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Colorectal cancer (CRC), a seriously threat that endangers public health, has a striking
tendency to relapse and metastasize. Redox-related signaling pathways have recently
been extensively studied in cancers. However, the study and potential role of redox in
CRC remain unelucidated. We developed and validated a risk model for prognosis and
recurrence prediction in CRC patients via identifying gene signatures driven by redox-
related signaling pathways. The redox-driven prognostic signature (RDPS) was
demonstrated to be an independent risk factor for patient survival (including OS and
RFS) in four public cohorts and one clinical in-house cohort. Additionally, there was an
intimate association between the risk score and tumor immune infiltration, with higher risk
score accompanied with less immune cell infiltration. In this study, we used redox-related
factors as an entry point, which may provide a broader perspective for prognosis
prediction in CRC and have the potential to provide more promising evidence
for immunotherapy.

Keywords: colorectal cancer, redox, gene signature, prognosis, immune infiltration
INTRODUCTION

The incidence and mortality of colorectal cancer (CRC) are increasing worldwide (1, 2). Studies
have predicted that within the next decade, it is estimated that 1 in 10 colon cancers and 1 in 4 rectal
cancers are diagnosed in adults younger than 50 years (3). Limited by the choice of appropriate
surgery timing and the operative range, and drug resistance to chemotherapy, malignant events
such as adverse prognosis and metastasis in CRC patients are still intractable clinical problems (4,
5). However, when treatment involving surgery, chemoradiotherapy, and targeted therapy fails, no
alternative therapy modality is yet available. Recently, immunotherapy has begun to take off in the
treatment of tumors (6–9). Nevertheless, our clinical practice shows that not all patients respond
well to immunotherapy. Therefore, there is an urgent need to develop a novel strategy to identify
patients who are suitable for immunotherapy to facilitate prognostic management and personalized
treatment of CRC.
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The redox status of cells directly regulates biomacromolecular
functions and mediates cell signal transduction as well as many
physiological and pathological processes such as senility,
metabolic diseases, and tumors (10–12). An altered redox
status accompanied with an elevated generation of reactive
oxygen/nitrogen species has been implicated in various
diseases including CRC (13–15). Numerous studies have
reported that CRC is associated with multiple factors such as
obesity, dietary patterns, and physical inactivity, resulting in
exacerbated oxidative stress with genomic instability (16–18).
Recently, innovative therapeutic strategies to target the specific
metabolic phenotype of cancer stem cells have been pointed out
(19). It determines the self-renewal of CRC stem cells by
promoting lactate dehydrogenase A (LDHA) phosphorylation,
which in turn treats CRC patients with recurrence and poor
outcomes. Additionally, Shashni et al. proposed that reactive
oxygen species are the basis of angiogenesis and tumor growth,
and the use of antioxidants may be an effective method to impair
tumors (20). Collectively, redox-related targets may modulate
the pathophysiological behavior of malignant colorectal tumors,
suggesting potential clinical utility.

Accumulating studies revealed that the antioxidant defense
network alleviates oxidative stress, regulates inflammatory
responses, and improves immunity by ensuring redox balance
and adaptive homeostasis (21–23). The rapid development of
sequencing technology offers more possibilities for identifying
more valuable tumor markers (24, 25). We previously studied the
relationship between distinct immune classification and
immunotherapy, and an immune miRNA signature for
assessing prognosis and immune landscape of patients with
CRC (26, 27). We hope to explore the relationship with the
prognosis and recurrence of CRC by following the novel insight
of redox.

In this study, we systematically investigated the dysregulation
of redox-related pathways in CRC, and based on the redox-
related genes, we constructed a redox-related signature in the
TCGA-CRC cohort. Subsequent validation was performed in
three independent cohorts from the GEO database. We further
verified the stability and accuracy of the RDPS model in a clinical
in-house cohort. In addition, the molecular characteristics,
inflammation landscape, and immune checkpoint profiles of
this signature were investigated. Taken together, RDPS might
be a reliable and promising biomarker in CRC.
MATERIALS AND METHODS

