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Objective: This study was conducted in order to investigate the feasibility of using
radiomics analysis (RA) with machine learning algorithms based on breast magnetic
resonance (MR) images for discriminating malignant from benign MR-detected additional
lesions in patients with primary breast cancer.

Materials and Methods: One hundred seventy-four MR-detected additional lesions
(benign, n = 86; malignancy, n = 88) from 158 patients with ipsilateral primary breast
cancer from a tertiary medical center were included in this retrospective study. The entire
data were randomly split to training (80%) and independent test sets (20%). In addition, 25
patients (benign, n = 21; malignancy, n = 15) from another tertiary medical center were
included for the external test. Radiomics features that were extracted from three regions-
of-interest (ROIs; intratumor, peritumor, combined) using fat-saturated T1-weighted
images obtained by subtracting pre- from postcontrast images (SUB) and T2-weighted
image (T2) were utilized to train the support vector machine for the binary classification. A
decision tree method was utilized to build a classifier model using clinical imaging
interpretation (CII) features assessed by radiologists. Area under the receiver operating
characteristic curve (AUROC), accuracy, sensitivity, and specificity were used to compare
the diagnostic performance.

Results: The RA models trained using radiomics features from the intratumor-ROI
showed comparable performance to the CII model (accuracy, AUROC: 73.3%, 69.6%
for the SUB RA model; 70.0%, 75.1% for the T2 RA model; 73.3%, 72.0% for the CII
model). The diagnostic performance increased when the radiomics and CII features were
combined to build a fusion model. The fusion model that combines the CII features and
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radiomics features from multiparametric MRI data demonstrated the highest performance
with an accuracy of 86.7% and an AUROC of 91.1%. The external test showed a similar
pattern where the fusion models demonstrated higher levels of performance compared
with the RA- or CII-only models. The accuracy and AUROC of the SUB+T2 RA+CII model
in the external test were 80.6% and 91.4%, respectively.

Conclusion: Our study demonstrated the feasibility of using RA with machine learning
approach based on multiparametric MRI for quantitatively characterizing MR-detected
additional lesions. The fusion model demonstrated an improved diagnostic performance
over the models trained with either RA or CII alone.
Keywords: breast neoplasms, magnetic resonance imaging, machine learning, radiomics, ultrasonography
INTRODUCTION

Breast magnetic resonance imaging (MRI) is widely used for the
preoperative evaluation of the extent of malignancy and the
detection of any ipsilateral or contralateral additional lesions,
especially for candidates for breast-conserving therapy (1).
Magnetic resonance (MR)-detected additional lesions are the
lesions found on preoperative MRI, which have not been
identified on prior mammogram or ultrasound. Although
predicting the malignancy of MR-detected additional lesions
prior to surgery is of importance due to potential change in
treatment strategies, it is a challenging task because of their small
size and ambiguous imaging pattern. A second-look ultrasound
(US) or a targeted US is generally performed to further evaluate
the additional lesion (2, 3); however, US is usually unspecific for
malignancy detection and the correlation rates between MR and
US have been reported to be variable, ranging from 23% to 89%,
depending on several factors, such as the performance of an
individual radiologist or patient-specific differences (4).
Although MR-guided interventions, such as a needle biopsy or
a wire localization, may be performed, these procedures have a
low priority because they are expensive, uncomfortable, and
time-consuming compared with the second-look US. No
defined protocol exists for the further workup of MR-detected
additional lesion, whose clinical protocol usually relies upon the
discretion of radiologists (2, 5).

Recently, there has been an increasing interest in developing a
quantitative method of analyzing medical images. One such
effort is the quantification of medical imaging data using
radiomics analysis (RA). RA extracts a large number of
quantitative features from medical images by applying pattern-
characterizing mathematical formulas to gray-level pixel
intensities that make up radiographical medical imaging data
(6). The distinctive imaging features from RA have been shown
to have the potential to reflect disease processes occurring at
microscopic level (6). Breast MR images are the product of not
only macroscopic breast tissue morphology but also abundant
microscopic structures such as imperceptible tissue architecture,
vascularization, andmolecular diffusion. RAmaybe able to provide
an insight on these microscopic environments and provide a non-
invasive tool for the comprehensive understanding of the entirety of
the tumor, which can add complementary information to the core-
2

needle biopsy that assesses only a small portion of the tumor and,
hence, present a potential localization error (7).

Usingmultiparametric breastMRI, RAhas been applied to tumor
characterization (8–10), detection of microcalcifications (11),
prediction of response to neoadjuvant chemotherapy (NAC) (12,
13), classification of differentmolecular subtypes (14), andprediction
of sentinel lymph nodemetastasis (15, 16) or cancer recurrence (17).
In a recent study, Gibbs et al. demonstrated that RA based on high-
resolution postcontrast images could differentiate between benign
andmalignant enhancing lesions thatwere subcentimeter in size (18).
To our knowledge, no study has examined the use of RA based on
multiparametricMRI for characterizing additionallydetected lesions.
Non-invasivepredictionofmalignancy fromMR-detectedadditional
lesions can facilitate a precise surgical planning by reducing time-
consuming and costly procedures such as the second-look US and
minimize unnecessary invasive procedures, including MR-
guided biopsy.

The aim of this study was to investigate the utility of
multiparametric preoperative MRI-based RA combined with
machine learning algorithms in predicting the malignancy of
additionally detected lesions in patients with primary breast
cancer. Additionally, we developed a machine learning classifier
trainedusing clinical imaging interpretation (CII) features thatwere
generated by a qualitative MR imaging assessment by radiologists.
We compared the performance of the RA classifiers to that of the
CII classifier and investigated improvements with the RA+CII
fusion model over their constituent models. Our model
performances were validated using an external test set.
MATERIALS AND METHODS

Patient Selection and Clinicopathologic
Factor Evaluation
Institutional review board approval (CNUHH-2020-215) was
obtained for this retrospective study, and informed consents
from patients were waived.

