting the circadian rhythm (14, 50).

MiR-873-5p and Cell Migration,
Invasion, and EMT
The migration and invasion of cancer cells are important for the
progression of cancer. Epithelial cell-mesenchymal transition
(EMT) is a process of epithelial cell changes, which is
characterized by weak cell adhesion and enhanced migration
ability (86). EMT is an important marker of cancer progression
and metastasis of malignant tumors (87) (Figure 5).

In CRC HCT8 cells, the down-regulation of miR-873-5p
corresponds to the up-regulation of ELK1 and STRN4, which
leads to the down-regulation of E-cadherin and a-E-catenin and
enhances EMT, and ultimately promotes the migration of CRC
FIGURE 4 | The role of miR-873-5p and its target genes on the cell biology of cancer cells. By promoting or inhibiting cell proliferation and apoptosis, miR-873-5p
has both oncogenic or pro-cancer effects in different cancers. miR-873-5p inhibits the aerobic glycolysis of cancer cells by targeting NDFIP1. In addition, miR-873-5p
can reduce the stemness of cancer cells by targeting PD-L1 and HUR/CDK3. By targeting GLI1, JMJD8, IGF2BP1, and STRA6, miR-873-5p can inhibit the
progression of the cancer cell cycle.
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cells (47). ZEB1 is closely related to migration and EMT (88). In
CRC, the up-regulation of miR-873-5p also corresponds to the
down-regulation of ZEB1 expression, thereby significantly
increasing the levels of E-cadherin, b-catenin, and ZO-1. This
leads to a decrease in the levels of N-cadherin and vimentin,
which changes the cell phenotype from EMT to MET, thereby
inhibiting the EMT process of CRC cells (46). When miR-873-5p
targets JMJD8, the expression of E-cadherin and cytokeratin is
significantly increased, thereby weakening the EMT effect and
inhibiting the migration and invasion of CRC cells (6). TUSC3
may change the EMT of CRC by regulating PI3K/Akt and WNT/
b-catenin signaling pathways, thereby changing its metastasis
and invasiveness (89). miR-873-5p can negatively regulate the
expression of TUSC3, thereby inhibiting the EMT ability of CRC
cells (49). TNNT1 is negatively correlated with the expression of
E-cadherin in colon adenocarcinoma (90). miR-873-5p can
regulate E-cadherin expression by targeting TNNT1, thereby
inhibiting CRC cell migration and invasion (48).

When miR-873-5p targets to inhibit GLI1, the expression
level of E-cadherin is significantly increased, while the levels of
N-cadherin and vimentin are significantly reduced, thereby
inhibiting the EMT process of CC cells (35). miR-873-5p can
negatively regulate ULBP2 and activate immune cells, thereby
reducing the invasion and metastasis of CC cells (34).

In GC cells, miR-873-5p can lead to the downregulation of N-
cadherin and vimentin by inhibiting STRA6, thereby inhibiting the
EMT process of GC cells, and cell metastasis and invasion (52).

LEF1 is an important transcription factor involved in the
activation of the Wnt signaling pathway, which can promote the
synthesis of mesenchymal fibronectin and EMT (91). When
miR-873-5p binds to DCST1-AS1, the expression of LEF1 is
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up-regulated, and the EMT of TNBC cells is enhanced to
promote cancer cell migration and invasion (38).

In ESCA, miR-873-5p can down-regulate the expression of
DEC2, thereby inhibiting the effect of EMT and reducing the
migration and invasion of ESCA cells (50, 92).

In PDAC and TNBC, miR-873-5p can target KRAS, thereby
inhibiting cell migration and invasion through the ERK/AKT
signaling pathway (39). The Wnt/b-catenin signaling pathway is
a key mechanism for cell maintenance and development,
including cell differentiation, migration, and invasion (93).

miR-873-5p can target HOXA9 and inhibit the migration and
invasion of OS cells through suppressing the Wnt/b-catenin
signaling pathway (43).

MTA-1 can promote cell metastasis through histone
deacetylation and nucleosome remodeling (66). After miR-873-
5p inhibits the expression of TRIM25, the function of MTA-1 is
enhanced to promote the metastasis and invasion of HCC cells
(8). TSLC1 is a specific tumor suppressor involved in cell
adhesion and invasion (94). Therefore, in HCC, miR-873-5p
can target TSLC1 to increase HCC cell adhesion, thereby
promoting HCC cell migration (30).

SRCIN1 is the main regulator of E-cadherin (95), which can
regulate the growth and movement of cell (96). miR-873-5p
down-regulates the expression of SRCIN1, which can reduce cell
adhesion and promote the migration of LUAD cell A549 (28).