Public Data Collection and Processing
We retrospectively collected four CRC cohorts from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov) and Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo)
databases, including TCGA-CRC, GSE17536, GSE29621, and
GSE39582. The RNA-seq raw read count from the TCGA
database was converted to transcripts per kilobase million
(TPM) and further log-2 transformed. Data from GEO belong
to the Affymetrix® GPL570 platform ([HG-U133 Plus 2]
Frontiers in Oncology | www.frontiersin.org 2
Affymetrix® Human Genome U133 Plus 2.0 Array). The raw
data from Affymetrix® were processed using the robust multi-
array averaging (RMA) algorithm implemented in the affy R
package. RMA was used to perform background adjustment,
quantile normalization, and final summarization of
oligonucleotides per transcript using the median polish
algorithm. In three cohorts, we only retained CRC patients
that met the following criteria: (1) primary tumor tissues
samples; (2) no preoperative chemotherapy or radiotherapy
received; (3) RNA expression data available; and (4) survival
information is available and survival time is not zero. A total of
595 patients from TCGA-CRC were used as the training set, and
GSE17536 (n = 194), GSE29621 (n = 65), and GSE39582 (n =
595) from the GEO database were used as the validation sets. The
corresponding clinical information of the four cohorts was also
downloaded, and the demographic data are summarized in
Supplementary Table S1.

Signature Generation
First, based on univariate Cox regression, we identified stable
prognosis-associated genes. Second, using the expression of these
prognosis-associated genes in TCGA-CRC, we fitted a LASSO
Cox regression model for assessing the prognosis of patients.
Using the 10-fold cross validations, the optimal lambda was
obtained when the partial likelihood deviance reached the
minimum value. We choose lambda via 1-SE (standard error)
criteria. The optimal lambda is the largest value for which the
partial likelihood deviance is within one SE of the smallest value
of partial likelihood deviance. Third, based on the selected
lambda, the prognosis-associated genes with nonzero
coefficients were selected to construct the prediction signature.
The RDPS score was calculated using the coefficient weighted by
the Cox model as follows:

RDPS score =o
n

i=1
Expi � Coefi

where n is the number of key prognosis-associated genes, Expi is
the expression of prognosis-associated gene i, and Coefi is the
LASSO coefficient of prognosis-associated gene i.

Delineate the Mutation Landscape
In order to compare the molecular differences of genomic
mutations between the high-risk and low-risk groups, we
processed the mutated MAF file encompassing somatic
alterations via the VarScan pipeline. The maftools package was
further utilized to visualize the mutation waterfall plots. Genes
with mutation frequency greater than 10% were included for
further analysis.

Functional Enrichment and Immune
Infiltration Analysis
To explore the potential functional differences of pathways with
high and low risk scores, the gene set enrichment analysis
(GSEA) algorithm was performed to identify dramatically
enriched terms related to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and the biological process of gene
October 2021 | Volume 11 | Article 743703
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ontology (GO). Permutations were set to 1,000 to obtain a
normalized enrichment score (NES). Gene sets with a false discovery
rate (FDR) <0.01 were considered to be significantly enriched.

Tissue Specimen and Clinical
Data Collection
This study was approved by the First Affiliated Hospital of
Zhengzhou University. A total of 115 paired CRC tissues and
matched adjacent non-tumor tissues were obtained from patients
who underwent surgical resection at The First Affiliated Hospital
of Zhengzhou University. None of the patients received any
preoperative chemotherapy or radiotherapy. Written informed
consent was obtained from all the patients. The inclusion criteria
were as follows: no preoperative chemotherapy, radiotherapy, or
targeted therapy; no other types of tumors; and no autoimmune
diseases. The specimens obtained during surgery were
immediately snap frozen in liquid nitrogen and stored at -80°C
until RNA extraction. Clinical staging of the specimens was
based on the NCCN (2019) guidelines. This study has passed the
ethical review with the number of 2019-KY-423.

RNA Extraction and Reverse Transcription
Total RNA was isolated from CRC tissues, paired adjacent
noncancerous tissues, and CRC cells with RNAiso Plus reagent
(Takara, Dalian, China), according to the manufacturer’s
instructions. The RNA quality was evaluated using a
NanoDrop One C (Waltham, MA, USA), and the RNA
integrity was assessed using agarose gel electrophoresis. An
aliquot of 1 μg of total RNA was reverse-transcribed into
complementary DNA (cDNA) using a High-Capacity cDNA
Reverse Transcription Kit (TaKaRa Bio, Japan), according to the
manufacturer’s protocol.