Among a total of 6,558 breast MRI examinations that were
performed at Chonnam National University Hwasun Hospital
between January 2012 and July 2020, the MRI exams that met the
following criteria were included: 1) initial breast MR images for
preoperative evaluation of pathologically proven primary breast
December 2021 | Volume 11 | Article 744460
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cancer; 2) interpretation reports containing the following
keywords applied to ipsilateral breast lesion, “BI-RADS (Breast
Imaging Reporting and Data System) 0,” “BI-RADS 4”, “BI-RADS
5”, “targeted”, “second-look”, or “US”; and 3) no history of NAC,
excision, or vacuum-assisted biopsy. The following exclusion
criteria were used: 1) additional lesions that were described as
“daughter” or “satellite” lesions; 2) lesions that were interpreted as
“non-mass enhancement” or “focus” according to the BI-RADS
MR lexicon from the American College of Radiology (19); 3)
lesions with size less than 7 mm, which were too small to extract
sufficient radiomics features; 4) patients without a second-look
US; 5) lesions that were sonographically occult or lacking a MR–
US correlation; 6) lesions whose pathologic confirmation did not
come from a separate excision; 7) lesions that were confirmed as a
“borderline-risk” lesion, such as atypical ductal hyperplasia or
lobular carcinoma in situ to avoid a doubtful ground truth of
diagnoses; and 8) patients who were lost to follow-up. A total of
174 additional lesions (median size, 8 mm ranging from 7 to
15 mm; benign, n = 86; malignant, n = 88) were enrolled from 158
patients. The median age of the patients was 53 years (range, 25–
73 years). For the external test set, 25 breast cancer patients with
36 MR-detected additional lesions (benign = 21, malignant = 15)
from Kyungpook National University Chilgok Hospital, who met
the same inclusion criteria, were enrolled to further validate our
models. The schematic workflow of radiomics analysis is shown in
Figure 1. All patients underwent mammography and US before
MRI examination. All of the additional lesions were non-palpable
and not detected on mammogram or US. A second-look US was
performed after the MRI exam using a US platform with a 6–15-
MHz linear probe (Logiq E9; GE Healthcare, Milwaukee, WI,
USA). With reference to the preoperative MR images, lesion
characteristics and depth as well as the location with regard to
the surrounding tissue landmark were thoroughly considered
Frontiers in Oncology | www.frontiersin.org 3
using various techniques, including Doppler US and
elastography, to ensure the MR–US correlation. A US-guided
staining was performed for the suspicious lesion with a lower
threshold for staining decision because MR-detected additional
lesions often lack classical US findings for malignancy (20). The
MR-detected additional lesions were histologically confirmed
separately based on surgical operation performed on the same
day of US-guided staining at our institution. The lesions that
exhibited typical imaging findings for benign and, therefore, did
not receive histology were considered benign if they remained
stable on the follow-up imaging of at least 2 years.

Clinicopathologic factors including the age of the patient;
histologic type, histologic grade, lymphovascular invasion (LVI),
and Ki-67 (≥ 14% or <14% of the main tumor; histologic type of the
additional lesion; pathologic tumor staging; immunohistochemical
(IHC) subtype based on estrogen receptor (ER); progesterone
receptor (PR); and human epidermal growth factor receptor 2
(HER2) positivity were investigated. Malignant pathologic
diagnoses of the index tumor included ductal carcinoma in situ
(DCIS), invasive carcinoma of no-special-type, invasive lobular
carcinoma, mucinous carcinoma, papillary carcinoma, and
medullary carcinoma. All the other pathologies without cancerous
cells were considered benign. The automated IHC staining of ER,
PR, HER2, and Ki-67 was performed for the pathological
assessment of primary breast cancer. ER and PR positivity was
scored by an Allred scoring system (21). HER2 staining scores were
divided into four categories (0, 1+, 2+, or 3+) according to the
ASCO/CAP guideline (22), with the score of 3+ considered as
HER2-positive, the score of 0 or 1+ as HER2-negative, and the score
of 2+ as equivocal, which needed a further assessment with in situ
hybridization. Triple-negative breast cancer (TNBC) was defined as
being ER- and PR-negative with the HER2 score of 0 or 1+ or with
the absence of gene amplification.
FIGURE 1 | The workflow of the study.
December 2021 | Volume 11 | Article 744460
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MRI Protocol
MRI was performed with 3-T scanners (TIM Trio, Skyra, Skyra
II; Siemens Healthcare, Erlangen, Germany) with a dedicated
breast coil with a minimum of four channels. Images of bilateral
breasts were acquired in a prone position. The imaging
parameters and protocols for the three types of scanners are
presented in Supplemental Table S1. MRI exams consisted of
axial fat-saturated turbo spin-echo T2-weighted imaging,
dynamic contrast-enhanced imaging using T1-weighted axial
3D fat-saturated spoiled gradient-echo with the administration
of gadoterate meglumine (Dotarem; Guerbet, Aulnay-sous-Bois,
France) at a dose of 0.1 mmol/kg body weight, diffusion-weighted
image (DWI), and apparent diffusion coefficient (ADC) map
automatically generated by scanners. Dynamic contrast-
enhanced MRI consisted of a precontrast and five postcontrast
series with each series at a 60-s interval. Subtraction images were
generated automatically from scanners by subtracting precontrast
series from each of the five postcontrast series. The MRI data of
the external test cohort were acquired using a 3-T scanner
(Discovery MR750, GE Healthcare, Milwaukee, WI, USA).

Clinical Imaging Interpretation of MRI Data
The CII features were obtained based on the BI-RADS MR
lexicon by two board-certified breast radiologists with 3 and
16 years of experience, who were blinded to the clinicopathologic
information. The CII features represent a mostly qualitative
interpretation of radiographical imaging findings and consisted
of morphology (mass or non-mass enhancement), size, shape,
margin, and internal enhancement characteristics of the main
tumor as well as size, shape, margin, internal enhancement
characteristics, enhancement kinetic pattern of the additional
lesion, and the additional lesion location with regard to the main
tumor (same quadrant or different quadrant). In addition,
background parenchymal enhancement (BPE) was also
included. For 22 patients who possessed more than one
additional lesion, the CII features were collected for each lesion.

For the analysis of enhancement kinetics for the additional
lesion, a region-of-interest (ROI) was manually drawn using a
postprocessing CAD system (CADstream, version 6.0; Confirma,
Kirkland, WA, USA), after which early and delayed phase
patterns were retrospectively analyzed according to BI-RADS
descriptors. According to a previous study by Jansen et al. (23),
the kinetic presentation of breast lesions may be inconsistent
across different MR systems; therefore, we performed a
qualitative assessment of kinetic curve shape. The early phase
patterns consisted of slow (<50%), medium (50–100%), or rapid
(>100%) enhancement patterns. The delayed phase patterns
consisted of persistent, plateau, and washout components. The
persistent, plateau, and washout components represented the
pixel signal intensity with >10% increase, <10% increase and
<10% decrease, and >10% decrease in the last postcontrast image
compared with the first postcontrast image, respectively.

