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Ovarian cancer ranks as the fifth most common cause of cancer-related death in females.
The molecular mechanisms of ovarian carcinogenesis need to be explored in order to
identify effective clinical therapies for ovarian cancer. Recently, multi-omics approaches
have been applied to determine the mechanisms of ovarian oncogenesis at genomics
(DNA), transcriptomics (RNA), proteomics (proteins), and metabolomics (metabolites)
levels. Multi-omics approaches can identify some diagnostic and prognostic biomarkers
and therapeutic targets for ovarian cancer, and these molecular signatures are beneficial
for clarifying the development and progression of ovarian cancer. Moreover, the discovery
of molecular signatures and targeted therapy strategies could noticeably improve the
prognosis of ovarian cancer patients.
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INTRODUCTION

Ovarian cancer (OC) ranks as the fifth most common cause of cancer-related death in females, and
the American Cancer Society predicts that approximately 21,410 new women will be diagnosed with
OC, and that 13,770 women will die from OC in the United States in 2021 (1). OC is generally
divided into three major pathological subtypes: epithelial-stromal, germ cell, and sex cord-stromal
ovarian cancers; epithelial ovarian cancer (EOC) accounts for 90% of OC cases (2). Unfortunately,
OC is generally considered a “silent killer” because of the lack of specific symptoms of OC in
patients at the early stage and the lack of effective screening strategies. Therefore, more than 60% of
OC patients are diagnosed at an advanced stage with extensive invasion and metastasis (3). The
standard clinical treatment of EOC comprises of cytoreductive surgery (whenever possible) followed
by chemotherapy (4). Currently, platinum-based chemotherapy followed by surgery is a common
treatment strategy for OC patients who are not eligible for surgery at presentation (4, 5). While the
initial response rate of patients presenting with OC is 60–80%, 70% of advanced-stage OC patients
will relapse within 5 years, and many of them acquire drug-resistance (6, 7). At present, serum
cancer antigen 125 (CA125) and human epididymis protein 4 (HE4) are extensively used as
circulating biomarkers in OC diagnosis and relapse identification (8). However, the sensitivity and
specificity of OC diagnosis should be improved, particularly for early-stage OC patients. The failure
of early-stage diagnosis and the development of chemoresistance contribute to the high mortality
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rates of OC patients. Thus, it is necessary to further elucidate the
molecular mechanisms of ovarian carcinogenesis and
chemoresistance in OC, and to identify effective molecular targets
for early-stage diagnosis and clinical treatment. Recently, multi-
omics approaches have been applied to explore the mechanisms of
OC development, and our article aims to review advancements in
OC research from genomic (DNA), transcriptomic (RNA),
proteomic (protein), and metabolomic (metabolite) perspectives.
MULTI-OMICS APPROACHES IN
OVARIAN CANCER

Systems biology has been conducted to gain deeper insight into
the mechanisms of the physiology and pathophysiology of
human health and disease (9), which span multiple areas
involving biological sciences, mathematics, engineering,
physics, and computer science (10). Systems biology belongs to
an interdisciplinary research field, which integrates experimental
and computational approaches to investigate the complex
biological systems (11). Systems biology is mainly benefited
from the functional analysis of large-scale/high-throughput
data (12). Many strategies have been implemented to exploit
the diverse parameters underlying these large-scale/high-
throughput data, such as the inference of gene regulatory
networks (GRNs) (13), or machine learning algorithms and
Random Forest (RF) algorithm (14), or Gaussian process
regression (GPR) (15), or Pathway Inspector (PI) (16), or
using mass spectrometry platforms (17). Furthermore, systems
biology approaches have brought unprecedented abilities to
screen many potential factors (e.g. DNA, RNA, protein,
metabolite) and their interaction networks (18).

Systems biology must adopt the data from multi-omics
approaches to fully understand the biology of development and
progression of diseases via using computational and bioinformatics
methods and tools. Multi-omics technologies obtain huge datasets
that must be analyzed by biological scientists to generate the
required information regarding biological systems, which are
integral part of systems biology. In the last two decades,
researchers have applied various multi-omics approaches to
search for novel biomarkers for diagnosis and treatment via
genomics (19), transcriptomics (20), proteomics (21), and
metabolomics (22) studies in diverse human cancers. DNA
microarrays are extensively applied for genomics analysis, which
are comprised of microscopic spots of DNA oligonucleotides, each
with a specific DNA sequence (known as probes), are a multiplex
technology and can explore the transcriptional and genomic
profiles for thousands of genes (23). Transcriptomics are
conducted to figure out the variation of ribonucleic acid (RNA)
level in a cell, thus providing detailed and useful information at the
transcriptional aspects, including messenger RNAs (mRNAs)
microarrays and noncoding RNAs (ncRNAs) microarray, such as
microRNAs (miRNA) arrays, long noncoding RNAs (lncRNAs)
arrays, circular RNAs (circRNAs) arrays (24). Transcriptomics
could be captured and analyzed by RNA microarrays and RNA
sequencing (25).
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The emergence of proteomics techniques has enabled the
large-scale analysis of the full protein components of complex
organelles, a single cell, a specific tissue, or biological fluids (26,
27). Proteomics systematic study the structure, function, and
interaction of proteins, which is crucial in understanding the
molecular mechanisms of diseases comprehensively and aiding
at the prevention, diagnosis, and treatment of diseases (28).
Researchers have performed Reverse Phase Protein Microarrays
(29), Multiplexed Antibody-Based Protein Arrays (30), Proteome
Chips (31), Mass Spectrometry (MS) (32), and other techniques in
proteomic analysis.

Metabolomics is considered a high-throughput technology to
complement the genotype-phenotype landscape, and can be
applied to explore hundreds to thousands of metabolites in
biofluids, cells, and tissues (33). Metabolomics is a promising
tool for cancer research, and mass spectrometry (MS) and
nuclear magnetic resonance (NMR) spectroscopy are commonly
used techniques (34). Moreover, multi-omics approaches have
been applied in OC and are helpful for improving the diagnosis
and prognosis evaluation of OC (Figure 1).

Genomics
Genomics is a technique giving us the ability to investigate the
genome-wide structure, function and regulation (35). The
application of genomics in OC generally illustrates the regulation
of oncogene and antioncogene profiles at the DNA level (Table 1).
DNAmicroarrays are used for exploring the genomic profiles via a
collection of microscopic spots with thousands of probes attached
to a solid surface (23). The probes of DNA microarrays are either
complementary DNA (cDNA) or shorter oligodeoxynucleotide
sequences (74). Moreover, DNA methylation microarrays are
employed to assess the epigenetic modifications, which could
regulate gene expression with no changes in the nucleotide
sequence (75).