Quantitative Real-Time PCR
Quantitative real-time PCR (qRT-PCR) was performed using
SYBR Assay I Low ROX (Eurogentec, USA) and SYBR® Green
PCR Master Mix (Yeason, Shanghai, China) to detect gene
expression. The 2-DDCt method was used to calculate the
relative levels of gene expression. The primers are listed in
Supplementary Table S2 . GAPDH was used as the
endogenous control for normalization. qRT-PCR assays were
performed in triplicate with the following conditions: (1) 95°C
for 5 min and (2) 40 cycles of 95°C for 10 s and 60°C for 30 s. The
relative expression of genes was calculated using the DCT (Ct
mRNA-Ct GAPDH) method. The sequences of qRT-PCR
primers are listed in Supplementary Table S2.

Statistical Analysis
Independent sample t test and paired t test were utilized to
compare the gene expression difference in public data sets and
115 paired tissues, respectively. Differentially expressed analysis
was performed by limma package. The Kaplan–Meier method
and the log-rank test were used to estimate the different OS
between high-risk and low-risk groups. Univariate Cox
regression analysis was used to calculate the hazard ratios
(HRs). The receiver operating characteristic (ROC) curves were
plotted by timeROC package. The area under the ROC curve
Frontiers in Oncology | www.frontiersin.org 3
(AUC) for survival variable was conducted by the R package
timeROC. The R package rms was applied to plot calibration
curves. All p-values were two-sided, with p < 0.05 as statistically
significant. The adjusted p-value was obtained by Benjamini–
Hochberg (BH) multiple-test correction. All data processing,
statistical analysis, and plotting were conducted in R
4.0.2 software.
RESULTS

Identification of Redox-Associated
Genes in CRC
The flow diagram of the data process and analysis is depicted in
Figure 1. With “REDOX” as the keyword, we searched in the
Molecular Signatures Database (MSigDB) [http://www.gsea-
msigdb.org/gsea/msigdb/index.jsp], and generated 11 relevant
pathways. These 11 pathways contained 309 genes, of which a
total of 298 could be detected in the TCGA and GEO data.
Subsequently, we investigated whether these 11 pathways were
functionally different between the normal group and tumor
group in TCGA-CRC. GSEA analysis showed that the majority
of redox-related pathway was dysregulated in CRC (Figure 2A).
Subsequently, the different expression analysis was performed
according to the redox-related genes. In total, we identified 118
differentially expressed genes (DEGs) (Figure 2B). Univariate
Cox analysis revealed 17 prognostically relevant genes among
these 118 genes (Figure 2C).

Construction and Evaluation of the RDPS
The 17 OS-associated genes were selected to construct an RDPS
based on the LASSO Cox regression model. We identified eight
genes that were strongly predictive of OS (Figures 3A, B). Then,
in a penalized COX model, we obtained the optimal lambda
value (0.145178). Based on this lambda value, the risk score of
RDPS was calculated using the formula weighted by the
regression coefficient containing two redox-related genes as
follows: risk score = -0.122 * expression of ADH5 - 0.070 *
expression of HADH. We calculated the risk score of each
patient based on this formula. In all four cohorts, OS was
shorter in the high-risk group than in the low-risk group (log-
rank test, all p < 0.05; Figures 3C–F). In addition, after
controlling for age, sex, TNM stage, AJCC stage, venous
invasion, and microsatellite state, the RDPS remained an
independent factor with notably prognostic significance (log-
rank test, p < 0.05; Figures 4A–D).