MRI Intensity Normalization
Two sequences were selected from the whole breast MRI series
on picture archiving and communicating system (PACS): the
images obtained by subtracting pre- from the first postcontrast
Frontiers in Oncology | www.frontiersin.org 4
image (SUB) and T2-weighted image (T2). We used the SUB
instead of the first postcontrast T1-weighted images because of
its higher imaging contrast on a small lesion boundary compared
with the latter. The SUB and T2 images were saved as a DICOM
format. The simple ITK library (version 2.1.0; https://simpleitk.
org/) was applied in Python to process the DICOM pixel values
(24). In order to minimize inherent differences in pixel intensities
across three different MR scanners, a z-score normalization was
applied to the whole image voxels in every MR image (25). After
the z-score normalization, the absolute value of the minimum
pixel intensity was added to all pixels to convert negative pixel
values to positive. The z-score algorithm was implemented from
scratch using in-house written scripts in Python (http://www.
python.org).

Region-of-Interest Segmentation
and Feature Extraction
Intratumor-ROIs were semiautomatically drawn by a breast
radiology specialist with 3 years of experience using an open-
source software, 3D-slicer (http://www.slicer.org). The intratumor-
ROIs typically spanned 5–10 MR slices (slice thickness, 1.5–2 mm).
In addition, peritumor-ROIs representing a donut-like region with a
5-mm extension from the tumor boundary were automatically
obtained by dilating the delineated intratumor-ROI contour using
a built-in function in 3D-slicer. The 2D ROIs, which were drawn on
multiple slices, were rendered into a 3D ROI contour with an
isotropic voxel resolution using a built-in function in 3D-slicer.
Some additional lesions were challenging to be delineated on T2 due
to a relatively large slice thickness of T2 (2.4 mm). As a result, a total
of 22 T2 lesions were omitted. The mean ± SDs of intratumor,
peritumor, and intra- and peri-tumor combined ROI volume were
342.5 ± 355.9, 906.9 ± 538.3, and 1,249.5 ± 880.0 mm3, respectively.
A total of 107 original radiomics features were extracted using a
PyRadiomics module in 3D-slicer from intratumor, peritumor, and
the combined regions. The original radiomics features consisted of
14 shape, 18 first-order, and 75 texture features.

Interobserver Reproducibility
Another board-certified radiologist drew ROIs for a total of 50
randomly selected patients to assess an interobserver
reproducibility. Interobserver reproducibility of the extracted
radiomics features from the ROIs drawn by the two
radiologists was estimated by an intraclass correlation
coefficient (ICC) based on two-way mixed effects model and
interpreted according to the following criteria: excellent (>0.9),
good (0.75–0.90), moderate (0.50–0.75), or poor (<0.50) (26).

Feature Selection and Classifier Model
Training for Radiomics Analysis
The patients at Chonnam National University Hwasun Hospital
were randomly split to training (80%) and independent test sets
(20%). To reduce the feature dimensionality and avoid
overfitting, a penalized logistic regression with a least absolute
shrinkage and selection operator (LASSO) analysis was applied
across the training set 100 times with a random selection of
LASSO training (80% of training set) and LASSO validation
(20% of training set). Only features that rendered non-zero
December 2021 | Volume 11 | Article 744460
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weights more than 10 times were selected (27). This process
produced a total of 16 to 39 features. Next, the second feature
selection step was applied to define a new set of features, S, in
order to choose a combination of features that would produce the
maximal classification accuracy. Each of the feature from the first
step was added to S and the classification accuracy was evaluated.
The support vector machine (SVM) was used to train and
evaluate the classifier model (henceforth called the RA model)
using the training dataset with a four-fold cross-validation,
where three parts of the training dataset were used for training
and one part for validation. Scikit-learn Python library was
utilized for implementing SVM and LASSO (28). The accuracy
was calculated as an average from the four-fold validations. If
adding a new feature increased the accuracy, the feature
remained in S. Otherwise, it was removed from s. After the
optimal set of radiomics features were determined for SUB and
T2, the features in SSUB and ST2 were extracted from the
independent test set, transferred to the trained SUB RA and T2
RAmodel, respectively, for evaluating model performances using
the independent, internal test set. Another RA model was built
using the full feature sets combining SUB and T2 radiomics
features (henceforth called the SUB+T2 RA model). The feature
selection and training procedure for the SUB+T2 RA model
followed the same steps as those of the SUB and T2 RA models.

Classifier Model Training for CII Features
and Fusion Model
A decision tree method was utilized to build a classifier model
using the six CII features (henceforth called the CII model).
These six features were selected after implementing univariate
Frontiers in Oncology | www.frontiersin.org 5
and multivariate analyses on the CII features. The names of these
features are listed in Supplemental Table S2. The proposed
decision tree model applied the ID3 algorithm to build up the
tree (29). Lastly, fusion models combining radiomics and CII
features were developed using SVM. The features in SSUB and ST2
were separately concatenated with three CII features, namely,
relative location to the main tumor, delayed kinetic pattern, and
additional lesion margin, which were determined to be most
attributable to the prediction in the CII model. After the
prediction models were built, the performances of the models
were further validated using the external test set. The schematic
diagram for the fusion models is shown in Figure 2.

Statistical Analysis
Clinicopathologic and CII features were compared between
benign and malignant groups using Fisher’s exact test, chi-
square test, or Mann–Whitney U test, where appropriate.
Univariate and multivariate logistic regression analyses were
used to evaluate a significant predicting factor for additional
lesion malignancy.

To evaluate the RA and CII model performance, sensitivity
(malignancy considered as a positive condition), specificity,
accuracy with a threshold of 0.5, and the area under the receiver
operating characteristic curve (AUROC) were calculated. The
additional value of CII features to the RA classifier models was
evaluated by net reclassification improvement (NRI) and
integrated discrimination improvement (IDI) indexes. All
statistical analyses were performed using SPSS software version
25.0 (SPSS Inc., Chicago, IL, USA) and R software version 3.5.1 (R
Foundation for Statistical Computing, Vienna, Austria). All
FIGURE 2 | Schematic flowchart of the fusion model developed in this study. Radiomics features were extracted from MRI data using three regions-of-interest
(ROIs; intratumor, peritumor, and combined). After the feature selection process, the selected radiomics features were concatenated with three CII features and used
to train a support vector machine (SVM) for distinguishing between malignant and benign additional lesions. SUB, images obtained by subtracting pre- from the first
postcontrast image; T2, T2-weighted image; MRI, magnetic resonance imaging, SVM, support vector machine; CII, clinical imaging interpretation.
December 2021 | Volume 11 | Article 744460
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statistical tests were two-tailed with the p-value < 0.05 being
considered significant.
RESULTS

Patient Characteristics
The study population for the training and internal testing of the
models included 79 patients with 82 benign additional lesions, 75
patients with 84 malignant additional lesions, and 4 patients with
both benign and malignant additional lesions.

