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The evolution of the tumor microenvironment (TME) is a cancer-dependent and dynamic
process. The TME is often a complex ecosystem with immunosuppressive and tumor-
promoting functions. Conventional chemotherapy and radiotherapy, primarily focus on
inducing tumor apoptosis and hijacking tumor growth, whereas the tumor-protective
microenvironment cannot be altered or destructed. Thus, tumor cells can quickly escape
from extraneous attack and develop therapeutic resistance, eventually leading to
treatment failure. As an Epstein Barr virus (EBV)-associated malignancy,
nasopharyngeal carcinoma (NPC) is frequently infiltrated with varied stromal cells,
making its microenvironment a highly heterogeneous and suppressive harbor
protecting tumor cells from drug penetration, immune attack, and facilitating tumor
development. In the last decade, targeted therapy and immunotherapy have emerged
as promising options to treat advanced, metastatic, recurrent, and resistant NPC, but lack
of understanding of the TME had hindered the therapeutic development and optimization.
Single-cell sequencing of NPC-infiltrating cells has recently deciphered stromal
composition and functional dynamics in the TME and non-malignant counterpart. In this
review, we aim to depict the stromal landscape of NPC in detail based on recent
advances, and propose various microenvironment-based approaches for
precision therapy.

Keywords: nasophanrygeal carcinoma, tumor microenvionment, precision medicine, single-cell sequencing,
immune regulation
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INTRODUCTION

NPC is a unique type of cancer in terms of its geographical
distribution, differentiation grade and microenvironmental
landscape. According to the global cancer statistics in 2020, more
than 75% of NPC cases were diagnosed in East and Southeast Asia,
especially in southern China (1) (Figures 1A, B). People who have
ancestors who originally resided in southern China possess a
higher possibility of NPC incidences, indicating that NPC
pathogenesis might be closely related to epidemiological patterns
and genetic susceptibility in certain ethical groups (2). In addition,
undifferentiated NPC (The World Health Organization type III
histology) is the predominant disease type that constitutes more
than 90% of total incidences, in which tumor cells exhibit many
stem-cell-like signatures, including CD133, CD44 and ALDH1 (3-
6). The NPC microenvironment might provide a supportive niche
for such a high portion of undifferentiated cells. Compared with
many solid tumors, NPC has the most severe stromal infiltration,
possibly because NPC is originated from the nasopharynx that
contains secondary/tertiary lymphoid structures (TLSs) and closely
associated with EBV infection (7). Even EBV-negative NPC tumors
and non-malignant nasopharyngeal tissues are also intensively
infiltrated with varied stromal cells, caused by the locoregional
lymphoid structures and tumor-mediated mechanism (8, 9).
However, the differentiated NPC is significantly less infiltrated
with stromal cells, suggesting that pathological status might
alter cellular composition in the NPC microenvironment.
During the past decades, the tumor heterogeneity and stromal
landscape in the NPC microenvironment remain largely
unexplored. Only few studies have reported that T cell and
myeloid-derived cells are the predominant stromal subtypes in
the NPC microenvironment based on hematoxylin and eosin
(H&E) staining, immunohistological (IHC) staining and flow
cytometry (10-12). Other stromal cells, such as fibroblasts and B
cells, have not been comprehensively characterized in the NPC
microenvironment yet, but might be associated with stemness,
therapeutic resistance, and immune regulation (13, 14). However,
these techniques using few gene signatures remain far from
sufficient to identify the finer stromal subpopulations and
characterize the functional dynamics of those tumor-infiltrating
cells on immune suppression and tumor progression.

The lack of understanding of the stromal landscape in NPC
significantly hinders the development of precision medicine.
Conventional chemotherapy (cisplatin, gemcitabine and

Abbreviations: TME, Tumor microenvironment; EBV, Epstein Barr virus; NPC,
Nasopharyngeal carcinoma; TLS, Tertiary lymphoid structure; H&E staining,
Hematoxylin and eosin staining; IHC staining, Immunohistological staining;
NK cell, Natural killer cell; Treg cell, Regulatory T cell; IEN, Interferon; EBNAIL,
Epstein-Barr nuclear antigen 1; LMP1, Latent membrane protein 1; LMP2, Latent
membrane protein 2; EBER, Epstein-Barr encoding region; MDSCs, Myeloid-
derived suppressor cells; TCR, T-cell receptor; HNSCC, Head and neck squamous
cell carcinoma; HPV, Human papillomavirus; GZM, Granzyme; DC, Dendritic
cell; HCC, Hepatocellular carcinoma; NSCLC, Non-small-cell-lung cancer; ESCC,
Esophageal squamous cell carcinoma; ECM, Extracellular matrix; FGF2,
Fibroblast growth factor 2; FAP, Fibroblast activation protein-o; CAFs, Cancer-
associated fibroblasts; FFPE tissue sample, Formalin-fixed paraffin-embedded
tissue sample.

fluorouracil) and radiotherapy have been facing obstacles in
optimizing the efficacy in locoregional advanced NPC,
overcoming acquired resistance, and suffering from long-term
toxicities (15-17). Recently, immunotherapy has emerged as a
new strategy to treat recurrent, metastatic, and chemo/radio-
resistant NPC patients using PD-1 inhibitors, including
camrelizumab, pembrolizumab and nivolumab (18-20).
Although the PD-1-based therapeutics has been shown
effective in phase I/II clinical trials, it has also suffered from
patient-specific responsiveness and adaptive resistance after
long-term dosage. Resistance to immunotherapy is
multifaceted since the functional state of infiltrating stromal
cells is dynamic. Thus, in order to optimize precision medicine
in NPC patients, it remains essential to comprehensively
decipher the stromal landscape in NPC, and to identify
patient-specific targets and signatures associated with
prognosis and treatment responsiveness (Figure 1C).