DNA Microarrays
Gene microarray analysis showed that higher expression of
karyopherin 2 (KPNA2) was detected in EOC tissues than in
human ovarian surface epithelial tissues (36). Moreover, the
overexpression of KPNA2 was correlated with an advanced
stage, a high histologic grade, and tumor recurrence and
predicted a poor prognosis in EOC patients (36). Another study
established oligonucleotide microarray analysis in different
histological OCs, and showed that galectin 4 (LGALS4) was
highly and specifically expressed in mucinous EOC but exhibited
lower expression in benign mucinous cysts and borderline (atypical
proliferative) tumor (37). One study performed gene expression
profiling to point out that mammaglobin b (SCGB2A1) was the
most prominent differentially expressed gene in OC of all major
histological types (38). Upregulation of 468 genes and
downregulation of 994 genes were detected in EOC tissues versus
normal endometrial (NE) tissues, while 596 upregulated genes and
883 downregulated genes were identified in clear-cell EOC tissues
versus NE tissues by oligonucleotide microarray analysis (39).
Notably, forkhead box M1 (FOXM1) was overexpressed in both
epithelial and clear-cell EOC tissues, potentially serving as a
negative indicator of non-serous EOC patient outcomes, and
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promoted cancer progression in all platinum-resistant EOC
patients (39). Based on microarray analysis, 10 genes, including
integrin beta 1 binding protein 3 (ITGB1BP3), collagen type III
alpha 1 (COL3A1), collagen type V alpha 2 (COL5A2), collagen
type XV alpha 1 (COL15A1), transforming growth factor beta
induced (TGFBI), decorin (DCN), lumican (LUM), matrilin 2
(MATN2), periostin (POSTN) and EGF-like domain multiple 6
(EGFL6), were upregulated, and 7 genes such as intergin subunit
alpha 1 (ITGA1), collagen type 1 alpha 2 (COL1A2), laminin
subunit alpha 1 (LAMA2), glypican 3 (GPC3), keratin 23 (KRT23),
vitrin (VIT) and hemicentin 1 (HMCN1) were downregulated in
chemo-resistant sublines compared to chemosensitive OC cells
(40). The expression of insulin-like growth factor 1 receptor (IGF-
Frontiers in Oncology | www.frontiersin.org 3
1R) and Erb-B2 receptor tyrosine kinase 3 (ERBB3, also known as
HER3) genes was increased in the trastuzumab-resistant OC cell
line (SKOV3/T) compared to the parent SKOV3 OC cell lines by
microarray analysis (41). In addition, 204 genes were identified as
differentially expressed between platinum-resistant and platinum-
sensitive OC bymicroarray analysis; IGF1 wasmostly upregulated in
platinum-resistant OC (42). Notably, the IGF1, phosphatidylinositol
3-kinase (PI3K), nuclear factor kappa B (NFkB), extracellular signal-
regulated kinase (ERK) signalling pathways were associated with
chemoresistance in high-grade serous ovarian cancer (HGSOC) (42).

The expression of catechol-O-methyltransferase (COMT),
neuroleukin (NLK), high mobility group I proteins (HMGI),
ERBB3, S100-a protein and acyl-CoA-binding protein (ACBP)
FIGURE 1 | Systems biology approaches are applied for personalized medicine of ovarian cancer.
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was upregulated, and the expression of chicken ovalbumin
upstream promoter transcription factor II (COUP-TFII) was
downregulated in OC tissues versus normal tissues, as indicated
by DNA microarray analysis (43). This study showed that most
dysregulated genes in OC were involved in the process of
glucose/insulin metabolism (43). Comparative genomic
hybridization (CGH) analysis identified 6 genes situated at
2q36.1-37.3 that were downregulated in an OC cell line with
high metastatic potential (HO-8910PM), and the downregulation
of ADP-ribosylation factor-like 4C (ARL4C) facilitated the
migration but had no effect on the proliferation of HO-8910PM
cells (44). The whole human genome microarray indicated that
mutant p53 positively regulated the integrin b4 and Akt signalling
pathways, which facilitated the adhesion of OC cells to mesothelial
cells (45). Collagen type XI alpha 1 (COL11A1) was identified as a
disease progression-related gene by DNA microarray, and
Frontiers in Oncology | www.frontiersin.org 4
COL11A1 facilitated the progression of OC and indicated a
poor prognosis in OC patients (46). CLIP-CHIP microarray
analysis revealed that 7 genes, including transmembrance serine
protease 4 (TMPRSS4), mannan-binding lectin-associated serine
protease 1/3 (MASP1/3), signal peptidase complex 18 (SPC18),
proteasome 20S subunit beta 1 (PSMB1), IGF binding protein 2
(IGFBP2), CFI-encoding complement factor I, and matrix
metallopeptidase 9 (MMP9), were upregulated, while one gene
(ADAM-10) was downregulated in patients with early OC
recurrence versus those with late or no OC recurrence (47).
Moreover, higher expression of ADAM-10 was related to a
lower risk of progression, while higher expression of CFI was
associated with a higher risk of progression of OC (47). Genome-
wide copy number analysis identified a recurrent amplification
domain on mouse chromosome 2qB, and the LIM homeobox
transcription factor 1 beta (LMX1B) gene was located at
TABLE 1 | The application of genomics for exploring the candidate biomarkers for ovarian cancer.

Applied Methods Subjects Gene Symbol(s) Ref.

DNA microarray Tissues KPNA2 (36)
DNA microarray Tissues LGALS4 (37)
DNA microarray Tissues SCGB2A1 (38)
DNA microarray Tissues FOXM1 (39)
DNA microarray Cells ITGB1BP3, COL3A1, COL5A2, COL15A1, TGFBI, DCN, LUM, MATN2, POSTN, EGFL6, ITGA1, COL1A2, LAMA2, GPC3,

KRT23, VIT, HMCN1
(40)