One hundred and fifty additional lesions were confirmed by
histopathologic examination and the other 24 lesions were
determined to be benign on imaging follow-up of at least
2 years. The histologic subtypes of the malignant additional
lesions include DCIS (n = 7), invasive carcinoma of no-special-
type (n = 62), invasive lobular carcinoma (n = 10), and others
(n = 9), while histologic subtypes of the benign additional lesions
include fibroadenoma (n = 33), adenosis (n = 4), fibrocystic
change (n = 5), fibrosis (n = 7), benign intraductal papilloma
(n = 8), and others (n = 5).

Clinicopathologic features between patients with benign and
malignant additional lesions were compared. The patients with
malignant lesions possessed a significantly higher number of
axillary lymph node metastasis (p = 0.001) than those with
benign lesions. The histologic type, histologic grade, LVI, Ki-
67, pathologic T stage, and IHC subtype of the main tumor as
well as the age of the patient were comparable between two
groups (p > 0.05).

Comparison of CII Features Between
Benign and Malignant Additional Lesion
The comparison of the CII features between the benign and
malignant lesions is shown in Table 1. The malignant lesion
exhibited a significantly higher degree of minimal to mild BPE
(p = 0.012) and higher degree of not circumscribed main tumor
margin than the benign lesion (p = 0.006). All the other imaging
features related to the main tumor (morphology, size, shape,
internal enhancement) were similar between the two groups. In
terms of imaging features related to the additional lesions, the
malignant additional lesions showed a higher degree of irregular
shape (p = 0.002), not circumscribed margin (p < 0.001),
heterogeneous and rim enhancement (p = 0.007), and delayed
washout kinetic pattern (p < 0.001) than the benign additional
lesions. In addition, the malignant lesions were more likely to be
located in the same quadrant as the main tumor (p < 0.001).

Logistic Regression Analysis of Significant
Clinicopathologic and CII Features
In univariate logistic regression, axillary lymph node metastasis
(p = 0.001), BPE (p = 0.012), main tumor margin (p = 0.015),
additional lesion shape (p = 0.002), additional lesion margin
(p < 0.001), additional lesion internal enhancement (p = 0.013),
relative location to the main tumor (p < 0.001), and delayed
kinetic pattern of the additional lesion (p < 0.001) were
significantly associated with malignancy of the additional
Frontiers in Oncology | www.frontiersin.org 6
lesion (Table 2). In multivariate analysis, additional lesion
margin (p = 0.006), additional lesion internal enhancement
(p = 0.045), relative location to the main tumor (p < 0.001),
and delayed washout kinetic pattern of the additional lesion
(p < 0.001) were significantly associated with malignancy of the
additional lesion.

Interobserver Reproducibility
The ICC for all radiomics features showed excellent agreement.
The ICCs (mean ± SD) of SUB intratumor-, SUB peritumor-,
SUB combined-, T2 intratumor-, T2 peritumor-, and T2
combined-ROIs were 0.964 ± 0.06 (range, 0.580–0.999),
0.962 ± 0.04 (0.716–0.994), 0.988 ± 0.02 (0.814–0.999),
0.930 ± 0.11 (0.590–0.999), 0.957 ± 0.05 (0.636–0.996), and
0.974 ± 0.05 (0.642–0.999), respectively. The ICCs (mean ±
SD) of features selected for the SUB, T2, and SUB+T2 RA
models were 0.931 ± 0.09 (range, 0.795–0.998), 0.985 ± 0.02
(0.959–0.999), and 0.937 ± 0.10 (0.659–0.999), respectively.
Therefore, the radiomics features from the first radiologist
were used to train all RA models.

Diagnostic Performance of RA and
CII Models
The feature selection process selected five radiomics features
from SUB to be used for training the SUB RA model. Similarly,
five radiomics features from T2 were selected for training the T2
RA model. For the SUB+T2 RA model, a total of eight radiomics
features were selected from the combined feature set from
intratumor-SUB and intratumor-T2. The list of selected
features for each model is provided in Supplemental Table S2.
Among all RA models, two RA models based on the intratumor-
ROIs of SUB and T2 yielded the highest classification
performances with the testing accuracy and AUROC of 73.3%
and 69.6% for SUB and 70.0% and 75.1% for T2, respectively
(Table 3). The RA model based on multiparametric MRI data
(SUB+T2 RA model) yielded a performance improvement over
the RAmodels using single-modality MRI data with the accuracy
and AUROC of 83.3% and 82.7%, respectively (Table 4). The CII
model achieved a performance comparable to the RA models
using intratumor-SUB and intratumor-T2 radiomics features.
The accuracy and AUROC of the CII model were 73.3% and
72.0%, respectively (Table 4).

Diagnostic Performance of RA+CII
Fusion Models
The intratumor-SUB and intratumor-T2 features from the RA
models were concatenated with the three most discriminative CII
features from the CII model to train fusion models. The
performances of the fusion models were compared to those of
the RA models and the CII model (Table 4). The fusion models
combining the radiomics and CII features demonstrated
improvements over the RA and CII models. The testing
accuracy and AUROC of the SUB RA+CII model were 73.3%
and 86.7%, respectively, which demonstrated a 14%–17%
increase in AUROC compared with the AUROC of the SUB
RA or CII models. Similarly, the testing accuracy and AUROC of
December 2021 | Volume 11 | Article 744460
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TABLE 1 | Comparison of preoperative clinical imaging interpretation features between benign and malignant groups.