RDPS Was Well Validated in Four Cohorts
and Could Be Used as a CRC Recurrence
Risk Assessment Factor
The ROC curve and calibration plot were utilized to evaluate the
accuracy and calibration of RDPS, respectively. In training set
TCGA-CRC, the AUCs for predicting OS at 1, 3, and 5 years were
0.725, 0.712, and 0.741. In three public validation cohorts, the
AUCs for predicting OS at 1, 3, and 5 years were as follows: 0.720,
0.707, and 0.704 in GSE17536; 0.893, 0.731, and 0.764 in
October 2021 | Volume 11 | Article 743703
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FIGURE 1 | The flowchart of this study.
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GSE29621; and 0.761, 0.740, and 0.708 in GSE39582
(Figures 5A–D). Additionally, the calibration plot revealed that
RDPS showed a remarkable correction effect with a predicted OS
probability of 1, 3, or 5 years, accurately describing the true risk
observed in all four cohorts (Figures 5E–H). In short, RDPS
represents high predictive accuracy for predicting prognosis in
CRC patients. In order to compare our RDPS model with
published metabolism-related signatures, we applied the
compareC R package to compare the performance among these
signatures (28–32). As illustrated in Figure S1, our RDPS model
ranked first in the predictive power in TCGA-CRC, GSE17536,
and GSE29621. Of note, RDPS ranked second in GSE39582,
weaker than Liu’s model, which might be because Liu’s model was
developed in GSE39582. Indeed, Liu’s model did not perform well
in other validation datasets. Overall, our RDPS model displayed
Frontiers in Oncology | www.frontiersin.org 5
more stable performance. Since the recurrence of CRC is a key
factor for determining the prognosis of patients, we further
evaluated the predictive ability of RDPS for CRC recurrence.
Likewise, the results of Kaplan–Meier analysis and multivariate
Cox regression analysis in the four cohorts showed that the high-
risk group possesses adverse recurrence-free survival (RFS)
(Figures 6A–D), and risk score was an independent risk factor
for RFS (Figures 6E–H).

Validation of RDPS in a Clinical
In-House Cohort
Furthermore, we performed qRT-PCR assays in a clinical cohort
containing 115 CRC patients. Clinical information of the 115
cases is illustrated in Supplementary Table S1. Kaplan–Meier
analysis concluded that there was a dramatically statistical
A B

C

FIGURE 2 | Identification of redox-associated pathways and genes between the normal group and tumor group in the TCGA-CRC cohort. (A) Redox-related gene-
set enrichment analysis in the normal and tumor groups. (B) Differential analysis of redox-related genes in TCGA-CRC. (C) Univariate Cox regression revealed 17
redox-related genes with significant prognostic significance.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dang et al. A Redox Signature in CRC
difference in OS and RFS between the high- and low-risk groups
(Figures 7A, B). Multivariate Cox regression analysis showed
that the risk score calculated from the RDPS model remains
statistically significant and acts as a stable independent risk factor
for OS (HR: 2.283 [1.408–3.700], p < 0.001) and RFS (HR: 2.432
[1.575–3.755], p < 0.001) (Figures 7C, D), after adjusting for
Frontiers in Oncology | www.frontiersin.org 6
underlying confounding factors (including age, sex, T, N, M, and
AJCC stage). The time-dependent ROC analysis revealed
adequate precision and good repeatability of RDPS: the AUCs
of predicting OS at 1, 3, and 5 years were 0.920, 0.748, and 0.742,
respectively (Figure 7E). The calibration plot further displayed
the predicted probabilities of OS at 1, 3, and 5 years, accurately
A B

C D

FE

FIGURE 3 | Construction and evaluation of RDPS. (A) Ten-time cross-validations to tune the parameter selection in the LASSO model. The two dotted vertical lines
are drawn at the optimal values by minimum criteria (left) and 1−SE criteria (right). (B) LASSO coefficient profiles of the candidate genes for risk score construction.
(C–F) Kaplan–Meier curves for OS according to the risk score in four cohorts.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dang et al. A Redox Signature in CRC
describing the true risk observed (Figure 7F). On the whole, the
consequence from the clinical in-house cohort supported our
founding and the public cohort deductions, which favored and
elucidated that the RDPS model was considerably steady and
could serve as an independent predictor for survival (including
OS and RFS) in CRC patients. Furthermore, we also found that
our RDPS model performed independent of patients with or
without chemotherapy (Figure S2).