DNA microarray Cells IGF-1R, HER3 (41)
DNA microarray Tissues IGF1/PI3K/NFkB/ERK signaling pathway (42)
DNA microarray Tissues COMT, NLK, HMGI, ErbB-3, S100-a protein, ACBP, COUP-TFII (43)
DNA microarray Cells ARL4C (44)
DNA microarray Cells p53 (45)
DNA microarray Tissues COL11A1 (46)
DNA microarray Tissues TMPRSS4, MASP1/3, SPC18, PSMB1, IGFBP2, CFI - encoding Complement Factor I, MMP9, ADAM-10 (47)
DNA microarray Cells LMX1B (48)
DNA microarray Cells AIFM2, AKTIP, AXIN2, CASP5, FILIP1L, RBBP8, RGC32, RUVBL1, STAG3 (49)
DNA microarray Cells ASXL1, H3F3B, CDC73, TGF-beta receptor pathway members, YAP1-MAML2, IKZF2/ERBB4 (50)
DNA microarray Tissues PIK3R3 (51)
DNA microarray Tissues PKCi, PKCb1, PKCg, PKCx, PKCq (52)
DNA microarray Tissues RNU6-135P, RNU61262P, VTRNA1-1, MCAM, genes belonging to SNAR gene family (53)
DNA microarray Tissues CREB/ATF, NF-jB/Rel, STAT, Ets family transcription factors (54)
DNA microarray Tissues EGR1, FOSB (55)
DNA microarray Cells EFEMP1 (56)
DNA microarray Cells SPARC (57)
DNA microarray Tissues CD9 (58)
DNA microarray Cells GLUT-1 (59)
DNA microarray Tissues AGR2 (60)
DNA microarray Cells CKB (61)
DNA microarray Cells ALDH1A2 (62)
DNA microarray Cells ALDH1A1 (63)
DNA microarray Cells CCNA1 (64)
DNA microarray Cells CDK1 (65)
DNA microarray Cells GSK-3a (66)
DNA microarray Cells STAT1 (67)
DNA microarray Tissues STAT1, CXCL10, CREB1, MKNK1, MAP3K7, CFL1, PTK2, RIPK1, MYD88, CCL8, CCL7 (68)
DNA Methylation
Microarray

Cells ARNTL (69)

DNA Methylation
Microarray

Tissues CT45 (70)

DNA Methylation
Microarray

Tissues EGFL7, RASSF1 (71)

DNA Methylation
Microarray

Tissues RUNX3, CAMK2N1 (72)

DNA Methylation
Microarray

Cells ARHGDIB, ARMCX2, COL1A, FLNA, FLNC, MEST, MLH1, NTS, PSMB9 (73)
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this site (48). Notably, LMX1B facilitated the migration of
human OC cells and enhanced xenograft growth in nude mice
(48). Moreover, global gene expression analysis identified that the
NFkB pathway may serve as a mediator of LMX1B-overexpressing
OC progression (48). Microcell-mediated chromosome transfer
and expression microarray analysis demonstrated that nine genes,
including apoptosis inducing factor mitochondria associated 2
(AIFM2), Akt interacting protein (AKTIP), Axin 2 (AXIN2),
caspase 5 (CASP5), filamin A interacting protein 1 like
(FILIP1L), RB binding protein 8 (RBBP8), response gene to
complement 32 (RGC32), RuvB like AAA ATPase 1 (RUVBL1),
and stromal antigen 3 (STAG3), were correlated with functional
inhibition of OC cell oncogenicity (49). Notably, this study
confirmed that a common allele of STAG3 was involved in the
development of EOC (49). Genome-wide analyses showed that the
amplification or upregulation of additional sex combs like 1
(ASXL1) and hisotone 3 family 3B (H3F3B), deletion or
downregulation of CDC73 and transforming growth factor beta
(TGF-b) receptor pathway members, and rearrangements of Yes 1
associated transcriptional regulator (YAP1)/mastermind like
transcriptional coactivator 2 (MAML2) and IKAROS family zinc
finger 2 (IKZF2)/ERBB4 may play a role in the development of
ovarian cancer (50). Based on high resolution array comparative
genomic hybridization and microarray retrieval approaches, this
study indicated that PI3K regulatory subunit 3 (PIK3R3), a
member of the PI3K family, had significant DNA copy number
gains and that the expression of PIK3R3 mRNA was upregulated
in OC compared with normal ovaries (51). Furthermore, the
siRNA-induced knockdown of PIK3R3 promoted the apoptosis
of OC cells (51). Another study indicated that protein kinase C
(PKC) family members (PKCi, PKCb1, PKCg, PKCx, PKCq)
showed significant DNA copy number gains in OC tissues and
indicated that the expression of PKCi may play an oncogenic role
in human OC (52).

Based on genome-wide transcriptome analysis, in the
comparison of primary OC and the peritoneal tumoral implant,
the RNU6-135P (RNA, U6 small nuclear 135, pseudogene),
RNU61262P, and VTRNA1-1 (Vault RNA) genes were
overexpressed in primary OC, while melanoma cell adhesion
molecule (MCAM) and genes belonging to the small NF90-
associated RNAs (SNAR) gene family were overexpressed in
peritoneal tumoral implants (53). When compared primary OC
with malignant cells in the ascites, 762 genes were overexpressed in
primary OC and 216 genes were overexpressed in malignant cells
in ascites (53). Between malignant cells in the ascites and the
peritoneal tumoral implant, 515 genes were overexpressed in the
peritoneal tumoral implant, and 133 genes were overexpressed in
the malignant cells in ascites (53). Notably, this study demonstrated
that the ubiquitin-specific protease-17 (USP17) gene family was
potentially a target for epithelial-mesenchymal transition (EMT) in
HGSOC (53). DNA microarray analyses revealed that 266 human
transcripts were aberrantly expressed in OC versus normal tissues
from patients with elevated biobehavioral risk factors (high
depressive symptoms and low social support) with respect to
grade- and stage-matched OC from low-risk patients (54).
Notably, b-adrenergically-linked transcription control pathways,
Frontiers in Oncology | www.frontiersin.org 5
including cyclic AMP response element binding protein (CREB)/
activating transcription factor (ATF), NF-jB/Rel, signal transducer
and activator of transcription (STAT), and Ets family transcription
factors, were activated in high biobehavioral risk patients (54).
Oligonucleotide microarray analysis revealed that 52 candidate
genes in the stroma were related to the progression-free survival
(PFS) of EOC patients (55). Moreover, the overexpression of the
early growth response 1 (EGR1) and FBJ murine osteosarcoma
viral oncogene homologue B (FOSB) genes in stromal cells
indicated a poor prognosis in EOC patients (55). One study
performed whole-genome analysis and found that loss of
heterozygosity (LOH) of the 13q domain potentially predicted
prolonged PFS in OC patients (76).