Benign Malignant p

BPE 0.012
Minimal to mild 50 (61.0%) 67 (79.8%)
Moderate to marked 32 (39.0%) 17 (20.2%)

Main tumor morphology 0.131
Mass 75 (91.5%) 82 (97.6%)
Non-mass enhancement 7 (8.5%) 2 (2.4%)

Main tumor size (median, mm) 18.0 18.0 0.738
Main tumor shape 0.384
Round or oval 12 (16.0%) 9 (11.0%)
Irregular 63 (84.0%) 73 (89.0%)

Main tumor margin 0.006
Circumscribed 10 (13.3%) 1 (1.2%)
Not circumscribed 65 (86.7%) 81 (98.8%)

Main tumor internal enhancement 0.276
Homogeneous 2 (2.7%) 0
Heterogeneous 51 (68.0%) 61 (74.4%)
Rim enhancement 22 (29.3%) 21 (25.6%)

Additional lesion size (median, mm) 8.0 8.0 0.828
Additional lesion shape 0.002
Round or oval 66 (76.7%) 48 (54.5%)
Irregular 20 (23.3%) 40 (45.5%)

Additional lesion margin <0.001
Circumscribed 63 (73.3%) 34 (38.6%)
Not circumscribed 23 (26.7%) 54 (61.4%)

Additional lesion internal enhancement 0.007
Homogeneous 34 (39.5%) 19 (21.6%)
Heterogeneous 46 (53.5%) 52 (59.1%)
Rim enhancement 6 (7.0%) 17 (19.3%)

Relative location to main tumor <0.001
Same quadrant 32 (37.2%) 65 (73.9%)
Different quadrant 54 (62.8%) 23 (26.1%)

Early kinetic patterna 0.052
Slow 0 0
Medium 9 (11.1%) 7 (8.0%)
Rapid 72 (88.9%) 80 (92.0%)

Delayed kinetic patterna <0.001
Persistent 13 (16.1%) 1 (1.1%)
Plateau 36 (44.4%) 14 (16.1%)
Washout 32 (39.5%) 72 (82.8%)
Frontiers in Oncology | www.frontiersin.org
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aFive benign additional lesions and one malignant additional lesion were not included for kinetics analysis due to motion artifact.
BPE, background parenchymal enhancement.
TABLE 2 | Logistic regression analysis results.

Variables Univariate analysis Multivariate analysis

Odds ratio (95% CI) p Odds ratio (95% CI) p

Axillary lymph node metastasis (yes/no) 3.354 (1.583–7.104) 0.001 2.614 (0.906–7.540) 0.075
BPE (minimal to mild/moderate to marked) 2.297 (1.198–4.405) 0.012 2.504 (0.972–6.446) 0.065
Main tumor margin (not circumscribed/circumscribed) 6.794 (1.456–31.699) 0.015 3.154 (0.505–19.707) 0.219
Additional lesion shape (irregular/round or oval) 2.750 (1.431–5.283) 0.002 2.253 (0.832–6.102) 0.110
Additional lesion margin (not circumscribed/circumscribed) 4.350 (2.289–8.267) <0.001 3.431 (1.414–8.325) 0.006
Additional lesion internal enhancement 0.013 0.045
Homogeneous Reference Reference
Heterogeneous 2.023 (1.017–4.022) 0.045 1.343 (0.477–3.786) 0.577
Rim enhancement 5.070 (1.710–15.034) 0.003 7.418 (1.505–36.558) 0.014

Relative location to main tumor (same/different quadrant) 4.769 (2.500–9.099) <0.001 5.986 (2.493–14.376) <0.001
Delayed kinetic pattern <0.001 <0.001
Persistent Reference Reference
Plateau 5.056 (0.603–42.354) 0.135 3.233 (0.326–32.060) 0.316
Washout 29.25 (3.668–233.23) 0.001 27.026 (2.834–257.72) 0.004
CI, confidence interval; BPE, background parenchymal enhancement.
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the T2 RA+CII model were 76.7% and 82.2%, respectively, which
indicated a 3%–7% increase in accuracy and a 7%–10% increase
in AUROC compared with the corresponding metrics of the T2
RA or CII models. The fusion model (SUB+T2 RA+CII), which
was trained with a combination of eight features from the SUB+
T2 RA model and three features from the CII model, provided
the highest performance with an accuracy of 86.7% and an
AUROC of 91.1%, demonstrating a 3.4% and 8.4% increase in
accuracy and AUROC, respectively, compared with the SUB+T2
RAmodel alone, and a 13.4% and 19.1% increase in accuracy and
AUROC, respectively, compared with the CII model alone
(Table 4). The ROC curves of RA, CII, and the fusion models
are shown in Figure 3. In the testing result of the SUB+T2 RA+
CII model, 2 out of 15 malignant lesions were misclassified as
benign, and 2 out of 15 benign lesions were misclassified as
malignant, rendering a sensitivity and specificity of 86.7%.
Examples of true-negative and false-negative cases are
illustrated in Figures 4 and 5, respectively.

The analysis of NRI and IDI between the RA and fusion models
revealed that the addition of CII features significantly improved the
performances of the SUB RA and T2 RAmodels. The NRI between
the SUB RA and SUB RA+CII models was 0.80 (95% CI, 0.16–1.44;
Frontiers in Oncology | www.frontiersin.org 8
p = 0.014). The NRI between the T2 RA and T2 RA+CII models was
1.13 (95% CI, 0.57–1.70; p < 0.001). The addition of CII features to
the SUB+T2 RA model, however, did not provide a significant
improvement with the NRI between the SUB+T2 RA and SUB+T2
RA+CII models of 0.13 (95% CI, −0.58 to 0.85; p = 0.71). The IDI
analysis demonstrated a similar pattern. The absolute IDI between
the SUB RA and SUB RA+CII models was 0.32 (95% CI, 0.15–0.46;
p < 0.001). The absolute IDI between the T2 RA and T2 RA+CII
models was 0.16 (95% CI, 0.067–0.26; p < 0.001). The absolute IDI
between the SUB+T2 RA and SUB+T2 RA+CII models was 0.015
(95% CI, −0.022 to 0.052; p = 0.43). Overall, these results suggest
that the addition of CII features to the RA models enhanced the
accuracy of malignancy prediction in the additional lesion with a
significant improvement for the SUB and T2 RA models.

External Validation
The external test cohort consisted of 19 patients with 20 benign
additional lesions, 5 patients with 12 malignant additional
lesions, and 1 patient with both 1 benign and 3 malignant
additional lesions. The external test set was utilized to validate
the performances of the SUB+T2 RA, CII, and the RA+CII
fusion models (i.e., SUB RA+CII, T2 RA+CII, and SUB+T2 RA+
TABLE 4 | Comparison of the performances between RA, CII, and RA+CII fusion models for the classification of malignant vs. benign MR-detected additional lesion.