Landscape of Gene Mutations in CRC
The mutational landscape of RDPS was delineated (Figure 8A).
Moreover, we investigated themutation frequencies of driver genes
in two groups. It was found that the TP53 mutation frequency was
significantly upregulated and themutation frequencies of PIK3CA,
SOX9, and MDN1 were significantly downregulated in the high-
risk group compared with the low-risk group (Figure 8B). APC,
TP53, and KRAS were the most commonly mutated genes in both
high- and low-risk groups, independently. This suggests that the
highmutation frequency of these three genes is an important factor
Frontiers in Oncology | www.frontiersin.org 7
leading to CRC (Figure 8B). Considering that copy number
alteration (CNA) mainly includes amplification (AMP) and
homozygous deletion (HOMDEL), we analyzed CNA in patients
at different risk levels.We found that in the high-risk group,URAD,
SERINC3, PKIG,PDX1,OSER1, andLINC00543were significantly
amplified; significant deletions were RBFOX1, WWOX, CCSER1,
CSMD1, and AGBL4. However, in the low-risk group, TPS2,
REM1, LINC00028, ID1, HM13, and DEFB124 were significantly
amplified; significant deletions were found for RBFOX1, WWOX,
MACROD2, CCSER1, and CSMD1. Both amplified and
homozygously deleted fragments hardly coincide in the high- and
low-risk groups, especially in terms of AMP (Figure 8C).

Inflammation Landscape and Immune
Checkpoint Profiles of RDPS
InGOandKEGGanalyses, thepathways significantly enriched in the
high-risk group were all shown to be closely related to epithelial–
mesenchymal transition (EMT), involving the cytoskeleton,
intercellular junctions, and cell differentiation processes, such as
A

B

C

D

FIGURE 4 | Power of RDPS in multivariate Cox regression analysis in CRC patients. The risk score was an independent risk factor for prognosis in TCGA-CRC
(A), GSE17536 (B), GSE29621 (C), and GSE39582 (D) cohorts.
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A

B

C

D

F

E

H

G

FIGURE 5 | Evaluation of RDPS in predicting OS in four cohorts. (A–D) Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years. (E–H) Calibration plots
for comparing the actual probabilities and the predicted probabilities of OS at 1, 3, and 5 years.
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chondrocytedifferentiation, collagenfibril organization, extracellular
matrix organization, calcium signaling pathway, cell adhesion
molecules, and ECM–receptor interactions (Figures 9A, C).
Of note, the consistency of low risk is related to the related enzyme
Frontiers in Oncology | www.frontiersin.org 9
and electron chain transport processes in the redox process, such as
ATP synthesis-coupled electron transport, mitochondrial
translation, NADH dehydrogenase complex assembly, pentose and
glucuronate interconversions, and pyruvate metabolism
A B C D

E

F

G

H

FIGURE 6 | Evaluation of the ability of risk scores to predict CRC recurrence in four public cohorts. (A–D) Kaplan–Meier curves of RFS according to the RDPS
model in four cohorts. (E–H) Multivariate Cox regression analysis of the risk score in four cohorts.
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A B

C

D

E F

FIGURE 7 | Validation of our discovery in a clinical in-house cohort. (A, B) Kaplan–Meier curves of OS (A) and RFS (B) according to the RDPS. (C, D) Multivariate
Cox regression analysis of the risk score for OS (C) and RFS (D). (E) Time-dependent ROC analysis for predicting RFS at 1, 3, and 5 years. (F) Calibration plots for
comparing the actual probabilities and the predicted probabilities of OS at 1, 3, and 5 years.
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(Figures 9B, D) . Immune infi ltration in the tumor
microenvironment has been shown to play a critical role in the
development and progression of tumors and affects the clinical
prognosis of cancer patients. We found that the landscape
characteristics of the high-risk group were different from those
of the low-risk group. The immune landscape is shown in
Figure 10A. We analyzed the abundance of nine immune cells
in tissues with different risk fractions and found that the
infiltration abundance of T cells, endothelial cells, and cancer-
associated fibroblasts (CAFs) was significantly richer in the high-
risk group (Figure 10B). In addition, we observed that CD276 and
TNFRSF4 were upregulated in the low-risk group, while HHLA2,
ICOS, TMIGD2, VTCN1, BTLA, and NCR3 were significantly
overexpressed in the high-risk group (Figure 10C). Patients in the
high-risk group processed a lower tumor mutation burden (TMB)
Frontiers in Oncology | www.frontiersin.org 11
and immunophenoscore (IPS) (Figures 10D, E), which suggested
a weak immunogenicity in th ehigh-risk group relative to the high-
risk group. Additionally, cells or immune checkpoints with
disparate abundance or expression were selected for correlation
with risk score, and the results were as expected (Figure 10F).
These results indicate that there may be an intimate correlation
between the RDPS model and the infiltration of some immune
cells and the expression of immune checkpoints.
DISCUSSION