The complementary DNA (cDNA) microarray showed that
1596 genes were differentially expressed between OC subclones
with low invasive potential and those with high invasive potential
(56). Moreover, epidermal growth factor–containing fibulin-like
extracellular matrix protein 1, fibulin-3 (EFEMP1) was significantly
upregulated in a highly invasive subclone and promoted the
invasion and metastasis of OC cells by activating the PI3K/AKT
pathway (56). Another study revealed that the expression level of
secreted protein acidic and rich in cysteine (SPARC) was higher in
highly invasive subclone than in less invasive subclone of OC cells
by cDNA microarray analysis; high SPARC expression was
correlated with lymph node metastasis, low differentiation, high
stage and a poor outcome in OC patients (57). Furthermore,
silencing SPARC attenuated the proliferation, invasion and
metastasis and promoted the apoptosis of OC cells (57). In
addition, overexpression of CD9 was found in borderline and
serous-type OC by cDNA microarray profile, and the increased
expression of CD9 promoted cell growth by activating the NF-kB
pathway (58). A cDNA microarray was performed to display that
the expression of glucose transporter-1 (GLUT-1) was elevated in
EOC cells compared to normal ovarian cells, and the overexpression
of GLUT-1 was associated with a poor outcome in EOC patients
(59). Moreover, cDNA microarray analysis indicated that the
expression of human anterior gradient 2 (AGR2) was upregulated
in OC tissues compared to paired normal ovarian tissues (60).
Further study demonstrated that AGR2 potentially served as a
biomarker for diagnosing mucinous OC and facilitated the
proliferative and migratory ability of OC cells (60). One study
demonstrated that creatine kinase B (CKB) was upregulated in OC
cells compared with normal ovary surface epithelial cells by cDNA
microarray analysis (61). Moreover, 24957 genes were dysregulated
between OC cells and normal ovarian cells by cDNA microarray
analysis (62). Fifteen ALDH (aldehyde dehydrogenase) isoforms
exhibited differential expression patterns; for example, the
downregulation of ALDH1A2 (aldehyde dehydrogenase 1 family
member A2), ALDH1B1 and ALDH9A1 and the upregulation of
ALDH3A1 were observed in OC cells (62). ALDH1A2was themost
significantly downregulated gene, and lower expression of
ALDH1A2 was associated with a worse prognosis of OC patients
(62). Another study performed oligonucleotide microarray analysis
to illustrate that ALDH1A1 was significantly upregulated in
paclitaxel- and topotecan-resistant OC cells and potentially
contributed to the development of drug resistance in OC (63).
September 2021 | Volume 11 | Article 745808
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cDNAmicroarray analysis showed that cyclin A1 (CCNA1) was the
most highly overexpressed gene in OC cells versus normal cells, and
was prominently correlated with the paclitaxel-, doxorubicin and
5-fluorouracil -resistance of OC cells (64). Moreover, cyclin-
dependent kinase 1 (CDK1) was upregulated in paclitaxel-
resistant EOC cells compared to normal EOC cells according to
cDNA microarray analysis, and CDK1 served as a target of
paclitaxel resistance-related transcription factors (65). Furthermore,
elevated expression of glycogen synthase kinase-3a (GSK-3a) was
found in paclitaxel-resistant OC cells by cDNA microarray analysis
(66). One study conducted cDNA microarray analysis to reveal that
the expression of STAT1 was correlated with decreased sensitivity to
cisplatin and cis-diamminedichloro (2-methylpyridine) platinum
(II) (AMD473) in OC cells (67). Similarly, one group applied a
NanoString nCounter platform with a panel of 184 human
inflammation genes in 15 chemoresistant and 19 chemosensitive
HGSOC (68). This study illustrated that 11 genes, including STAT1,
C-X-C motif chemokine ligand 1 (CXCL10), CAMP responsive
element binding protein 1 (CREB1), MAPK interacting serine/
threonine kinase 1 (MKNK1), mitogen-activated protein kinase
kinase kinase 7 (MAP3K7), cofilin 1 (CFL1), protein tyrosine
kinase 2 (PTK2), receptor interacting serine/threonine kinase 1
(RIPK1), myeloid differentiation primary response 88 (MYD88),
C-C motif chemokine ligand 8 (CCL8) and CCL7, were upregulated
in chemosensitive HGSOC versus chemoresistant HGSOC, and
STAT1 was the most significantly upregulated gene (68). Taken
together, DNAmicroarray technology provides the chance to obtain
a genome-wide scale for rapid analysis of mechanism involved in OC
initiation and progression.

DNA Methylation Microarrays
DNA methylation microarrays can obtain the methylation
profile of DNA promoter regions and CpG islands using
affinity-based isolation methods, such as methylated DNA
immunoprecipitation (MDIP) assay, which will help us
understand the molecular mechanism of epigenetic events.
One study carried out MDIP-chip analysis in various OC cell
lines and clarified that aryl hydrocarbon receptor nuclear
translocator-like (ARNTL), which is an HLH-containing
transcription factor, was methylated in a subset of OC cell lines
(69). The upregulation of ARNTL attenuated the growth and
improved the cisplatin-sensitivity of OC cells; however, ARNTL
was epigenetically silenced in OC cells (69). One group conducted a
DNA methylation microarray in normal ovarian tissues and EOC
tissues (70). This report indicated that cancer testis antigen 45
(CT45) was downregulated and hypermethylated in normal
ovarian tissues, and was upregulated in EOC tissues concomitant
with DNA promoter hypomethylation (70). Another study detected
that epidermal growth factor-like 7 (EGFL7) and ras association
domain-containing protein 1 (RASSF1) exhibited prominently
higher promoter methylation in EOC tissues than in benign
ovarian tissues according to DNA methylation array (71).
Genome-wide methylation analysis revealed 106 hypo- and 114
hypermethylated regions in ovarian cancer tissues from patients with
a poor prognosis compared to those from patients with a good
prognosis (72). Notably, the hypermethylation of RUNX family
transcription factor 3 (RUNX3) and calcium/calmodulin-dependent
Frontiers in Oncology | www.frontiersin.org 6
protein kinase II inhibitor 1 (CAMK2N1) was correlated with a
detrimental prognosis in EOC patients (72). Moreover, genome-
wide DNA methylation analysis showed that 9 genes, including Rho
GDP dissociation inhibitor beta (ARHGDIB), armadillo repeat
containing X-linked 2 (ARMCX2), COL1A, filamin A (FLNA),
filamin C (FLNC), mesoderm specific transcript (MEST), mutL
homolog 1 (MLH1), neurotensin (NTS) and proteasome 20S subunit
beta 9 (PSMB9), were hypermethylated in OC at relapse following
chemotherapy or in chemo-resistant cell lines obtained at the time of
patient relapse (73). In addition, 5 genes such as ARMCX2,
COL1A1, midkine (MDK), MEST and MLH1) were methylated in
drug-resistant ovarian cancer cells (73). In summary, DNA
methylation microarrays provide the global alterations of DNA
methylation in ovarian oncogenesis and progression, which could
help us understand the epigenetic regulation of genes in
ovarian tumorigenesis.