Model Training set Internal test set External test set

SEN SPE ACC AUROC SEN SPE ACC AUROC SEN SPE ACC AUROC

SUB+T2
RAa

93.2 (88.4,
97.6)

83.6 (77.0,
90.2)

88.3 (82.5,
94.1)

91.8 (82.7,
94.1)

80.0 (65.7,
94.3)

86.7 (75.0,
99.0)

83.3 (70.0,
96.4)

82.7 (70.0,
97.1)

60.0 (44.0,
76.0)

85.7 (74.3,
97.1)

75.0 (60.9,
89.1)

88.6 (57.9,
87.8)

CII 87.0 (81.5,
92.6)

89.0 (83.8,
94.2)

88.2 (82.6,
93.4)

96.2 (82.5,
93.4)

66.7 (50.2,
83.8)

80.0 (65.7,
94.3)

73.3 (57.1,
89.0)

72.0 (57.1,
90.0)

73.3 (66.9,
93.1)

46.4 (30.1,
62.7)

66.7 (51.3,
82.1)

67.8 (51.9,
83.3)

SUB RA
+CIIb

86.0 (80.2,
92.0)

77.0 (70.0,
84.0)

81.2 (74.7,
87.7)

86.8 (73.0,
86.4)

66.7 (49.8,
83.5)

80.0 (65.7,
94.3)

73.3 (57.5,
89.1)

86.7 (57.1,
90.0)

80.0 (66.9,
93.1)

82.5 (70.1,
94.9)

83.3 (71.2,
95.5)

82.5 (69.9,
95.8)

T2 RA+CIIb 80.0 (72.7,
87.3)

75.0 (67.1,
83.0)

77.6 (69.3,
84.7)

87.2 (70.0,
85.2)

86.7 (74.5,
99.0)

66.7 (50.0,
83.6)

76.7 (61.6,
92.0)

82.2 (61.4,
92.0)

93.3 (85.2,
99.9)

61.9 (46.0,
77.8)

75.0 (60.9,
89.1)

81.0 (65.1,
90.0)

SUB+T2
RA+CIIc

85.5 (79.0,
92.0)

81.4 (74.3,
89.0)

88.3 (82.4,
94.2)

88.1 (76.5,
90.3)

86.7 (75.0,
99.0)

86.7 (75.0,
99.0)

86.7 (75.0,
99.0)

91.1 (74.1,
99.3)

80.0 (66.9,
93.1)

81.0 (79.5,
99.5)

80.6 (74.5,
97.3)

91.4 (66.9,
94.0)
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Values are expressed as percentages, with 95% confidence intervals in parentheses.
RA, radiomics analysis; CII, clinical imaging interpretation; SEN, sensitivity; SPE, specificity; ACC, accuracy; AUROC, area under the receiver operating characteristic curve; SUB,
subtraction image; T2, T2-weighted image.
aThis model was trained using a combined feature set from intratumor-SUB and intratumor-T2.
bThese fusion models were trained using a combination of CII features and radiomics feature from intratumor-SUB or intratumor-T2.
cThis fusion model was trained using the radiomics features from the SUB+T2 RA model and CII features.
TABLE 3 | Comparison of the RA model performances between various ROIs for differentiating malignant from benign MR-detected additional lesions.

Model ROI SUB T2

Sensitivity Specificity ACC AUROC Sensitivity Specificity ACC AUROC

Training set (four-fold cross-validation)
RA Intratumor 87.0 (81.1, 92.6) 58.0 (50.0, 66.2) 72.7 (65.3, 80.1) 79.4 (72.1, 86.8) 76.7 (69.2, 84.2) 69.4 (61.2, 77.6) 73.0 (65.1, 80.9) 74.4 (65.1, 80.9)

Peritumor 64.3 (56.3, 72.3) 73.9 (66.6, 81.2) 69.1 (61.4, 76.8) 74.7 (61.4, 76.8) 79.0 (71.8, 86.2) 70.0 (62.0, 78.1) 74.6 (67.0, 82.3) 83.3 (67.0, 82.3)
Combined 75.7 (68.6, 82.8) 60.9 (52.9, 69.1) 68.4 (60.7, 76.1) 73.5 (61.0, 76.0) 81.7 (75.2, 89.0) 56.5 (48.2, 65.8) 68.9 (61.0, 77.2) 74.6 (61.1, 77.0)

Test set for internal validation
RA Intratumor 93.5 (86.8, 100.0) 50.0 (42.5, 75.1) 73.3 (63.3, 91.1) 69.6 (50.0, 90.0) 73.3 (57.5, 89.1) 66.7 (50.0, 83.6) 70.0 (53.6, 86.4) 75.1 (53.1, 87.0)

Peritumor 80.0 (65.7, 94.3) 47.7 (42.5, 65.6) 63.3 (46.1, 80.5) 68.0 (48.4, 87.6) 60.0 (42.5, 77.5) 60.0 (42.5, 77.5) 60.0 (42.5, 77.5) 66.0 (42.0, 78.1)
Combined 73.3 (64.0, 91.6) 53.3 (42.0, 74.6) 68.6 (46.1, 80.5) 60.0 (38.3, 81.2) 73.3 (57.5, 89.1) 66.7 (50.0, 83.6) 70.0 (53.6, 86.4) 70.1 (53.1, 87.2)
Values are expressed as percentages, with 95% confidence intervals in parentheses.
ACC, accuracy; AUROC, area under the receiver operating characteristic curve; RA, radiomics analysis; ROI, region-of-interest; SUB, subtraction image; T2, T2-weighted image.
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CII). The results from the external test set are shown in Table 4.
Overall, the results from the external test set were comparable to
those from the internal test set. Similar to the result from the
internal test set, the SUB+T2 RA+CII model, which was a fusion
model between the SUB+T2 RA and CII models, provided the
highest performance with an accuracy of 80.6% and an AUROC
of 91.4%. In addition, the external test set exhibited the same
Frontiers in Oncology | www.frontiersin.org 9
pattern as the internal test set, in which the fusion models
combining the radiomics and CII features demonstrated
improvements over the RA and CII models. The accuracy and
AUROC of the SUB+T2 RA+CII model with the external test set
were 80.6% and 91.4%, respectively, which represented a 7%–
20% increase in accuracy and 3%–35% increase in AUROC
compared with those of the SUB+T2 RA or CII models.
A B

C

FIGURE 3 | Receiver operative characteristic curves of radiomics analysis (RA), clinical imaging interpretation (CII), and fusion models for SUB (A), T2 (B), and SUB
+T2 (C). SUB, images obtained by subtracting pre- from the first postcontrast image; T2, T2-weighted image.
A B C