Recently, the modulation of redox-related pathways and targets
has been shown to stimulate multiple signaling pathways to
mediate the malignant phenotype of cancer, which involves cell-
A B

C

FIGURE 8 | Landscapes of frequently mutated genes (FMGs) in high and low risk-score groups. (A) Oncoplot depicts the differences in FMGs of CRC among the
fourcohorts. The right panel shows the mutation rate, and genes are ordered by their mutation frequencies. (B) The mutation frequency of the driver genes in high-
andlow-risk groups (*p < 0.05). (C) Amplified and homozygously deleted genes in the high- and low-risk groups.
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specific death (33), treatment sensitivity (24), proliferation,
invasiveness, and angiogenesis (34). In this study, we first
screened and summarized 11 redox-related pathways and
performed a functional difference analysis between the tumor
and normal groups in TCGA-CRC. As a result, we found that the
majority of redox-related pathways were dysregulated in CRC,
which suggested that the redox-related pathways might play vital
Frontiers in Oncology | www.frontiersin.org 12
roles in the initiation and progression of CRC. Further, based on
the expression profiles of redox-related genes, we established and
validated a two-gene signature for evaluating the prognosis of
CRC. This signature includes two genes: ADH5 and HADH.
Members of the alcohol dehydrogenase family metabolize a wide
variety of substrates. Digenic mutation in ADH5 and ALDH2
impairs formaldehyde clearance and causes a multisystem
A

B

C

D

FIGURE 9 | GSEA functional pathway analysis. (A, B) Significantly enriched Gene Ontology terms between high (A) and low (B) risk groups. (C, D) Significantly
enriched Kyoto Encyclopedia of Genes and Genomes terms between high (C) and low (D) risk groups.
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disorder (35). Animal experiments confirmed that mice lacking
ADH5 and ALDH2 have greatly shortened lifespans and develop
leukemia in vivo (36). HADH, as one of the target genes of the
Wnt pathway, has been shown to be involved in regulating the
growth and proliferation of CRC cells (37). Therefore, ADH5
and HADH were likely to have a latent role in the malignant
biological behavior of CRC.
Frontiers in Oncology | www.frontiersin.org 13
CRC, a highly heterogeneous malignancy, is a fatal health
problem threatening the world (38, 39). Strikingly, Ji et al. argued
that controlling the metabolic patterns of cancer stem cells is an
innovative therapeutic strategy for CRC patients with adverse
prognosis and relapse (19). We calculated and grouped the risk
score of each patient and found that the high-risk group had a
worse outcome, using the Kaplan–Meier method, in four public
A B

C

F

D E

FIGURE 10 | Immune infiltration analysis. (A) Assessment of infiltration abundance of nine immune cells and 27 immune checkpoints in patients with high or low RDPS
scores. (B) Abundance of immune cell infiltrates in the high- and low-risk groups. (C) Differential expression analysis of immune checkpoints. The difference of TMB
(D) and IPS (E) in different risk groups. (F) Correlation analysis of immune cells or checkpoints with risk scores (ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001).
NS, none significance.
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cohorts. Subsequently, multivariate analysis suggested that the
RDPS risk score could act as an independent poor predictive
factor for survival in CRC patients. Moreover, the predictive
ability of RDPS was estimated by ROC, wherein the 1-year
prediction discrimination was 0.893 and the 1-. 3-, and 5-year
AUC were all greater than 0.7 in the four public cohorts. The
results indicate that the RDPS model has an excellent fitting and
prospective predictive ability.