Single-cell sequencing has provided a powerful platform to
analyze the heterogeneous ecosystem in cancer. As yet, research
enthusiasm for single-cell sequencing has remained high, and the
TME-infiltrating cells in many cancers have been revealed.
Single-cell analysis has provided bench-to-bedside guidelines to
clinical practice, especially by revealing TME-based targets that
can re-activate immune response or inhibit tumor-facilitating
effects. However, the single-cell sequencing of NPC only started
after 2019, largely due to its low global incidence. So far,
single-cell data of NPC have participated in the public
repository and contributed to the establishment of large-scale
and multi-central cohorts for downstream analysis (21). In this
review, we aim to address the stromal landscape in NPC based on
recent advances, and subsequently propose a variety of
approaches to enhance therapeutic response and patient
prognosis via specifically targeting the immunosuppressive and
tumor-promoting microenvironment.

THE HETEROGENOUS NPC
MICROENVIRONMENT SHAPED

BY LOCOREGIONAL LYMPHOID
INFILTRATION, EBV INFECTION AND
TUMOR-MEDIATED RECRUITMENT

NPC is categorized as an inflamed tumor based on its spatial
localization of stromal cells with respect to tumor compartments
(22). Stromal cells are in close proximity to and in contact with NPC
cells, instead of being embedded in the surrounding regions away
from the tumor core. Hence, cytokine secretion and ligand-receptor
interactions are both involved in the bilateral tumor-stroma
interplay. It is also noteworthy that the nasopharynx is one of the
first defensive organs against viral and bacterial entry and infection,
which makes its underlying microenvironment highly heterogenous
and immunogenic prior to malignant transformation.

There exist two major cell lineages in the nasopharyngeal
microenvironment, CD45" immune cells, including T cells, B
cells, natural killer cells (NK cells), and myeloid-derived cells, as
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FIGURE 1 | (A) The 5-year prevalence of NPC incidences around the globe from 2015-2020. (B) The geographical distribution of NPC incidences in Asia, 2020.
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well as CD45™ non-immune stromal cells, including fibroblasts
and endothelial cells. Recent single-cell analysis has revealed that
normal nasopharyngeal tissues also have high immune
infiltration, especially for T and B lymphocytes (23, 24).
Fibroblasts and myeloid-derived cells are hardly seen from
normal nasopharyngeal tissues, even those with reactive
hyperplasia caused by allergy and inflammation (23, 24). The
major stromal landscape between normal nasopharyngeal tissues
and malignant nasopharyngeal carcinoma is distinctive. For
instance, B cells are highly enriched in the normal
nasopharyngeal tissues upon inflammation, whereas T cells,
NK cells, myeloid-derived cells and fibroblasts, are more likely
to infiltrate the NPC microenvironment (23). Germinal centers
are commonly seen in the normal nasopharyngeal tissues, where
CD3"/CCR7" naive T cells and CD19"/CD27 naive B cells
accumulate and proliferate, causing lamps in the nasopharynx
(23, 25). Under non-malignant inflammation, a large portion of
those naive lymphocytes does not differentiate into cytotoxic,
memory and regulatory phenotypes. However, the chronic EBV
infection and tumor progression result in an increasing number
of naive cells transitioned into an activated state, and eventually
become exhausted (26). Retrospective cohort studies have found

that 90% of NPC incidences are accompanied by EBV infection,
but there still are EBV™ cases where the stromal composition is
distinctive from EBV™ counterparts (27). The abundance of
major cell lineages in EBV™ NPC patients, does not
significantly differ from the abundance in the EBV"
microenvironment, but the exhausted and immunoregulatory
subtypes, such as HAVCR2/PD-1" T cells, CD25"/FOXP3"/
CTLA4" regulatory T cells (Tregs) and CD68" myeloid-derived
cells are found more enriched in the EBV" microenvironment
(11, 28). Besides, the functional state of infiltrating immune cells
has been greatly influenced by the hyper-activation of interferon
(IFN) secretion induced by EBV infection. In the NPC
microenvironment, type I and type II IFNs, namely IFN-o. and
IFN-v, are activated to combat viral entry and incorporation.
Thus, the IFN-o. and IFN-y signaling pathways are activated in
almost all the infiltrating immune cells, mainly reflecting in
up-regulation of IFN-induced genes, including ISG15, IFI6,
IF144L, IFIT3 and IFITM1 (23). On the contrary, NF-xB
signaling is up-regulated in nasopharyngeal tissues upon non-
malignant inflammation, but it is also closely associated with
inflammation caused by EBV-encoded genes (23). Although
IFNs play a vital role in anti-tumor cytotoxicity, previous
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studies have reported that chronic IFN activation in the TME
hijacks helper T cell response and leads to progressive exhaustion
of T cells and persistent infection (29-31). Nevertheless, the
molecular mechanism of chronic IFN activation on immune cells
needs to be further investigated, including its effect on antigen
presentation, T cell differentiation, activation and exhaustion.

EBV infection in NPC is classified as type II latency and
contributes to TME remodeling. Type II latency is characterized
by the expression of a set of latent genes in NPC, including
Epstein-Barr nuclear antigen 1 (EBNAI), latent membrane
protein 1 (LMP1), LMP2 and Epstein-Barr encoding region
(EBER) RNAs (32, 33). LMP1 and EBNA1 expressed by NPC
cells are able to induce PD-L1 up-regulation via STAT3 and NF-
KB signaling, Treg recruitment via CXCL12-CXCR4 chemotaxis,
as well as expansion of myeloid-derived suppressor cells
(MDSCs) (31, 34, 35). EBV can also infect B cells, however,
the infiltrating B cells in the NPC microenvironment are
uninfected, indicating that EBV infection on nasopharyngeal
epithelial cells may occur prior to B-cell recruitment and
accumulation (36). Tumor-mediated recruitment is another
mechanism to alter the microenvironmental landscape. NPC
cells specifically express cytokine-encoding genes, including
CX3CL1, CXCL10, CCL2, CSF1, IL-10 and TGF-B1 that are
critical for the recruitment of immune cells from peripheral
blood and immune suppression (37, 38). T-cell receptor (TCR)
profiling has revealed that CX3CR1" T cells are migrated from
the peripheral blood into the NPC microenvironment via
CX3CL1-CX3CR1 chemotaxis. Differentiated NPC has higher
macrophage infiltration, lower B cell infiltration and worse
prognosis compared with undifferentiated NPC (39, 40).
Although Longitudinal analysis has suggested that the
peripheral myeloid-to-lymphocyte ratio negatively correlated
with overall survival in NPC patients, little is known whether
the prognosis is directly influenced by the abundance of
macrophages and B cells in the TME (41).