FIGURE 4 | An example of a true negative result by the radiomics analysis (RA) model in a 36-year-old woman with invasive carcinoma of no-special-type in the
right breast. (A, B) A 1.1-cm irregular heterogeneously enhancing mass (arrow) with high signal intensity on T2-weighted image is seen in addition to the index tumor
[(A) axial first postcontrast T1-weighted image with subtraction; (B) axial T2-weighted image]. (C) Ultrasound image shows the corresponding 1.1-cm-sized mass
with microlobulated margin (arrow). It was classified as suspicious lesion and the mass was excised. The RA model developed in this study categorized it as benign.
The final histologic analysis revealed papilloma with epithelial hyperplasia.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lee et al. Predict MR-Detected Additional Lesion
DISCUSSION

This study demonstrated the feasibility of using RA with machine
learning approach for predicting malignancy in MR-detected
additional lesions. In both the internal and external test sets, the
machine learning classifier that incorporated both radiomics and
clinical MR imaging interpretation features provided high levels of
accuracy (86.7% and 80.6% for the internal and external test sets,
respectively) and AUROC (91.1% and 91.4% for the internal and
external test sets, respectively), which indicated improvements over
its constituent models that were trained using radiomics or clinical
MR imaging interpretation features alone.

Previous studies of breast cancer have investigated the
performance of RA based on breast MRI for the discrimination
of benign and malignant lesions using radiomics features derived
from multiparametric MRI data. Bickelhaupt et al. constructed a
radiomics model based on T2-weighted image, DWI, DWI with
suppression, and ADC map and reported that the radiomics
model based on multiparametric MRI could differentiate
between malignant and benign lesions with an improved
performance compared with the model based on the ADC
map alone (30). In another study by Bickelhaupt et al. (31), a
machine learning model based on radiomics features from DWI
and an adapted kurtosis fitting reduced false-positive cases, in
which lesions were falsely classified as BI-RADS 4 or 5 at
screening mammography. In a recent study, Zhang et al.
reported that a machine learning model based on radiomics
features from T2-weighted image, diffusion kurtosis imaging
(DKI), and quantitative dynamic pharmacokinetic parameter
map showed a reliable classification performance between
benign and malignant breast lesions (32). Although these
studies have shown the potential of using the combination of
radiomics features from multiparametric MR modalities and
machine learning algorithms for distinguishing malignant
versus benign breast lesions, there has been no attempt to
predict tissue characteristics of MR-detected additional lesions
using the radiomics and machine learning approach based on
multiparametric MRI.
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It is of clinical significance to preoperatively identify tissue
characteristics of MR-detected additional lesion because the
additional lesions of patients with primary breast cancer have a
high probability of being malignant and their identification can
modify the original surgical plan and postoperative management
strategy (33). There have been several efforts to evaluate the
characteristics of MR-detected additional lesions. Nam et al.
reported that the additional lesions with malignancy showed a
significantly higher level of delayed washout kinetic pattern on
dynamic contrast-enhanced MRI than those with benignity (20).
Kim et al. reported that the probability of mass being malignant
increased when lesions were located in the same quadrant as the
main breast cancer (34). As in the cases of these efforts, the method
to evaluate MR-detected additional lesions remains to be
qualitative, with the BI-RADS categorization performed by a
visual assessment. Although biopsy provides a central role in the
diagnosis of breast lesion, its use is limited due to its invasive
nature and it is often inadequate in providing a whole extent of
tumor characteristics. On the contrary, medical imaging can
provide a non-invasive way to repeatedly assess tissue
characteristics of tumor and its surrounding and to evaluate
their longitudinal changes throughout the whole disease
management process (35). RA has been suggested as a new way
to analyze medical imaging data and overcome the shortcoming of
the conventional method of medical imaging analysis, which, for
the most part, has relied upon a qualitative assessment of imaging
findings. In this study, we attempted to develop a potential
decision-assisting tool utilizing machine learning models based
on the RA of multiparametric breast MR data for predicting
malignancy of MR-detected additional lesions.

In the analysis of breast cancer, contrast-enhanced MR
sequence is preferentially used because it provides information
regarding the change in blood flow, which is a basis for
differentiating cancerous from normal tissue. Interestingly, our
results indicated that the RA model based on T2-weighted
images showed a comparable performance to that based on
SUB images, which were derived from contrast-enhanced MR
sequences. Several previous studies have highlighted the
B CA

FIGURE 5 | An example of a false negative result by the radiomics analysis (RA) model in a 49-year-old woman with invasive carcinoma of no-special-type in the
right breast. (A, B) A 0.7-cm oval circumscribed homogeneously enhancing mass (arrow) with slightly high signal intensity on T2-weighted image is seen in the
different quadrant of the same breast [(A) axial first postcontrast T1-weighted image with subtraction; (B) axial T2-weighted image]. (C) Ultrasound image shows the
corresponding oval mass with 0.7 cm in size (arrow). The RA model developed in this study categorized it as benign; however, the final histologic analysis revealed
ductal carcinoma in situ.
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usefulness of using T2-weighted image for breast cancer analysis.
Zhang et al. demonstrated that a radiomics model based on T2-
weighted images provided the second highest performance
among the five models using various single-modality MR data
(T2-weighted image, T1-weighted image, DKI, perfusion, ADC
map), and a model based on the combination of T2, DKI, and
perfusion imaging data provided the highest overall performance
for discriminating between malignant and benign breast lesions
(32). Parikh et al. pointed out that the changes in radiomics
features derived from T2-weighted images were more sensitive to
assess tumor heterogeneity after NAC than those from T1-
weighted images (36). The authors have pointed out that the
changes in vascularity during the course of therapy had possibly
altered the degree of contrast enhancement.