IGF2BP1 can enhance the directionality of cell migration in a
PTEN-dependent manner. miR-873-5p can down-regulate the
expression of PTEN by targeting IGF2BP1, thereby inhibiting the
migration ability of GM cells (42). Matrix metalloproteinases
(MMP) have been shown to activate and regulate GM cell
migration (97). Bcl-2 is an oncogene and it can promote the
FIGURE 5 | The effect of miR-873-5p target genes on EMT, migration, and invasion of cancer cells. miR-873-5p inhibits the EMT process by inhibiting the
expression of ZEB1, TUSC3, DCST1-AS1, JMJD8, ELK1-STRN4, GLI1, STRA6, and DEC2. MiR-873-5p targets TRIM25, SRCIN1, and TSLC1, and promotes
cell migration and invasion. In addition, miR-873-5p inhibits the migration and invasion of cancer cells by targeting CXCL16, TNNT1, IGF2BP1, Bcl-2, TNNT1,
and HOXA9.
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migration and invasiveness of GM cells by enhancing the activity
of MMP (98). miR-873-5p can target Bcl-2 to enhance the
activity of MMP and inhibit the migration and invasion of GM
cells (9). MMPs are related to the development of cancer, which
can promote the degradation of extracellular matrix and cell
invasion and metastasis (99, 100). Overexpression of miR-873-
5p can inhibit the expression of MMP1, MMP9, and MMP13 by
down-regulating CXCL16, thereby inhibiting the migration and
invasion of PTC cells (44).

MiR-873-5p and Cell Stemness
Although cancer stem cells (CSCs) only account for a small part
of cancer cells, they have the ability to self-renew (101). At
present, CSC is considered to be the main factor leading to tumor
recurrence and drug resistance (102).

Programmed cell death ligand 1 (PD-L1) is an immune
checkpoint molecule and a ligand for PD-1 (103). The
expression of PD-L1 is highly correlated with stemness-related
genes in BC tissues and is overexpressed in basal BC. Therefore,
PD-L1 may promote the stemness of BC cells (104, 105). PD-L1
can activate the PI3K/AKT and ERK signaling pathways in BC
(106). And miR-873-5p can target PD-L1 and down-regulate its
expression, and then inhibit the stemness of BC cells through the
PI3K/Akt and ERK1/2 signaling pathways (10).

HuR is an RNA binding protein that can promote the
progression of various tumors (107). HuR can directly bind
and up-regulate CDK3 to promote the stemness of LCA (33).
miR-873-5p can competitively bind to CDK3 with HuR and
reduce CDK3 expression, thereby reducing the stemness of LCA
cells (33).

Studies have found that ZIC2 may affect the occurrence and
development of tumors through the AKT signaling pathway
(108). Up-regulation of miR-873-5p can inhibit the expression of
ZIC2 and disrupt the AKT signaling pathway, thereby inhibiting
the stemness and tumorigenicity of NPC cells (109).
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Overexpression of miR-873-5p can silence PLEK2 and inhibit
the self-renewal of PC stem cells through the PIK3/AKT
signaling pathway, thereby inhibiting the development of
PC (54).

MiR-873-5p and Glycolysis
Tumor cells can change their metabolism to adapt to the
challenging hypoxic environment (110). Intermediates in
glycolysis can be used to meet the biosynthetic needs of rapidly
growing tumors (111). AKT/rapamycin (mTOR) activation
enables the continued growth and survival of tumor cells that
rely on aerobic glycolysis, while the expression of NDFIP1
reduces the AKT/mTOR signaling pathway in cancer cells (5).
In HCC, miR-873-5p inhibits the Warburg effect through the
NDFIP1/AKT/mTOR axis, thereby inhibiting the aerobic
glycolysis of HCC cells (5).
THE ROLE OF MIR-873-5P IN
CANCER TREATMENT

Gefitinib (EGFR-TKI) can reduce viability and proliferation of
cancer cells and angiogenesis in NSCLC (Figure 6). However, the
resistance of cancer cells to gefitinib has greatly limited its clinical
application (4, 112, 113). The enhancement of the GLI1
expression can increase the radiation resistance of NSCLC
cells. When GLI1 is silenced, gefitinib can significantly reduce
the growth of NSCLC cells (114, 115). The down-regulation of
GLI1 by miR-873-5p can reduce the resistance of NSCLC cells to
gefitinib, thereby causing NSCLC PC9 cell apoptosis (4).