Other head and neck squamous cell carcinoma (HNSCC)
developed from the oral cavity, oropharynx, hypopharynx, and
larynx, also displays an inflamed microenvironmental landscape
due to NF-kB activation and immune evasion (42, 43). Human
papillomavirus (HPV), instead of EBV, plays a vital role in the
immune modulation of HNSCC. HPV" HNSCC is infiltrated
with a higher number of Tregs, CD20" B cells, and NK cells, but a
lower number of T helper cells than its HPV™ counterpart and
non-malignant inflamed tonsil (42, 44). HPV infection also
causes T cell dysfunction, possibly via the overreaction of IFN-
associated signalings and HPV integration into the host genome
(42, 45). B cell infiltration in HPV-associated HNSCC is as high
as in NPC and similarly correlates to a better prognosis (44).
Germinal centers and TLSs are frequently seen in HPV" tumors,
associated with better patient survival and responsiveness to ICB
therapies (44, 46). PD-1/PD-L1 blockades combined with
chemotherapeutic drugs such as platinum and fluorouracil
have prolonged the overall survival by three months in patients
with advanced and metastatic HNSCC (47). However, the
objective response rates of nivolumab and pembrolizumab in
HNSCC patients are only 15%, significantly lower than in NPC

patients (48, 49). The paradigm-shifting therapeutics in NPC,
including alleviating viral infection, inactivating Treg-mediated
suppression and expanding TLS-associated B cells within the
TME, might also be feasible in HPV" HNSCC to synergistically
promote PD-1/PD-L1 efficacy.

The severe stromal infiltration in the NPC microenvironment
is not solely shaped by one factor, but a combination of factors
that lead to the phenomenon we have seen in clinical practice.
Amidst the complexity of the NPC microenvironment, many
therapeutic targets remain effective to modulate the tumor-
stroma interplay, which imparts strong influences on tumor
progression and therapeutic resistance and responsiveness. For
instance, while exhausted and regulatory T and myeloid-derived
cells exhibit immunosuppressive function in response to
cytokine stimulation and antigen presentation in NPC, they
can also be reprogrammed to reinvigorate tumor-specific
cytotoxicity via pharmacological administration. The plasticity
of the NPC microenvironment has offered an approach to
specifically re-activate dysfunctional subtypes and in-activate
suppressive subtypes to achieve optimal anti-tumor effects,
which requires an in-depth understanding of the stromal
phenotyping and functional dynamics.

TARGETING T CELLS AND NK CELLS TO
REINVIGORATE TUMOR-SPECIFIC
IMMUNITY

Tumor survival from the host immune system is one of the
critical steps during malignant progression, which can be
achieved via inhibition of cytotoxic cells and activation of
immunosuppressive cells. Naive T cells are intrinsically
enriched around the germinal centers in the nasopharynx. As a
consequence of tumor progression, the normal T-cell
differentiation and activation processes can be hijacked by
NPC cells and eventually result in the dominance of
dysfunctional and suppressive T cells in the NPC
microenvironment. The inhibitory signatures on CD8" T cells,
including PD-1, HAVCR2 and LAG3 have been found up-
regulated by EpCAM*HLA-DR™" NPC cells via ligand-
receptor interaction (50). TCR profiling on NPC-derived T
cells has validated the presence of activation-to-exhaustion
transition, where a portion of activated effector T cells
gradually loses its cytotoxic function (23). Indeed, the
exhaustion program is dynamic instead of terminally static.
Most of the exhausted T cells can still secrete cytotoxic
cytokines, particularly IFN-y and granzymes (GZMs), but at a
lower level than fully activated effector cells. Therefore, a high
abundance of exhausted and activated T cells usually correlated
to better prognosis and higher immunotherapeutic
responsiveness in NPC patients (23, 24).

Targeting CD8" T cells primarily focuses on how to inhibit
and reverse the activation-to-exhaustion transition. Targeting
inhibitory checkpoint molecules has been shown effective in the
context of anti-tumor immunity, in which PD-1 is currently the
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only therapeutic target for CD8" T cells in NPC clinical trials (20,
51). The clinical response rate for PD-1 monotherapy using
camrelizumab, nivolumab and pembrolizumab ranges from
20.5% to 34% in phase I/II clinical trials (18-20, 52). Although
the response rate for pembrolizumab in NPC (phase I, 25.9%) is
significantly higher than in non-small-cell lung cancer (phase I,
19.4%), hepatocellular carcinoma (phase III, 18.4%) and
gastroesophageal cancer (phase II, 11.6%), synergistically
targeting more highly expressed receptors in NPC-infiltrating
exhausted T cells might enhance the anti-tumor immunity of
PD-1 monotherapy (53-55). HAVCR2"€" exhausted T cells had
a unique exhaustion program but identical TCR clonotypes with
PD-1"8" counterparts, indicating that the exhaustion transition
is not independent where exhausted T cells are maintained as a
homogenous population with fixed molecular signatures (23).
Conversely, T cells on an early, intermediate or late exhaustion
stage, exhibited phase-specific inhibitory signatures and can be
continually transformed from one stage to another upon
stimulation. Single-cell sequencing and multiplex
immunofluorescence has corroborated that HAVCR2, instead
of PD-1, is the predominant inhibitory molecule in the NPC
microenvironment (23, 24, 56). BGB-A425, as a humanized anti-
Tim-3 (encoded by HAVCR?2) antibody, is currently in progress
of phase I/II clinical trials treating solid tumors in combination
with tislelizumab, which has been shown to augments T-cell
response via enhancing IFN-y production and NK-mediated
cytotoxicity (57). Galectin-9 (encoded by LGALS9), as the
most studied ligand for HAVCR?2, is specifically expressed by
NPC cells, as an immunosuppressive molecule induced by high
intratumoral IFN-f and IFN-y (58, 59). Inhibition of LGALS9
selectively expands and activates infiltrating exhausted T cells by
intervening in the crosstalk between PD-1 and HAVCR2 (59).
Targeting IFN-induced LGALS9 up-regulation and secretion in
NPC cells might be an alternative approach to overcome the
primary and adaptive resistance to the PD-1/PD-L1 therapy.
LAG3 is another predominant inhibitory signature on
infiltrating exhausted T cells in the NPC microenvironment
(23, 24, 56). Unlike HAVCR2, LAG3 has been found
specifically expressed on exhausted ZNF683" tissue-resident
T cells (23). The average abundance of tissue-resident memory
T cells in the NPC microenvironment is approximately 10%,
two-fold lower than the cytotoxic and exhausted T cells (23). It
might be that a substantial amount of infiltrating cytotoxic
T cells does not originally reside in the nasopharynx, but is
recruited from peripheral blood. As previously stated,
CD8'/CX3CR1" T cells with minimal cytotoxicity and
proliferative capacity are migrated from blood and quickly
become exhausted via an EBV' NPC-secreted cytokine,
CX3CL1, constituting the major source of infiltrating CD8" T
cells in the TME (56). In phase I/II clinical trials, the efficacy of
LAG3-targeted antibodies, such as MK-4280, TSR-033 and
IMP321, are often evaluated in combination with anti-PD-1
and anti-HAVCR2 treatment to promote responsiveness (60,
61). Although therapeutic targeting to HAVCR2 and LAG3 is
currently not as mature as to PD-1, we must pay attention that
the NPC microenvironment is unique and complicated, which