Transcriptomics
Transcriptomics is often used to obtain profiles of the RNA
transcripts (transcriptomes) in a specific cell or organism with a
specific condition or a specific time, which provides a connection
between the genome and proteome. The transcriptome comprises
coding mRNAs and ncRNAs, including microRNAs (miRNAs),
long noncoding RNAs (lncRNAs), circular RNAs (circRNAs),
ribosomal RNAs (rRNAs), and transfer RNAs (tRNAs) (77).
Specifically, mRNA arrays, miRNA arrays, lncRNA arrays, and
circRNA arrays have been performed to explore the molecular
mechanisms of OC (Table 2).

mRNA Microarrays
It is known that mRNA microarrays are used to obtain a
comprehensive view of changes in mRNA expression patterns
via a molecular hybridization between oligonucleotide probes
and fragments of complimentary mRNA from the interested
samples. Analysis of one mRNA microarray indicated that 444
genes were upregulated and 529 genes were downregulated; the
expression of mucin 13 (MUC13) mRNA was significantly
elevated in metastatic implants from ovarian cancer xenografts
versus ovarian cancer cells (78). Moreover, MUC13 promoter
regions were hypomethylated in OC xenografts, and the
overexpression of MUC13 enhanced the migratory and invasive
abilities of OC cells (78). One study conducted salivary mRNA
microarray analysis of samples from OC patients and healthy
controls, and the expression of the 1-acylglycerol-3-phosphate
O-acyltransferase 1 (AGPAT1), beta-2-microglobulin (B2M),
brain acid soluble protein 2 (BASP2), immediate early response 3
(IER3), and interleukin 1 beta (IL1B) mRNA biomarkers was
downregulated in the saliva of OC patients (79). Moreover, the
combination of these fivemRNA biomarkers in saliva could be used
to distinguish OC patients from healthy controls (79). When the
lncRNA antisense noncoding RNA in the INK4 locus (ANRIL) was
silenced by siRNA in a highly metastatic SOC cell line (SK-OV-
3.ip1), four downregulated genes (MMP3, metastasis associated 1
(MTA1), fibronectin 1 (FN1) and MET) and two upregulated
genes, including CDH1 and TIMP metallopeptidase inhibitor 2
(TIMP2) genes were detected through tumor metastasis-related
mRNA microarray analysis (80). Moreover, the mRNA expression
September 2021 | Volume 11 | Article 745808
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TABLE 2 | The application of transcriptomics for exploring the candidate biomarkers for ovarian cancer .

Applied
Methods

Subjects RNA Symbol(s) Ref.

MRNA
microarray

Tissues MUC13 (78)

MRNA
microarray

Saliva AGPAT1, B2M, BASP2, IER3, IL1B (79)

MRNA
microarray

Cells MMP3, MTA1, FN1, MET, CDH1, TIMP2 (80)

MRNA
microarray

Cells CAMK2D, SMARCA2 (81)

MiRNA
microarray

Serum Has-let−7d−3p (82)

MiRNA
microarray

Serum miRNAs-21, 92, 93, 126, 29a, 155, 127, 99b (83)

MiRNA
microarray

Serum miR-486-5p (84)

MiRNA
microarray

Serum hsa-miR-1273g-3p (85)

MiRNA
microarray

Tissues miR-196b (86)

MiRNA
microarray

Tissues miR-551b, miR-19b, miR-196b, miR-3198, miR-8084, miR-3201, miR-3613, miR-7515 (87)

MiRNA
microarray

Tissues miR-199a-3p, miR-199a-5p, miR-181a-5p, let-7g-5p (88)

MiRNA
microarray

Tissues miR-182 (89)

MiRNA
microarray

Serum miR-132, miR-26a, let-7b, miR-145 (90)

MiRNA
microarray

Tissues miR-129-1−3p, miR−542−5p, miR−450a−5p, miR−129−2−3p, miR-424-5p (91)

MiRNA
microarray

Cells miR-22 (92)

MiRNA
microarray

Tissues miR-21, miR-125a, miR-125b, miR-100, miR-145, miR-16, miR-99a, miR-200, miR-141, miR-18a, miR-93, and miR-429, let-7b,
miR-199a

(93)

MiRNA
microarray

Tissues miR-410, miR-645 (94)

MiRNA
microarray

Tissues miR-337, miR-376b, miR-432, miR-376a, miR-368, miR-495, miR-377, miR-419 (95)

MiRNA
microarray

Tissues miR-1183, miR-126-3p, miR-139-3p, miR-802, miR-23a-5p, miR-23a-3p, miR-802, miR-1234 (96)

MiRNA
microarray

Cells miR-141-3p (97)

MiRNA
microarray

Cells miR-363, miR-29a, (98)

MiRNA
microarray

Cells miR-335-5p (99)

MiRNA
microarray

Cells miR-130a
(100)

MiRNA
microarray

Cells miR-30c, miR-130a, miR-335
(101)

MiRNA
microarray

Tissues miR-9, miR-640
(102)

MiRNA
microarray

Cells miR-17~92
(103)

MiRNA
microarray

Cells miR-106a, miR-591
(104)

MiRNA
microarray

Tissues miRNA-1307
(105)

MiRNA
microarray

Tissues miRNA let-7i
(106)

MiRNA
microarray

Cells miR-21
(107)

MiRNA
microarray

Cells miR-129b-1-3p, miR-139-5p, miR-1290, miR-3131
(108)

(Continued)
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levels of CAMK IId (CAMK2D) and SWI/SNF-related matrix-
associated actin-dependent regulator of chromatin subfamily A
member 2 (SMARCA2) were elevated in cisplatin-resistant OC
cells, as detected by next-generation sequencing, and this change
was confirmed to enhance the cisplatin resistance of OC cells (81).
Clearly, mRNA expression patterns from mRNA microarray in
ovarian tumor tissues are pivotal in exploring the underlying
mechanisms of ovarian oncogenesis. However, the alteration of
mRNAs need to be validated by other methods, such as RT-PCR.

MiRNA Microarrays
MiRNAs are a type of small, single-stranded noncoding RNAs
and miRNA microarrays are utilized to obtain the changes in the
miRNA expression profile on a global scale, which can analyze
Frontiers in Oncology | www.frontiersin.org 8
the differential miRNA expression between tumors and normal
tissues. The aberrant expression of distinct miRNAs is associated
with several malignancies, including OC (131). Based on the
profiling of circulating miRNA/small nuclear RNA (snRNA),
higher expression of 6 miRNAs and U2-1 snRNA fragment
(RNU2-1f), and lower expression of 16 miRNAs were found in
the serum of OC patients than in the serum of healthy controls
(132). Moreover, snRNA RNU2-1f abundance dynamics were
beneficial for predicting the high risk of recurrence and a
detrimental outcome in OC patients following adjuvant
chemotherapy (132). In addition, 31 miRNAs were
differentially expressed between the serum of EOC patients and
that of healthy patients, which was confirmed by miRNA
microarray analysis (82). Moreover, the miRNA hsa-let-7d-3p
TABLE 2 | Continued

Applied
Methods

Subjects RNA Symbol(s) Ref.