Recurrence and metastasis are dominating causes of death for
CRC patients (40, 41). Therefore, we further evaluated the ability
of the RDPS to predict CRC recurrence. Similarly, the model
exhibited strong predictive power in predicting relapse.
Specifically, we demonstrated that the high-risk score predicted
unfavorable RFS and that the risk score was an independent risk
factor for RFS in CRC patients in four public cohorts,
respectively. Furthermore, we shed light on the model in a
sample of 115 clinical CRC patients. Notably, patients in the
low-risk score group had longer OS and RFS compared with the
high-risk group. In multivariate analysis, the risk score played a
stable and independent risk factor for survival. Likewise, the
accuracy and power of the model are good. The inclusion and
validation of clinical cohorts suggested that RDPS models have
potential clinical prospects in the prediction of metastasis and
prognosis in CRC patients, which could contribute to the
implementation of clinical decision-making.

Generally, similar links exist between landscape diversity and
landscape function. In our analysis, gene mutation frequencies,
amplifications, and homozygous deletions were not identical in the
mutant landscape of the high-risk group, suggesting that there were
differences between the high- and low-risk groups in gene levels.
Interestingly, the mutation frequency of TP53 was significantly
frequent in the high-risk group. It is well-known that p53 is a target
of drugs such as cetuximab and affects the sensitivity of
chemotherapeutic drugs such as oxaliplatin (42, 43). In
mechanism, the p53 protein mediates multiple signaling
pathways such as cell proliferation, apoptosis, and cancer stem
cells (44–46). This suggests that high-risk patients selected by the
RDPS model may be more likely to show malignant phenotypes
such as proliferation, metastasis, and drug resistance. Accordingly,
we found relevant evidence in the GSEA pathway enrichment
analysis. The significantly enriched pathways in the high-risk
group were mainly significantly related to cell migration, such as
collagen fiber structure, extracellular matrix tissue, and calcium
signaling pathway, suggesting that it may cause cell metastasis and
spread. However, the low-risk group was mainly enriched in redox
and energy metabolism-related pathways, suggesting that redox
reactions may play a fundamental role in it.

Recently, the therapeutic regimen of combined immunotherapy
has led to a significant improvement in the efficacy of CRC (47, 48).
In addition, there is an intimate association between redox and
immune responses. As proof, the glucose-6-phosphate
dehydrogenase–NADPH redox system indirectly activated T cells
and advances alleviate T cell hypofunction in the tumor
microenvironment (49). Fat oxidation has been implicated in
tumor local infiltration and function of CD8+ T cells (50).
Converse ly , tumor- induced neutrophi ls part ic ipate
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immunosuppressive effects, suggesting that the immune system
could also mediate redox-related mechanisms to affect immunity
(51). In order to investigate whether the RDPSmodel is helpful for
the study of clinical immunotherapy regimens, we explored the
association between risk scores and immune cells and checkpoints.
Endothelial cells and CAFs are abundant in the high-risk group.
Endothelial cells are important regulators of tumor metastasis
propagation (52). The differentially expressed immune
checkpoints derived from the analysis are also providing us with
promising immunotherapeutic targets. We observed that the high-
risk group possesses lower TMB and IPS, suggesting that high-risk
patients had reduced local tumor-specific neoantigen production
and that the immune response capacity may be in a weaker state
compared with the low-risk group.

Our study proposes a novel perspective to match signatures
from redox-driven genes and establish prediction models, which
predicts the prognosis and recurrence of CRC. Moreover, the risk
score was inversely associated with local immunogenicity.
Furthermore, we performed RNA-level validation in collected
clinical cohorts. Nevertheless, limited by the lack of data, our
algorithm only takes into account the heterogeneity of patients
and did not attain spatiotemporal heterogeneity within tumors.
Second, despite the validation of gene expression at the RNA
level, further exploration regarding the mechanisms of in vivo
experiments in cells or animals would make the findings
more convincing.

Summarizing the above, our study identifies and validates a
predictive model consisting of two redox-driven implicated gene
signatures. The RDPS model predicted OS and RFS well in four
public cohorts and one clinical cohort of CRC and was an
independent risk factor for survival. In addition, the differences
in immune cells and related checkpoints suggest that there is an
intimate association between redox and immune cells or
checkpoints, which may provide promising predictors and
immunotherapy targets for CRC patients.
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