means that we cannot directly adapt a developed therapeutics
from other malignancies into NPC treatment. In the future, the
combo-therapy synergistically targets PD-1/HAVCR2 or PD-1/
LAG3 might become a more effective therapeutic option for
NPC patients.

Inactivation of Tregs is also an approach to retrieve
immunosurveillance against NPC, which indirectly enhances
anti-tumor T cell response. Similar to the exhausted subtypes
in the NPC microenvironment, there exist two subtypes of Tregs,
resting Tregs and suppressive Tregs, which both have high
expression of Treg signatures, including CD25, FOXP3 and
IKZF2 (23, 24, 56). The two immunoregulatory subtypes are
functionally different since suppressive Tregs possess a higher
expression of immune checkpoint CTLA4 and co-stimulatory
molecules CD27, TNFRSF4, TNFRSF9 and ICOS (23, 24, 56).
Anti-CTLA4 therapy using ipilimumab, has shown effective to
improve overall survival in patients with melanoma and
hepatocellular carcinoma, but is often used in combination
with PD-1 inhibitors (62-65). The efficacy and safety of
ipilimumab+nivolumab in NPC is currently under
investigation in a phase II clinical trial (NCT03097939). Based
on the preliminary data up to February 2020, the partial response
rate was 35% with a median duration of response of 5.9 months,
which is significantly higher than the responsiveness of PD-1-
based monotherapy. The average abundance of CTLA4" Tregs is
approximately 20%, which might explain why NPC is responsive
to anti-CTLA4 drugs that relieve Treg-mediated suppression and
expedite proliferation of effector T cells (23). In addition, Treg-
mediated suppression is largely dependent on CD27-CD70
interaction, which provides co-stimulatory signals critical for
naive-to-Treg differentiation, Treg proliferation and activation.
Cusatuzumab (ARGX-110) is a CD70-targeting drug currently
under clinical evaluation. Previous in vitro studies have
demonstrated that blocking CD70" leukemia and B cell
lymphoma cell lines using ARGX-110 can inhibit the
activation of Treg and facilitate the anti-tumor immunity
exerted by CD8" effector T cells (66). Most of the solid tumors
lack CD70 expression, whereas only hematologic cancers have a
high frequency of CD70" cancer cells. Thus, cusatuzumab is
mainly being evaluated in acute myeloid leukemia in phase II
clinical trial (67). In the NPC microenvironment, CD70 is highly
and specifically expressed on tumor cells rather than T cells and
dendritic cells (DCs). The pathological examination has
confirmed that more than 80% of NPC cases are CD70
positive (68). Therefore, direct targeting of CD70" tumor cells
might further inhibit Treg accumulation and activation in NPC.
However, recent studies have suggested that CD70 deficiency in
EBV-infected patients might exacerbate chronic EBV infection
and predispose them to lymphoma and immune disorders (69,
70). As CD70 is also expressed on CD8" effector T cells and
activated B cells, lack of functional CD70 might hinder T and B
cell-mediated immunity to combat EBV infection and further
promote tumor progression. Thus, the safety of anti-CD70
therapy should be carefully examined in humanized animal
models prior to clinical translation, for its potential to
damage immunocompetence.
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Accumulating evidence has suggested that the enrichment of
Tregs in the NPC microenvironment is also caused by tumor-
mediated recruitment, where CCR4" and CCR6" resting Treg
are migrated from peripheral blood and activated into a
suppressive phenotype via tumor-secreted CXCL10, CXCL16,
CCL20, and CD70 binding (50, 71, 72). Targeting these Treg-
attractive chemokines produced by NPC cells might also
alleviate the infiltration of Tregs in the TME and sustain
CD8" cytotoxicity. Additionally, excessive production of IFNs
might also contribute to Treg accumulation by hijacking
the CD4" naive T cell differentiation, since CD4" IFN-
induced T cells in the NPC microenvironment co-express
naive signatures.