MiRNA
microarray

Cells miR-99a-5p
(109)

LncRNA
microarray

Cells lncRNA NPBWR1-2
(110)

LncRNA
microarray

Tissues lncRNA HCP5
(111)

LncRNA
microarray

Tissues Linc00152
(112)

LncRNA
microarray

Tissues BC041954, ENST00000423200, uc.428+, BC028018, ENST00000433201, ENST00000458624, ENST00000453838, CR601061,
ENST00000505048, ENST00000502715, AK123324, AF087976, NR_001284, ENST00000474313, AL832916, AF086261,
BC070168, uc001zfv.1, NR_023313, uc002btm.2

(113)

LncRNA
microarray

Tissues lncRNA RHPN1-AS1
(114)

LncRNA
microarray

Tissues HMGA1P6
(115)

LncRNA
microarray

Tissues lncRNA SOCAR
(116)

LncRNA
microarray

Tissues lncRNA MIAT
(117)

LncRNA
microarray

Tissues lncRNA CTD-2020K17.1
(118)

LncRNA
microarray

Cells lncRNA MALAT1, H19, UCA1, CCAT1, LOC645249, LOC100128881, LOC100292680
(119)

LncRNA
microarray

Cells lncRNA TC0101441
(120)

LncRNA
microarray

Cells LINC01118
(121)

LncRNA
microarray

Cells LncRNA UCA1
(122)

LncRNA
microarray

Tissues LncRNA UCA1
(123)

LncRNA
microarray

Tissues lncRNA linc00161
(124)

LncRNA
microarray

Cells lncRNA ENST00000457645
(125)

LncRNA
microarray

Tissues lncRNA GAS5
(126)

CircRNA
microarray

Tissues circRNA1656
(127)

CircRNA
microarray

Tissues circEXOC6B, circ-N4BP2L2
(128)

CircRNA
microarray

Tissues hsa_circ_0063809
(129)

CircRNA
microarray

Tissues circRNA Cdr1as
(130)
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was downregulated in EOC patients, and ROC curve analysis
suggested that hsa-let-7d-3p could discriminate EOC patients
from healthy patients (82). The combination of miRNA
microarray with real-time PCR revealed that miRNA-21, 92,
93, 126 and 29a were significantly upregulated and that miRNA-
155, 127 and 99b were downregulated in the serum from OC
patients versus that of healthy controls (83). MiRNA microarray
analysis was performed to assess the serum of patients with
ovarian endometrioma and endometriosis-associated OC, and
showed that 51 miRNAs were dysregulated (84). MiR-486-5p
was upregulated and promoted the proliferation and migration
of endometriosis-associated OC cells (84). Moreover, miRNA
microarray analysis indicated that hsa-miR-1273g-3p was
downregulated in recurrent EOC serum samples versus healthy
control serum samples (85). The circulating hsa-miR-1273g-3p
level could potentially distinguish recurrent EOC patients from
healthy controls (85). Another study demonstrated that higher
expression of 33 miRNAs and lower expression of 18 miRNAs
were found in recurrent EOC than in primary EOC by miRNA
microarray (86). Furthermore, the upregulation of miR-196b
facilitated the invasion of recurrent EOC by targeting homeobox
A9 (HOXA9) (86). The miRNA microarray analysis showed that
miR-551b, miR-19b, miR-196b and miR-3198 were significantly
upregulated and that miR-8084, miR-3201, miR-3613 and miR-
7515 were significantly downregulated in recurrent EOC tissues
versus primary EOC tissues (87). One study showed that 369
miRNAs were dysregulated between matched OC tissues
obtained at an initial laparoscopic evaluation and interval-
debulking surgery (IDS) after four cycles of platinum-based
chemotherapy by miRNA microarray, which can be classified
into five families: miR-199, let-7, miR-30, miR-181 and miR-29
(88). Moreover, the expression levels of miR-199a-3p, miR-199a-
5p, miR-181a-5p and let-7g-5p were related to overall survival
(OS) and PFS, while those of miR-199a-3p, miR-199a-5p and
miR-181a-5p were correlated with residual tumor volume and
platinum-free interval of OC patients (88). Moreover, 164
miRNAs were upregulated and 194 miRNAs were downregulated
in EOC tissues compared with normal ovarian tissues by miRNA
microarray (89). This report also indicated that higher expression
of miR-182 was associated with a shorter OS of EOC patients (89).
Frequent copy number gains in the sequences mapping for miR-
182 within 7q32.2 were related to the overexpression of miR-182 in
EOC tissues, which was demonstrated by array-based comparative
genomic hybridization (aCGH) analysis (89). Microarray
methylation analysis showed that methylation of the miR-182
promoter was correlated with the downregulation of miR-182 in
EOC tissues (89).

Lower expression of 95 miRNAs and higher expression of 88
miRNAs were detected in the serum, tissue, and ascites of OC
patients than in those of healthy patients by miRNA microarray
analysis (90). Moreover, the downregulation of serum miR-132,
miR-26a, let-7b and miR-145 could act as biomarkers for SOC
(90). Downregulation of 63 miRNAs and upregulation of 43
miRNAs were detected in SOC tissues versus normal oviduct
tissues by miRNA microarray (91). Among these dysregulated
miRNAs, miR-129-1-3p, miR-542-5p, miR-450a-5p, miR-129-2-
Frontiers in Oncology | www.frontiersin.org 9
3p and miR-424-5p were significantly downregulated in SOC
tissues (91). The miRNA microarray profile illustrated that lower
expression of miR-22 was found in highly metastatic human
SOC SKOV-3ip cells than in less metastatic human SOC SKOV-
3 cells and demonstrated that miR-22 suppressed the migratory
and invasive abilities of OC cells (92). Based on a miRNA
microarray, the expression of miR-21, miR-125a, miR-125b,
miR-100, miR-145, miR-16, and miR-99a was aberrantly
expressed in SOC compared to normal ovarian tissues (93).
Moreover, the upregulation of miR-200, miR-141, miR-18a,
miR-93, and miR-429 and the downregulation of let-7b and
miR-199a were associated with a poor clinical outcome of SOC
patients (93). In addition, microRNA microarray hybridization
indicated that the miRNA survival signature (MiSS) comprising
miR-410 and miR-645 predicted poor OS in advanced SOC
patients (94). Eight miRNAs situated on the chromosome 14
miRNA cluster (Dlk1-Gtl2 region) could act as tumor suppressor
genes in EOC, which was confirmed by miRNA microarray,
aCGH, cDNA microarray and tissue array analyses (95).