The main treatments for BC include surgery, targeted
therapy, radiotherapy, and chemotherapy. For TNBC,
chemotherapy is the only treatment (10). CSCs may contribute
to the chemoresistance of cancer (116). By activating the PI3K/
Akt and ERK1/2 signaling pathways, the PD-1/PD-L1 axis can
FIGURE 6 | The effect of miR-873-5p on the efficacy of different cancer chemotherapy drugs through its target genes. miR-873-5p inhibits the expression of
ABCB1, Bcl-2, GLI1, FOXM1, PD-L1, CDK3, and ZEB1, thereby improving the inhibitory effects of various anticancer drugs on cancer cells. OC, ovarian cancer; GM,
glioblastomas; LC, lung cancer; BC, breast cancer.
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promote the stemness and drug resistance of BC cells. miR-873-
5p targeted inhibition of PD-L1 expression can attenuate the
resistance of BC cells to Adriamycin (10). In addition, miR-873-
5p may also inhibit ERa phosphorylation by targeting CDK3,
thereby restoring the sensitivity of BC drug-resistant cells to
tamoxifen (11).

Norbiliin (NCTD) is a dimethyl analog of phthalazine, which
can inhibit the biological functions of cell proliferation and
angiogenesis in a variety of cancers (117–119). NCTD can
overcome tamoxifen resistance by targeting the miR-873-5p/
CDK3 axis in BC cells (120).

Gemcitabine is a chemotherapy drug that is derived from
deoxycytidine and is commonly used to treat BC patients (121).
ZEB1 plays a key role in promoting the development of CSCs,
and its overexpression is related to cancer chemoresistance (15).
miR-873-5p can bind to the 3’-UTR of ZEB1 to directly inhibit
its expression, thereby enhancing the cell growth inhibition
induced by gemcitabine treatment (37).

Ovarian cancer (OC) is mostly treated with cisplatin and
paclitaxel, but OC cancer cells often develop resistance to these
drugs (122). The ABC superfamily transporter and P-
glycoprotein (MDR1) play a key role in the multidrug
resistance (MDR) of cancer. They can mediate the outflow of
various chemical drugs, such as anticancer drugs (123–125).
Overexpression of miR-873-5p increases the sensitivity of OC
cells to cisplatin and paclitaxel by targeting ABCB1 to down-
regulate the expression of MDR1 (126).

GM is the most common primary brain tumor in adults, and
cisplatin is currently a chemical drug widely used to treat GM
(127, 128). A study has found that inhibiting the expression of
Bcl-2 can enhance the sensitivity of GM to cisplatin (129). miR-
873-5p can enhance the sensitivity of GM cells to cisplatin by
targeting Bcl-2 (9).

In addition, genistein is a soy-derived isoflavone that can play
a beneficial role in cancer treatment (130). Genistein can inhibit
the progression of NSCLC by regulating the circ_0031250/miR-
873-5p/FOXM1 axis (131).
THE REGULATION OF MIR-873-5P IN
HUMAN CANCER

Current studies have found that methyltransferase, circRNA, and
lncRNA are involved in the regulation of miR-873-5p in human
cancer (Figure 7).

CircRNA is a new type of non-coding RNA that can bind
miRNAs to stop their regulation of target genes (132).
Hsa_circ_0000069 can sponge miR-873-5p, which can promote
the expression of TUSC3, thereby promoting the proliferation,
migration, and invasion of CC cells (133). In Neuroblastoma,
circDGKB can sponge miR-873-5p to increase the expression of
ZEB1 and GLI1, and promote the occurrence and development
of cancer (134). circ-UMAD1 can sponge miR-873-5p, thereby
up-regulating the expression of Galectin-3 and inducing
lymphatic metastasis of PTC (135). circFAT1(e2) can promote
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the proliferation, metastasis, and invasion of PTC cells by
inhibiting the miR-873-5p/ZEB1 axis, thereby exerting a
carcinogenic effect (136). Knockout of circ_0004507 can up-
regulate the expression of miR-873-5p and inhibit the
progression of laryngeal cancer (137). circ_0031250 can
promote the proliferation, migration, and invasion of NSCLC
cells by inhibiting the miR-873-5p/FOXM1 axis (131).
circZKSCAN1 can inhibit the progression, proliferation,
migration, and invasion of HCC by down-regulating the
miR-873-5p/DLC1 axis, thereby hindering the occurrence and
development of HCC (138). Infant hemangioma (IH) is one of
the most benign endothelial tumors in infants and young
children. circATP5SL can eliminate the inhibition of IGF1R by
sponging miR-873-5p, thereby promoting IH cell invasion,
proliferation, and migration (139). circVPS33B accelerates
tumor cells’ proliferation, migration, and growth by down-
regulating the miR-873-5p/HNRNPK axis in invasive GC (140).