LGALS1 has been found highly expressed in suppressive
Tregs in the NPC microenvironment and plays a vital role in
Treg activation (23). Extracellular galectin-1 (encoded by
LGALS1) has been implicated in promoting the suppressive
capability of Treg and inducing apoptosis of CD8" T cell (73).
LGALS1-deficient mice showed impeded Treg activity. In T cell
subpopulations, LGALS1 is correlated to CD25 expression,
indicating it might play a vital role in Treg activation. Blocking
and CRISPR-silencing of LGALS1 leads to decreased
proliferation and IFN production in T cells (74). LGALSI has
long been considered as one of the key regulators in T-cell
homeostasis and inflammation. However, its function in Treg
has not been explicitly elucidated. LGALS1 up-regulation in Treg
promotes growth arrest and apoptosis and inhibits the secretion
of pro-inflammatory cytokines of activated T cells. Thus, it might
serve as an immune checkpoint to revert the Treg-mediated
suppression via partial activation. In HPV' and HPV™ head and
neck squamous cell carcinoma, LGALS1 blockade has resulted in
elevated infiltration of T cells in tumor cores and further enhance
response to PD-1 therapy (75). In clear cell renal carcinoma,
patients who are responsive to PD-1 therapy possess a higher
expression of LGALS1 (76). Thus, inhibition of LGALS1 might
synergize with ICB-based monotherapy. TNF-alpha signaling
and calcium channel might be regulated by LGALS1 to exert its
effect on T cell survival and activation. LGALS1 has also been
found expressed on NPC cells, further confirming that NPC cells
are actively involved in immune regulation of the TME.
Currently, there are no clinically available therapeutic agents
that specifically target LGALS], but targeting LGALS1 in NPC
patients remains a feasible approach that worth to be developed
in the future.

NK cells are commonly characterized by the high expression
of GNLY, and they also express chemokines CCL5, XCL1 and
XCL2 responsible for the recruitment of pro-inflammation
CCR5"/XCR1" DCs (77). Compared with cytotoxic T cell
infiltration, NK cells constitute a relatively minor subpopulation
(~2% of the total stromal infiltrates) (23). Previous studies have
suggested the presence of dysfunctional NK cells with NKG2A,
PD-1 and HAVCR2 up-regulation in the TME (78). In the NPC
microenvironment, NK cells do not express these exhaustion
signatures, instead, NK cells highly express cytotoxic signatures,
indicating that NK cells might not be severely influenced by
tumor cells and chronic infection (23). It offers a new perspective

for anti-tumor immunity which we can expand or recruit
immune-activated NK cells to counter the loss-of-function in
exhausted T cells. Nevertheless, it remains necessary to evaluate
the prognostic value of NK-specific signatures and investigate the
mechanism so that we can have a better understanding of the role
of NK cells in the NPC microenvironment that might facilitate
therapeutic development in the future.

TARGETING B CELLS TO ENHANCE
RESPONSE TO IMMUNOTHERAPY

Compared with T cells, significantly fewer B cells are often found
in the TME (79). However, single-cell analysis in NPC has shown
that B cells are more enriched and diverse than previously
reported, and the infiltration and functionality of B cells have
emerged as a vital prognostic factor and therapeutic target (23,
24, 56). Increased B cell density in the TME facilitates the
establishment of TLSs and promotes responsiveness to PD-1/
CTLA4 immunotherapy in melanoma (80, 81). The spatial
localization and cell-cell communication have been observed in
tumor-associated TLSs, where T cells and B cells can undergo
cooperative maturation, activation and clonal expansion. In
addition, a higher expression of B cell-associated signatures,
including CD79A, CD20, CD27, IGHD, CXCR5 and FCLR4,
are associated with increased progression-free survival in NPC
patients (23). Enrichment of B cells might be caused via
CXCL13-CXCR5 chemotaxis from surrounding lymph nodes
and peripheral blood into the TME. In the NPC
microenvironment, CXCL13 is mainly produced by CD4"
helper T cells and PD-1" exhausted T cells, suggesting that
exhausted T cells might remain beneficial to the immune
modulation via the recruitment of CXCR5" B cells (only
plasma B cells are CXCR5) and TLS development (23). In
non-small-cell lung cancer patients who received PD-1
blockade, increased CXCL13 production also has been found
in PD-1" exhausted T cells with impaired cytotoxicity (82).
Considering the positive prognostic value of tumor-infiltrating
B cells, it might be an effective adjuvant therapy to increase
intratumoral B cells via CXCL13-dependent recruitment in NPC
patients with low TLS density. Consequently, TLSs provide a
harbor for lymphocyte maturation and immune activation.
Meanwhile, the molecular function and mechanism of
infiltrating B cells and tumor-associated TLSs remain
undiscovered owing to relatively few B infiltrates in most
malignancies. Thus, NPC can serve as an applicable model to
investigate the interplay within T cells, B cells and tumor cells.

A higher abundance of intratumoral B cells is frequently
associated with better prognosis in NPC patients, but there
exist B subtypes that contribute to worse prognosis (23, 24).
Single-cell sequencing of NPC patients and non-malignant
counterparts has identified the presence of double-negative
B cells IGHD-/CD27-) in the TME. Double-negative B cells are
commonly found in the peripheral blood of patients with
autoimmune diseases, such as rheumatoid arthritis and systemic
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lupus erythematosus (83-85). Although double-negative B cells
represent a rare subpopulation in the normal microenvironment,
they have been found expanded in the NPC microenvironment
and constituted 12.6% of the total CD79A" B cells, and correlated
to worse prognosis (23). Increased double-negative B cells have
also been found in non-small cell lung cancer and negatively
correlated to the abundance of pro-inflammation B cells (86).
Higher frequencies of double-negative B cells are associated with
lymph node and distant metastasis in cancer patients, which
might be alleviated or overcome by cisplatin-based
chemotherapy (87). Nonetheless, little is known about the
function nor the mechanism of double-negative B cell
enrichment in the NPC microenvironment because they have
not been previously detected in tumor tissues. One recent study
has exhibited that double-negative B cells might regulate
inflammatory activation and undergo clonal expansion upon
antigenic stimulation via an extra-follicular maturation pathway
(88). Pseudotime trajectory analysis has shown that double-
negative B cells are the precursors of matured effector B cells,
which can be further differentiated into plasma B cells and
memory B cells (23). However, it seems that in the NPC
microenvironment, the differentiation of double-negative B
cells is hijacked by tumor- or TME-mediated mechanism
so that a substantial portion of double-negative B cells are
forced to maintain in an intermediately differentiated and
ineffective phenotype. Hence, inhibiting the expansion or
inducing the differentiation of double-negative B cells in the
NPC microenvironment might enhance inflammatory
activation. Furthermore, quantifying the intratumoral or
peripheral abundance of double-negative B cells in NPC
patients might be feasible for patient stratification and
prognosis, as well as serve as a biomarker for treatment selection.