By applying miRNA microarray and multivariate analysis
approaches, Ahmad et al. found that miR-1183 and miR-126-3p
were correlated with OS; miR-139-3p and miR-802 were
associated with the time to progression; and miR-23a-5p, miR-
23a-3p and miR-802 were related to the PFS; and miR-1234 was
associated with the chemotherapy resistance of EOC (96). Four
miRNAs were downregulated and 13 miRNAs were upregulated
in COC1/DDP (platinum-resistant) OC cells versus COC1
(platinum-sensitive) cells; miR-141-3p was the most upregulated
miRNA (97). In addition, miRNA microarray analysis was
performed to explore the miRNA expression changes in cisplatin
(CIS)-, topotecan (TOP)-, doxorubicin (DOX)- and paclitaxel
(PAC)-resistant OC cell lines and demonstrated that 21 miRNAs
were upregulated and 19 miRNAs were downregulated in at least
one drug-resistant cell line (98). Moreover, this study suggested that
these miRNAs targeted key drug resistance genes to exert drug
resistance properties in OC (98). For PAC-resistant cell lines, miR-
363 inversely regulated the expression of ATP binding cassette
subfamily B member 1 (ABCB1) (98). In TOP-resistant cell lines,
the downregulation of miR-29a upregulated the expression of
collagen type III alpha 1 chain gene (COL3A1) (98). Additionally,
9 aberrantly expressed miRNAs were found between cisplatin-
resistant (A2780/DDP) and cisplatin-sensitive (A2780) OC cells by
miRNAmicroarray analysis (99). MiR-335-5p was downregulated in
A2780/DDP cells compared with A2780 cells, and the
overexpression of miR-335-5p sensitized OC cells to cisplatin by
inhibiting the expression of BCL2 like 2 (BCL2L2) (99). Another
study reported that higher expression of 24 miRNAs and lower
expression of 8 miRNAs were found in A2780/DDP cells than in
A2780 cells by miRNA microarray; miR-130a was upregulated in
A2780/DDP cells (100). Moreover, miR-130a attenuated the
cisplatin sensitivity of A2780 cells by upregulating the expression
of MDR1 and phosphatase and tensin homologue located on
chromosome 10 (PTEN) (100). Furthermore, the downregulation
of miR-30c, miR-130a and miR-335 was found in PAC- and
cisplatin-resistant OC cells based on a miRNA microarray, and the
activation of the M-CSF gene may contribute to the decrease in
September 2021 | Volume 11 | Article 745808
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miR-130a (101). Increased expression of 16 miRNAs and decreased
expression of 23 miRNAs were found in PAC-resistant ST30 OC
cells by miRNA microarray (102). Overexpression of miR-9 and
miR-640 predicted a favorable prognosis for OC patients, and the
mRNA RAB34 was a target of miR-9 (102). Another study indicated
that 69 miRNAs were overexpressed and 102 miRNAs were
downregulated in PAC-resistant SKOV3-TR30 OC cells by
miRNA microarray analysis; the expression of miR-17~92 was
upregulated in SKOV3-TR30 cells (103). Moreover, downregulated
expression of miR-17~92 contributed to cell cycle arrest in the G2/M
phase, suppressed cell growth, and improved the response to PAC by
upregulating BCL1-like 11 (BCL2L11, BIM) in ovarian cancer cells
(103). Notably, miR-106a was upregulated and miR-591 was
downregulated in PAC-resistant SKpac OC cells compared to
PAC-sensitive SKOV3 OC cells based on a miRNA microarray
(104). Furthermore, the regulation of miR-106a and miR-591 could
re-sensitize PAC-resistant cancer cells by promoting apoptosis and
suppressing cell migration and proliferation by targeting BCL10,
caspase-7, and zinc finger E-box binding homeobox 1 (ZEB1) (104).
Using miRNA microarray and gene ontology analysis approaches,
this study showed that miRNA-1307 was overexpressed in
chemoresistant EOC tissues versus chemosensitive counterparts,
and the candidate target genes of miR-1307 were involved in
nucleotide synthesis and metabolism, cell proliferation and
differentiation, and lymphocyte activation (105). The miRNA
microarray showed that the expression of miRNA let-7i was
downregulated in chemoresistant patients and potentially acted as
an indicator of poor PFS in late-stage OC patients (106).
Additionally, the expression of miR-21 was elevated in
chemoresistant OC cells based on a miRNA microarray, and
suppression of miR-21 facilitated apoptosis and ameliorated the
chemosensitivity of OC cells (107).

The miRNAmicroarray analysis exhibited that the 4 miRNAs
(miR-129b-1-3p, miR-139-5p, miR-1290, and miR-3131) were
more highly expressed in exosomes originating from HGSOC
cells (HeyA8 and TYK-nu cell lines) than exosomes originating
from normal ovarian epithelial cells (the IOSE cell line) (108).
Among these four miRNAs, miR-1290 was the most upregulated
and acted as a potential biomarker to discriminate HGSOC
patients from OC patients with other histological types (108).
Another study reported higher expression of 9 miRNAs (miR-
99a-5p, miR-100-5p, miR-125b-1-3p, miR-139-5p, miR-451a,
miR-500a-3p, miR-1290, miR-3131, miR-3153) in exosomes
derived from HeyA8 and TYK-nu cells than those derived
from IOSE cells by exosomal miRNA microarray analysis
(109). Moreover, exosomal miR-99a-5p increased the invasive
capacity of HGSOC cells by upregulating the expression of
fibronectin and vitronectin in neighboring human peritoneal
mesothelial cells (109). It is necessary to note that miRNA expression
profile on a global scale from the miRNA microarray needs to be
further validated due to that it is unclear how each miRNA exerts its
function in ovarian cancer development and progression.