LncRNA MCF2L-AS1 can promote CSC-like characteristics
of NSCLC cells by down-regulating the expression level of miR-
873-5p, thereby exerting carcinogenic effects (141). YY1 is a
member of the YY family. It is a zinc finger protein and is
overexpressed in a variety of cancers (142). YY1 can down-
regulate the level of miR-873-5p, thereby activating the PI3K/
AKT and ERK signaling pathways, thereby promoting the
stemness of cancer cells (58). LncRNA CYTOR can regulate
the expression of genes in the nucleus, thereby participating in
the occurrence and development of cancers such as CRC (143).
By up-regulating lncRNA CYTOR, TRIM29 inhibits pre-mir-
873-5p to produce miR-873-5p, thereby up-regulating FN1 and
promoting the migration and invasion of PTC cells (144).

The expression of lncRNA DGCR5 is significantly reduced in
LC. DGCR5 shares the same binding site of miR-873-5p with
TUSC3 (145). Ki-67 and MMP-3, MMP-9 are the markers of cell
proliferation, cellmigration, and invasion (100, 146).Thebindingof
DGCR5 to miR-873-5p reduces the expression of TUSC3, Ki-67,
MMP-3, and MMP-9, and thus decreases the proliferation and
migration ability of LC cells (145). LncRNA TDRG1 is a proto-
oncogene for CC (147) and endometrial cancer (148). The
expression of lncRNA TDRG1 is up-regulated in human GC
tissues and is related to the clinical prognosis of GC patients
(149). As an important regulator of cancer, HDGF can be down-
regulated through the EMT signaling pathway and theMMP-2 and
MMP-9 signaling pathways (150). TDRG1 can target themiR-873-
5p/HDGFaxis, therebypromoting the tumorphenotypeofGCcells
(149). In addition, TDRG1 up-regulates the expression of ZEB1 by
targeting miR-873-5p, thereby promoting tumorigenesis and the
development of NSCLC cell lines (151). LncRNA HOTAIRM1
inhibits themiR-873-5p expression and promotes the expression of
ZEB2 in GM, thereby inhibiting tumor cell apoptosis (74).

Competitive endogenous RNA (ceRNA) is considered to be a
mechanism in post-transcriptional regulation and is related to
tumor progression (152, 153). In OS, miR-873-5p targets to
inhibit the expression of DDX11, and thus reduces the
expression of MMP2, MMP9, N-cadherin, but increases the
expression of E-cadherin, thereby inhibiting the migration and
EMT process of OS cell lines (154). LncRNA DDX11-AS1 is
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up-regulated in GC tissues and cell lines, and its expression
increases with the development of TNM stages and lymph node
metastasis (155). LncRNA DDX11-AS1 as a ceRNA can bind to
miR-873-5p and up-regulate the expression of DDX11 in OS and
SPC18 in GC, thereby promoting the occurrence and
development of OS (154) and GC (155).

Single nucleotide polymorphisms (SNPs) can change the
secondary structure of lncRNA, thereby affecting the
interaction between lncRNA and its interacting miRNA, and
ultimately increasing the risk of cancer (156). The rs12982687
site of lncRNA UCA1 can affect the binding of miR-873-5p,
thereby increasing the function of HIF-1 signal transduction,
promoting the proliferation and migration of CRC cells (157).
Frontiers in Oncology | www.frontiersin.org 11
MIR-873-5P AND THE PROGNOSIS OF
CANCER PATIENTS

At present, many studies have found that miR-873-5p is
significantly related to the prognosis of cancer patients (Table 2).
Compared with normal tissues, the expression level of miR-873-5p
is increased not only in HCC tissues but also in advanced HCC.
Increased expression ofmiR-873-5p inHCC is positively correlated
with lymph node metastasis and metastasis stage, but negatively
correlated with tumor differentiation, indicating that miR-873-5p
maybe related to the aggressiveness andpoor prognosisofHCC(5).
In addition, low expression of miR-873-5p is associated with poor
prognosis of LUAD (29).
FIGURE 7 | The epigenetic factors of miR-873-5p in human cancer. miR-873-5p can be targeted and regulated by lncRNAs, circRNAs, and other proteins, thus
affecting downstream gene expression and playing an important role in cancer.
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Decreased expression of miR-873-5p is an indicator of poor
prognosis inCRCpatients (49). In addition, the level ofmiR-873-5p
is negatively correlated with the degree of malignancy of CRC, and
high levels of miR-873-5p are significantly correlated with a longer
overall survival rate of patients (6). In GC, low expression of miR-
873-5p is associated with large tumors, advanced T grade, poor
histological type, poor overall survival, and short recurrence-free
survival (52). In CC, the overall survival rate of patients with low
miR-873-5pexpression is lower than thatofpatientswithhighmiR-
873-5p expression (34).