Antibody-secreting plasma B cells and FCLR4" memory B
cells represent two terminally differentiated pro-inflammation
subtypes in the NPC microenvironment. They are commonly
more infiltrated in the TME and correlated to better clinical
outcomes, exhibiting their functions in immune survilliance (89).
Nevertheless, their abundance is highly patient-specific due to
EBV status, since plasma B cells and memory B cells showed
increased enrichment and activity in EBV" tumors than in EBV"
ones (23). The differentiation and activation of these two
subtypes are influenced by chronic IFN-o and IFN-y
production and chemotaxis in the NPC microenvironment
(23). In the treatment of autoimmune and infectious diseases,
rituximab is used to deplete excessive enrichment of CD20" B
cells (90), whereas, in NPC treatment, we should focus on in vivo
or ex vivo expanding pro-inflammatory B cells, especially in the
NPC patients with fewer B infiltrates (91). Previous studies have
illustrated that B cell proliferation and maturation can be re-
directed via CD38-mediated inhibition of mTOR and PI3K
signaling (92-94). However, the function of B cells and their
associated antibody repositories in NPC is hardly identified and
characterized so far. Thus, prior to clinical translation, it remains
necessary to understand the crosstalk between plasma B cells/
memory B cells and T cell subpopulations so that humoral
immune responses stimulated by tumor-infiltrating B cells can

facilitate the development of effective anti-tumor immunity
within the TME.

TARGETING MYELOID-DERIVED CELLS
TO INTERVENE THE TUMOR-STROMA
COMMUNICATIONS

Intratumoral myeloid-derived cells are commonly developed
from immature monocytes recruited from peripheral blood
during tumor progression and viral infection (95, 96).
Immature macrophages and monocytes express pan-monocyte
markers CD14 and CD68, but they lack functional and polarized
signatures such as IL-10. Enrichment of these immature myeloid
cells indicates an earlier or less progressive disease status,
therefore its abundance is associated with better prognosis in
undifferentiated NPC patients (97). Prevalent cell-cell
communications have been identified between macrophage and
lymphocytes, indicating the strong potential to recruit, activate
and suppress innate and adaptive immunity. In the NPC
microenvironment, the maturation and polarization of
macrophages do not follow the classic M1/M2 model. Instead,
the infiltrating macrophages exhibit an M1/M2 coupled pattern,
expressing both M1 and M2-polarized signatures, including
FCGR2A, FCGR3A, TREM2 and APOC1 (23). The
multilateral cell-cell communications between macrophages
and lymphocytes are ambiguous due to dynamic functional
alterations. For example, CD163" M2-polarized macrophages
in the NPC microenvironment are considered to associate
with worse prognosis and facilitate the development
of a pre-metastasis niche by secreting pro-angiogenesis
cytokines, including VEGF, MMP9, TGFB1 and PLA2G7
(97-99). Hypoxia and IFN signaling are two mechanisms that
induce accumulation, maturation and M2 polarization of
macrophages, and further induce therapeutic resistance
and disease progression in the NPC microenvironment
(100). Targeting molecules that are associated with hypoxia
and IFN signaling represents a potential therapeutic strategy to
minimize the suppressive function of M2 macrophages or
enhance the accumulation of monocytes and M1-macrophages
in the TME.

DCs are one of the differentiated myeloid subtypes
accumulated both in nasopharyngeal hyperplasia and NPC, and
responsible for antigen processing and presentation so that T and
B cells can be activated (101, 102). For instance, FCERIA™"
Langerhans cells and LGALS2" DCs are tissue-resident DCs
located in the epithelium and lymph nodes of the nasopharynx,
to capture and recognize the antigens on malignant-transforming
nasopharyngeal epithelial cells. Although DCs are a pro-
inflammation subtype and significantly correlated to better
prognosis in NPC patients, some DCs have been found
capable of impairing T-cell and B-cell immunity driven by
chronic inflammation and hypoxia (103). In the NPC
microenvironment, LAMP3" DCs with high maturation,
immune-regulatory and migration potentials, produce multiple
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cytokines, including CCL17, CCL19 and CCL22, to recruit
CCR4" Tregs and CCR7" naive T cells (56). LAMP3" DCs also
exhibit reduced immune activation status and elevated
suppression status, characterized by high expression of PD-LI,
PD-L2, IDO1 and TGFBI. Meanwhile, the immunosuppressive
function of LAMP3" DCs has been validated in hepatocellular
carcinoma (HCC) and non-small-cell-lung cancer (NSCLC)
where LAMP3" DCs showed strong interaction with exhausted
T cells, Tregs and proliferating T cells via CD28/B7 binding and
IL-15 signaling (104, 105). Up-regulation of LAMP3 in tumor
tissues has been found correlated to worse prognosis in patients
with esophageal squamous cell carcinoma (ESCC) (106).
Developmental trajectory has revealed that LAMP3" DCs might
be differentiated from immature monocytes during tumor
initiation so that NPC cells can escape from initial antigen
recognition and immune attack (56). Thus, therapeutic
targeting of LAMP3" DCs might be only feasible in the early
stage of NPC development so that effector lymphocytes can more
effectively recognize the tumor antigens subsequently induce
tumor depletion. However, the function of LAMP3 remains
ambiguous since immunosuppressive DCs in metastatic lung
adenocarcinoma have shown loss of LAMP3 activation marker
expression (107). Although LAMP3" DCs are common
malignancy-associated infiltrates with the ability to restrain T
cell function, further in vivo and in vitro functional assays need to
be conducted to validate its regulatory potential.