In our study, the RA models based on the intratumor-ROI
from both SUB and T2 sequences provided higher performances
compared with those based on the peritumor- or combined ROI.
For invasive breast cancer, the peritumoral region that includes
the microenvironment beyond contrast enhancement or
hyperintensity is believed to possess critical biological changes
such as LVI, lymphocytic infiltration, or peritumoral edema (37,
38). Previous studies have shown that the peritumoral region was
associated with chemotherapy response (39), sentinel lymph
node metastasis (15), and patient outcome, including
recurrence and survival (40). Although several studies have
demonstrated the usefulness of including the peritumoral
region for the analysis of breast lesion in the combined
machine learning and RA approach (41, 42), one study has
reported a different finding. Zhou et al. compared the diagnostic
performance of deep learning models for the discrimination of
benign and malignant breast lesions, while taking into account
different extents of peritumoral region for comparison (8). They
concluded that the use of the smallest bounding box to define
tumor boundary and, therefore, the inclusion of minimal
amount of peritumoral tissue generated a higher accuracy than
the use of bigger bounding boxes that encompassed a larger area
of peritumoral tissue. It is challenging to explain the results from
the RA models using the peritumoral data in our study for the
following reasons. First, we defined the peritumoral region as the
area with a 5-mm extension from the tumor boundary, which
was dictated by the limitation of the software used to draw ROIs.
The 5-mm distance was relatively large considering the size of
additional lesions, whose average volume was 342.5±355.9 mm3.
The peritumoral region may have included a considerable
amount of adjacent normal tissues and, therefore, affected the
classification performance. Second, the use of a uniform distance
to define the peritumoral region may be inappropriate to reflect
the relevant peritumoral environment because of varying shape
and size of the additional lesions. Unfortunately, no criteria exist
to define the extent of peritumoral region beyond the tumor
boundary. Further research is required to address the definition
of peritumoral region and assess its effect on the
radiomics approach.

Among the radiomics features consisting of the machine
learning models, except for one shape feature, second-order
statistics or texture features and skewness were more
Frontiers in Oncology | www.frontiersin.org 11
associated with the SUB-RA model, while first-order statistics
or histogram features were mostly associated with the T2-RA
model. Second-order statistics are related to the distribution of
neighboring pixels or voxels within a tumor (43). Just described
the meaning of high skewness as asymmetric distribution and
lower mean value in histogram which could represent tumor
progression on dynamic contrast-enhanced MRI (44). On the
other hand, first-order statistics, which describe the simpler
measures from the histogram of individual pixel intensity of
the tumor, are considered to be more important for providing the
information about tissue component in T2-weighted image,
which is in line with Ha et al. (45).

Interobserver reproducibility in this study was determined by
calculating ICCs in terms of ROI segmentation and computation,
and the ROI segmentation may be the part where the variability is
most likely to be introduced in RA research (46). In order to
generate more reproducible ROIs, we utilized the semiautomatic
segmentation options of 3D-slicer, which has been shown to
produce ROIs with a greater reproducibility compared with the
manual ROI segmentation (47). In addition, the target lesions in this
study were relatively small-sized masses; thus, the boundaries of
lesions were relatively easily identified and the ROI delineation of
the tumor was relatively robust. For maintaining computational
reproducibility, the same methods of outlier control, signal intensity
control, and bin width were used between the different readers. In
addition, we used a standardized, open-source module,
PyRadiomics, for radiomics feature extraction. These efforts may
have contributed to enhance the reproducibility of our radiomics
features. Lastly, Van Griethuysen et al. reported that, among
different types of radiomics features, the first-order, Laplacian,
Gaussian-filtered, and texture features showed a relatively higher
reproducibility compared with the shape or wavelet features (48).
We did not utilize wavelet features, but 14 shape, 18 first-order, and
75 texture features, which may have contributed to the overall
high ICCs.

We observed that the fusion model, which combines the
radiomics and CII features, showed a higher accuracy and
AUROC than the RA or CII models alone. It suggests that the
combination of a qualitative evaluation by human efforts and a
quantitative assessment by RA provided the maximal
achievement in characterizing MR-detected additional lesions.
Similar trends have been reported where the incorporation of RA
and the conventional human expert labeling achieved better
performance than a quantitative imaging analysis alone (49–
51). Furthermore, the fusion model incorporating the radiomics
features from multiparametric MR sequences and CII features
exhibited the best overall performance, which indicated that the
addition of relevant data can improve the training performance
of a machine learning classifier. These results warrant that
further optimization of the RA models with enriched
clinicopathologic data and multimodal imaging data could
provide higher feasibility and be used as an efficient adjuvant
tool to support radiologist interpretation and clinical decision.

Three different MRI scanners were used to obtain the MR
data used in this study. Even though the three scanners were
manufactured by the same vendor and used the same imaging
December 2021 | Volume 11 | Article 744460
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protocol to obtain breast MRI, the ranges of pixel intensity from
these scanners were strikingly varied. These machine-dependent
variances in signal intensity may be one of the sources for the
lack of reproducibility in radiomics analysis (52, 53); thus, the
imaging pixel intensities were normalized performed to
minimize innate differences in MR signal between the three
scanners. This effort will be valuable when the method developed
in this study is to be applied in clinical practice where different
types of MRI scanners are used. Our results showed that a high
level of classification performance can be achieved for MR-
detected additional lesions even when MR data with inherent
difference in signal amplitude are used for training and testing
the RA-based machine learning classifier.

This study has several limitations. First, to investigate the
impact of peritumoral tissue, we included only mass lesions that
had a clear boundary. It may be inappropriate to apply the RA
model developed in this study to other datasets that include non-
mass enhancement or foci. In addition, the additional lesions
included in this study were limited to the ipsilateral lesions; thus,
the number of data was relatively small. A study with a larger
number of dataset including non-mass enhancement, foci, and
the contralateral MR-detected additional lesions is currently
under investigation. Second, it was a retrospective study with a
relatively small sample size. Lastly, although we performed the
external validation test with patient data acquired from another
tertiary medical center and showed that the results were
comparable to those of internal testing, the number of external
testing cohort was relatively small. In addition, these data were
collected in a diagnostic case–control manner, which might differ
from the natural prevalence in real clinical setting. Medical data
are highly heterogeneous and the artificial intelligence
algorithms are known to be vulnerable to an overfitting
problem. Our models may produce a suboptimal result in
other datasets. A multicenter prospective study incorporating a
larger number of newly enrolled patients is currently being
planned, which may be able to further validate our approach.
CONCLUSION

We have demonstrated the feasibility of combined radiomics and
machine learning approach for differentiating benign and
malignant MR-detected additional lesions in patients with
primary breast cancer. Combining CII features with the RA
model improved the classification performance. To our
knowledge, our study represents the first attempt to use RA
and machine learning approach for the characterization of MR-
Frontiers in Oncology | www.frontiersin.org 12
detected additional lesions and suggests that this method can
potentially benefit these patient populations by reducing
unnecessary and invasive procedures and, therefore,
minimizing the associated complications, which will allow
progress toward a personalized, precision medicine.
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