THE ROLE OF MIR-873-3P IN CANCER

Proliferation-specific fork head box m1 (FOXM1) has been
identified as an important cell cycle regulator, which can control
the transition of cells fromG1 to S phase and cell progression to M
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phase (158). miR-873-3p can significantly reduce the mRNA and
protein levels of FOXM1. Therefore, miR-873-3p targets FOXM1
to inhibit LCA cell proliferation through its cell cycle regulation
function (159). In BC, circTP63 binds to miR-873-3p and prevents
its targeted inhibition of FOXM1, thereby inducing the
progression and growth of estrogen receptor-positive BC (160).
LINC00941 up-regulates the expression of ATXN2 by
competitively binding miR-873-3p, stimulates the proliferation
and metastasis of pancreatic adenocarcinoma, and promotes its
occurrence and development (161) (Figure 8).
CONCLUSIONS AND PERSPECTIVES

miR-873-5p is widely involved in the progression of cancer, its
expression is dysregulated in most cancer tissues and cell lines.
FIGURE 8 | The role of miR-873-3p in human cancer. mir-873-3p plays an important role in pancreatic adenocarcinoma, LCA, and BC by regulating target genes.
LINC00941 and circTP63 can sponge miR-873-3p and thus affect cancer development. LCA, lung cancer; BC, breast cancer.
TABLE 2 | The prognostic value of miR-873-5p in different cancers.

Cancer Materials Results Reference

HCC 86 HCC tissues and 86
matched non-tumor tissues

The level of miR-873-5p in advanced liver cancer is higher than that in peripheral liver cancer. The overall survival
and recurrence time of HCC patients with low miR-873-5p expression levels are much longer than those of HCC
patients with high miR-873-5p expression, which indicates that higher miR-873-5p expression is related to the
poor prognosis of HCC.

(5)

CRC 50 CRC tissues and 50
adjacent normal tissues; 96
CRC tissues and 96 adjacent
normal tissues

The level of miR-873-5p is negatively correlated with the degree of malignancy of CRC. Patients with high miR-
873-5p levels have a longer overall survival rate than patients with low miR-873-5p levels, which indicates that
lower miR-873-5p expression is related to a poor prognosis of CRC.

(6, 49)

LUAD 481 LUAD tissues and 47
normal tissues

miR-873-5p is an independent prognostic factor of LUAD. The high expression of miR-873-5p indicates that the
survival rate of LUAD patients is lower.

(29)

GC 80 GC tissues and 80
adjacent normal tissues

Low miR-873-5p is associated with tumor enlargement in GC patients, advanced T-grade, and poor histological
type, and predicts poor OS and DFS.

(52)
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Besides, the target gene of miR-873-5p has a series of molecular
regulation functions, such as catalytic activity, transcription
regulation, and binding. In cancer, miR-873-5p affects cancer
development through the PIK3/AKT/mTOR, Wnt/b-Catenin,
NF-kb, MEK/ERK signaling pathways. miR-873-5p involves a
variety of biological processes through the regulation of target
genes, such as cell proliferation and apoptosis, EMT, cell
migration and invasion, cell cycle, and cell stemness. miR-873-
5p can also inhibit or promote the effects of cancer drugs by
regulating its target genes. miR-873-5p can also be used as a
specific diagnostic and prognostic indicator for various cancers.
Finally, this review also summarizes epigenetic regulatory factors
of miR-873-5p, including lncRNA, circRNA, methyltransferase,
etc., which are also involved in the occurrence and development
of various cancers.

However, there are still many deficiencies in the research on
miR-873-5p. First of all, current studies have shown that
miR-873-5p is dysregulated in 18 kinds of cancers, and it can
cause cancer or suppress cancer. However, existing studies have
not proven that miR-873-5p is cancer-specific. This will limit the
application of miR-873-5p for cancer diagnosis, and it needs to
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be further explored. Second, the specific mechanism of miR-873-
5p in some cancers has not been studied. Besides, more
preclinical studies and clinical trials are needed to explore the
effects of miR-873-5p on the efficacy of anticancer drugs. Finally,
most studies are involved with miR-873-5p, and the research on
miR-873-3p is very lacking.

Here we show that miR-873-5p plays a significant role in the
initiation and progression of key biological and pathological
processes in human cancers. Therefore, miR-873-5p can be the
main research focus in the fight against human cancers. This
review mainly summarizes the research progress of miR-873-5p
in human cancers, which will expand our understanding of the
molecular and cellular biological mechanisms of miR-873-5p.
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