MDSCs are another type of differentiated monocytes
infiltrating in the TME (108). Unlike DCs which are infiltrated
both in the malignant and non-malignant nasopharyngeal
microenvironment, MDSCs are highly enriched in the NPC
microenvironment, indicating the presence of NPC-associated
recruitment and differentiation in MDSCs. Previous studies have
considered that MDSCs are a dynamically changing myeloid
subtype that cannot be accurately characterized via genetic
profiling (103). Single-cell sequencing has demonstrated that
infiltrating MDSCs are lack macrophage and DC-specific
signatures, such as CD14 and CD68, but highly express S100A
family genes, including FCN1, VCAN, S100A8 and S100A9 (105,
109). Accumulating evidence has suggested that SI00A8/S100A9
are pro-inflammation molecules that are elevated in patients
with a variety of inflammatory diseases and cancer (110, 111).
The expression of SI00A8/A9 is closely related to tumor stage,
lymph node metastasis and poor prognosis in NPC patients
(112). In tumor-bearing mice treated with mAbGB3.1 (10 ug/gm
body weight), S100A8/A9 binding and signaling has been
blocked and the accumulation of MDSCs in the peripheral
blood and secondary lymphoid organs has been reduced (113).
S100A8/A9" MDSCs exert immunosuppressive effects via
hijacking the differentiation from monocytes into antigen-
presenting DCs and pro-inflammation macrophages via
STAT3 signaling (114). Thus, limiting the accumulation and
retention of MDSCs can facilitate the activation of anti-tumor
immunity via communications with T and B cells, and might
further retard NPC progression. Targeting S100A8 and S100A9
via siRNA has shown to reduce invasive capability of NPC cells,
whereas the silencing effects on TME remodeling remain under-
investigated (115).

TARGETING FIBROBLASTS TO
MANIPULATE THE TUMOR-PROMOTING
EXTRACELLULAR MATRIX

In the NPC microenvironment, CD45" immune cells usually
outnumber tumor cells and CD45 non-immune stromal cells.
Indeed, fibroblasts represent a relatively minor but critical
subpopulation that constructs a complex extracellular matrix
(ECM). Fibroblasts are rarely infiltrated in non-malignant
nasopharyngeal tissues, and hardly recruited in response to
acute inflammation. Whereas in the TME, fibroblasts constitute
approximately 2% of the total stromal infiltrates in the NPC
microenvironment. The abundance of fibroblasts has also been
validated via multiplex immunohistochemistry. A high density of
0-SMA™ fibroblasts is found in 41.2% of primary NPC biopsies
and 83.3% of metastatic NPC tissues. In two independent NPC
cohorts, a higher density of 0.-SMA™ fibroblasts has been found
correlated with shorter overall survival and lower 5-year survival
rates in NPC patients, suggesting their utility as an independent
prognostic factor (116, 117). Recruitment and accumulation of
fibroblasts is a malignancy-dependent process found in varied
cancers, since they can develop a tumor-promoting ECM and
secrete varied cytokines that facilitate survival and metastasis. The
function of ECM is primarily involved with the activation of focal
adhesion-related pathways, including FAK/SRC, PI3K/AKT and
RhoA/ROCK signaling. The predominant ECM components in
the NPC microenvironment are collagen (especially type I
collagen), lumican, and fibronectin, which all have a positive
impact on angiogenesis and anti-apoptosis (50, 118, 119). Other
collagens are also synthesized by intratumoral fibroblasts, such as
type III and type IV collagens, but they exhibit patient-specific
distribution. Recent advances have suggested that the tumor-
parenchyma barrier manipulated by fibroblasts is the first
protective shield of tumor cells to attenuate infiltration of T cells
and penetration of anti-PD-1 drugs in patients with lung cancer
and esophageal cancer (120). Hence, ECM is one of the critical
mediators of immune suppression in the NPC microenvironment.

Besides, fibroblasts in the NPC microenvironment can secrete
varied growth factors, including EGF, FGF, IGF1, CSF and TGF-,
which can either facilitate tumor progression or immune
suppression (121). For example, CSF-1 is a vital factor inducing
MO-to-M2 polarization, TGF-B induces differentiation and
activation of Tregs, and IGF-1 is positively correlated to tumor
sizes in NPC patients (122, 123). Fibroblast growth factor 2
(FGF2) is the upstream molecule of the PI3K/AKT signal
pathway and activates proliferation and metastasis of NPC cells
so that FGF2/FGFR2 has become a crucial target in the treatment
of NPC as well (124). Targeting fibroblasts in the NPC
microenvironment might provide significant benefits to chemo
and immunotherapy. These fibroblasts can also secrete varied
chemokines, such as CXCL9, CXCL10 and CXCL12 which can
promote tumor growth and has chemoattractant properties that
stimulate the migration of CXCR3"/CXCR4" suppressive Tregs
and cytotoxic T cells into the NPC microenvironment (24, 56).
However, the fibroblasts can quickly inhibit the cytotoxic function
of these recruited T cells via PD-L2-PD-1 interaction. Some
fibroblasts also secret immunosuppressive factor IDO1, which
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further regulate T-cell immunity in the NPC microenvironment
(24, 56). Targeting fibroblasts with high expression of fibroblast
activation protein-o. (FAP) in tumor-bearing mice have induced
tumor necrosis mediated by IFN-y and TNF-a, demonstrating
that anti-tumor immunity has been reverted upon depletion of
these cells (125). Significantly, up-regulated genes in tumor-
derived fibroblasts were enriched in IFN response-related
pathways (23). Meanwhile, fibroblasts are also considered as one
of the vital factors maintaining the differentiation status of NPC
cells because they are frequently associated with the epithelial-to-
mesenchymal transition (13, 126). Targeting infiltrating fibroblasts
might also result in decreasing the cancer stem cell pools in NPC
to alleviate therapeutic resistance commonly possessed by high
stemness cells (126). CD248 has been found dynamically
expressed by cancer-associated fibroblasts (CAFs), and lowly
expressed by other stromal cells (127). Although, it might serve
as a potential molecular marker and target, the expression and
mechanism of CD248 in NPC-infiltrating fibroblasts have not
been fully elucidated, due to a low number of fibroblasts captured
via single-cell sequencing. The current single-cell technique allows
to process 20,000 cells per reaction, and it remains insufficient to
depict the global mapping of stromal cells with low abundance in
the NPC microenvironment. Thus, it is necessary to enrich the
CD45 non-immune stromal cells prior to sequencing so that we
can have a maximum yield of fibroblasts to further identify the
heterogeneity and molecular signatures of varied fibroblast
subpopulations and characterize their functional status.

DISCUSSION

The past two decades have witnessed a tremendous shift from
recognizing the tumor as a homogenous entity towards
understanding TME as a heterogeneous ecosystem at a single-cell
resolution. Recent advances using single-cell sequencing and
multiplex immunohistochemistry have deciphered the NPC
microenvironment as a tumor-promoting and immuno-
suppressive harbor. Single cell-cell communication analysis and
V(D)J] immune profiling has revealed the origin of tumor-
infiltrating stromal cells so that we can know the recruitment
mechanism and tumor-stroma interplay either from peripheral
blood, adjacent lymph nodes and surroundings (Figure 2 and
Table 1). Nevertheless, we have seen a lack of functional and
clinical investigations on the function and mechanism of T cells,
NK cells, B cells, myeloid-derived cells and fibroblasts in the NPC
microenvironment. Among these infiltrating stromal subtypes, B
cells are the least studied subtype in the TME due to their relatively
low infiltration degree in many malignancies. Therefore, we should
continue to identify the finer B-cell subpopulations and
characterize the functional status of B cell subtypes, since B cells
are gradually recognized as a ineligible factor that influences the
responsiveness of chemo and immunotherapy (128, 129). Besides
stromal compositions in the NPC microenvironment,
understanding the spatial orientation of stromal cells is also
critical to functional dynamics and clinical translation. The field
of spatial single-cell transcriptomics is rapidly evolving to uncover
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TABLE 1 | Novel chemotaxis responsible for cell recruitment in the NPC microenvironment.

Chemotaxis (A-B)

Interacting cell subtype A

Interacting cell subtype B

CX3CL1-CX3CR1
CXCL10-CXCR4
CXCL16-CXCR6
CCL20-CCR6/CXCR3
CXCL13-CXCR5

Tumor cells
Tumor cells

XCL1/XCL2-CXR1 NK cells
CCL5-CCR5

CCL17/CCL22-CCR4 LAMP3+ DC
CCL19-CCR7

CCL4L2-CCR5 Macrophage

Exhausted/helper T cells

CD8" T cells with minimal cytotoxicity
Treg

B cells, except plasma B cells
Pro-inflammatory DCs

Treg
Naive T cells
Memory T cells

the locoregional localization of different stromal counterparts from
formalin-fixed paraffin-embedded (FFPE) tissue samples (130). It
is necessary to map where the cell-cell communication is occurring,
but this technique highly relies on tissue quality and technical
proficiency. So far, lack of reproducibility which induce high batch-
to-batch effect and lower sequencing depth has hindered the
feasibility of spatial single-cell transcriptomics. Single-cell
sequencing is also currently facing limitations on sequencing
depth in which lowly expressed genes cannot be detected
even though they are highly important. Finer subpopulations,
especially those that are lower than 5% of total cell input, cannot
be accurately identified via sequencing nor characterized via
computational algorithm. Thus, it remains necessary to enrich
lowly infiltrated stromal cells prior to sequencing via flow
cytometry and magnetic separation based on known signatures
so that higher resolution of the molecular landscape can be reliably
analyzed to depict the true molecular landscape and functional
dynamics in the human body.

In this review, we have proposed a variety of therapeutic
strategies that might enhance immunotherapeutic efficacy via

direct and indirect remodeling of the NPC microenvironment
(Figure 3 and Table 2), which highly relies on recent
identification and characterization of molecular targets that are
essential for tumor proliferation and progression in NPC.
Although some targets cannot be independently utilized as
effective therapeutics like anti-PD-1/PD-L1 monotherapy, most
of them remain feasible to be used as adjuvant therapies that
enhance the efficacy of ongoing monotherapy in NPC patients.
We acknowledge that there is a large transition gap between
laboratorial investigation and clinical translation, but we believe
that rational combinatorial strategies will be one of the most
effective therapeutics in the future. However, functional analysis
on NPC greatly suffers from the lack of reliable animal models. It
is needed to establish a humanized mouse model with a
competent human-originated immune system so that NPC-
mediated immune regulation can be studied in vivo and
predict clinical outcomes in NPC patients (131). Currently,
NPC organoid is also underdeveloped in multiple groups
around the world which can also serve an important
alternative to study the function and interaction in vivo from
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TABLE 2 | Proposed therapeutic approaches to target tumor-infiltrating cell subtypes in the NPC microenvironment.

Cell subtypes Molecular targets Outcomes Available drugs or approaches
Tregs CTLA4 Reduced T cell suppression Ipilimumab
CD27-CD70 Cusatuzumab
LGALS1 N/A
Exhausted T cells PD1-PDL1 Enhanced T cell cytotoxicity Camrelizumab, Nivolumab, Pembrolizumab
HAVCR2-LGALS9 BGB-A425
LAG3 MK-4280, TSR-033, IMP321
CXCR5" B cells CXCL13-CXCR5 Enhanced responsiveness to immunotherapy Ex vivo expansion
Double-negative B cells NA Better prognosis Specific depletion/differentiation
DCs LAMP3 Reduced T cell suppression Specific depletion
MDSCs S100A8/S100A9 Reduced chronic inflaBmmation mAbGB3.1
Fibroblasts CD248 Inhibited recruitment of endothelial cells and angiogenesis Targeted therapy

N/A, not applicable.

NPC patient derived tissues, and to study the feasibility and
efficacy of proposed therapeutic strategies (132). Due to the
intrinsic nature of NPC as a stromal inflamed tumor, it would be
better to adapt to local conditions to use tumor infiltrates
themselves, instead of primarily focusing on extraneous attack
mediated by chemotherapy and radiotherapy. Indeed,
optimizing the innate and adaptive immunity to combat tumor
progression is the principle of precision medicine and is
currently leading the tide in the upcoming decade in cancer
treatment. Better defining molecular contributors to an
immunosuppressive and tumor-promoting microenvironment
constitute an important step, including thorough investigations
not only of locoregional stromal infiltration but also of such
modifiable factors in peripheral blood, surrounding lymph nodes
and metastatic sites. What lies beneath is a complex environment
that supports the tumor, and we expect that targeting this
foundation will yield the next breakthroughs in cancer therapy
with greater efficacy, less toxicity, and less cost of cancer care.
The development and use of such pharmaceutical agents
targeting signature- and function-characterized populations
enable a more personalized approach to NPC treatment.
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