LncRNA Microarray
Long noncoding RNAs (lncRNAs) are a class of noncoding,
endogenous, single-stranded RNAs with a length of more than
Frontiers in Oncology | www.frontiersin.org 10
22 nucleotides (133). Moreover, lncRNAs can regulate gene
expression at different levels via mechanisms, including
chromatin modification, transcription and post-transcriptional
processing and can take part in the modulation of the biological
behavior of human cancers (134). LncRNA microarrays are
utilized to efficiently screen differential lncRNAs in cancers,
which can provide theoretical basis for exploring the molecular
mechanisms of tumorigenesis. One group used a lncRNA
microarray approach and showed the downregulation of 699
lncRNAs and upregulation of 110 lncRNAs in OC cells compared
with ovarian epithelial cells (110). LncRNA neuropeptides B and
W receptor 1-2 (NPBWR1-2) was downregulated more than two-
fold in OC cells, and vector-mediated NPBWR1-2 overexpression
decreased cell viability, inhibited the proliferative, migratory and
invasive ability, and facilitated the apoptosis of OC cells by
targeting multiple miRNAs (110). Furthermore, overexpression
of lncRNA HCP5 was detected in OC by lncRNA microarray
(111). Downregulation of lncRNA HCP5 attenuated the
proliferative, invasive, migratory abilities of OC and inhibited the
EMT process, which might occur through miR-525-5p/PRC1
(polycomb repressive complex 1) crosstalk and the Wnt/b-
catenin signalling pathway (111). Additionally, higher expression
levels of 9 lncRNAs and lower expression levels of 5 lncRNAs were
found in OC tissues than in their normal counterparts, which was
confirmed by lncRNA microarray analysis (112). Among these
dysregulated lncRNAs, Linc00152 was upregulated in OC and
silencing Linc00152 attenuated OC cell proliferation and promoted
cell cycle arrest (112). Another study demonstrated that
795 lncRNAs were upregulated and 2075 lncRNAs were
downregulated in OC tissues compared with normal ovarian
tissues (113). The top 10 most overexpressed lncRNAs in OC
were BC041954, ENST00000423200, uc.428+, BC028018,
ENST00000433201, ENST00000458624, ENST00000453838,
CR601061, ENST00000505048 and ENST00000502715, while the
top 10most decreased lncRNAs in OCwere AK123324, AF087976,
NR_001284, ENST00000474313, AL832916, AF086261,
BC070168, uc001zfv.1, NR_023313 and uc002btm.2 (113). These
dysregulated lncRNAs can be categorized into four types: Rinn
lincRNAs, HOX clusters, long-intergenic non-coding RNAs
(lincRNAs) near coding genes and enhancer lncRNAs near
coding genes (113). A total of 326 dysregulated lncRNAs were
detected in EOC versus para-cancerous control tissues by lncRNA
microarray analysis (114). Among these lncRNAs, the lncRNA
RHPN1-AS1 was overexpressed and facilitated the carcinogenesis
and metastasis of EOC by serving as a ceRNA to sponge miR-596
and activating leucine zipper/EF hand-containing transmembrane-
1 (LETM1) expression and the FAK/PI3K/Akt pathway (114). One
report demonstrated that 577 pseudogenes were dysregulated in
HGSOC versus normal fallopian tubes by lncRNA microarray
analysis, among which 538 pseudogenes were upregulated (115).
High mobility group AT-hook 1 pseudogene 6 (HMGA1P6) was
one of the upregulated pseudogenes and exerted an oncogenic role
in OC by serving as a competitive endogenous RNA, contributing
to a shorter overall survival in OC patients (115).

A lncRNA microarray was applied and illustrated that 37
lncRNAs were upregulated and 22 lncRNAs were downregulated
September 2021 | Volume 11 | Article 745808
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in omental metastasis tissues (OMTs) versus paired primary OC
tissues (POCTs) (116). This study also indicated that the
upregulation of SOCAR, which is a novel OC metastasis-
related lncRNA that facilitates the proliferative, migratory and
invasive abilities of OC cells by elevating the expression of matrix
metallopeptidase 9 (MMP9) through activation of the Wnt/b-
catenin signalling pathway (116). Moreover, the expression of
myocardial infarction-associated transcript (MIAT) was
increased, and the expression of small nucleolar RNA, C/D
Box 114 cluster (SNORD114) family members SNORD114-10,
SNORD114-2 and SNORD114-11 was decreased in OMTs
compared to matched POCTs by lncRNA microarray analysis
(117). The lncRNA microarray showed that higher expression of
37 lncRNAs and lower expression of 22 lncRNAs were found in
OMTs than in paired POCTs (118). Among these aberrantly
expressed lncRNAs, the lncRNA CTD-2020K17.1 was
overexpressed in OMTs and facilitated the migratory, invasive,
and proliferative abilities of serous OC cells (118). The lncRNA
microarray demonstrated that 583 lncRNAs were upregulated
and 578 lncRNAs were downregulated in SKOV-3ip cells
compared toparental SKOV3 cells; lncRNAs metastasis-
associated lung adenocarcinoma transcript 1 (MALAT1), H19,
urothelial cancer associated 1 (UCA1), colon cancer-associated
transcript 1 (CCAT1), LOC645249, LOC100128881, and
LOC100292680 were downregulated in SKOV-3ip cells (119).
Estrogen (E2) aberrantly regulated the expression of 115
lncRNAs in E2 receptor (ER) alpha (ERa)-positive EOC cells
compared to E2-untreated controls according to lncRNA
microarray analysis (120). Furthermore, E2-mediated upregulation
of lncRNA TC0101441 promoted the migration and invasion of
ERa-positive EOC cells by regulating the expression of MMP2 and
MMP3 (120).

Similarly, 40830 dysregulated lncRNAs were found between
PAC-resistant OC cells and PAC-sensitive OC cells by lncRNA
microarray analysis (121). Furthermore, LINC01118 was
upregulated in PAC-resistant OC cells, and promoted PAC
resistance, invasion and migration while attenuating apoptosis in
EOC cells through modulating the miR-134/ATP binding cassette
C1 (ABCC1) axis (121). Based on lncRNAmicroarray analysis, one
study revealed that lncRNA UCA1 was upregulated in PAC-
resistant OC cells versus PAC-sensitive OC cells and enhanced
the resistance of OC to PAC (122). In addition, upregulation of
lncRNA UCA1 was observed in cisplatin-resistant OC samples
compared to cisplatin-sensitive OC samples by lncRNA microarray
analysis (123). Moreover, the lncRNA UCA1 negatively regulated
miR-143 and subsequently modulated the expression of FOSL2,
which enhanced the cisplatin resistance of OC (123). Another group
indicated that lncRNA linc00161 exhibited higher expression in
cisplatin-resistant OC than in cisplatin-sensitive OC by lncRNA
microarray analysis (124). Notably, linc00161 downregulated the
expression of microRNA-128 and subsequently upregulated the
expression of mitogen-activated protein kinase 1 (MAPK1), which
promoted cisplatin resistance in OC cells (124). One lncRNA
microarray demonstrated that 1033 lncRNAs were upregulated
and 869 lncRNAs, including lncRNA ENST00000457645, were
downregulated in A2780 cells versus cisplatin-resistant CP70
Frontiers in Oncology | www.frontiersin.org 11
OC cells (125). This study also indicated that lncRNA
ENST00000457645 decreased the viability and migratory ability
of cisplatin-resistant OC cells, suggesting that lncRNA
ENST00000457645 could reserve cisplatin resistance in CP70 cells
(125). In addition, lower expression of lncRNA growth arrest-
specific transcript 5 (GAS5) was found in EOC tissues than in
normal ovarian tissues by lncRNA microarray analysis (126).
Moreover, upregulated expression of lncRNA GAS5 could
improve the sensitivity of OC to cisplatin by reducing the
expression of poly (ADP-ribose) polymerase1 (PARP1) by
recruiting transcription factor E2F4 to its promoter and
subsequently modulating the MAPK signalling pathway (126). It
is required to further investigate which lncRNAs obtained
from lncRNA microarray analysis are more important in
ovarian tumorigenesis.

CircRNA Microarrays
Circular RNAs (circRNAs) are a new subtype of regulatory
noncoding RNA (ncRNA) molecules that are characterized by
covalently closed-loop structures without 5’ caps or 3’
polyadenylated tails (135). Moreover, the stable structure,
tissue- and/or development-specific expression patterns, and
good conservation are the major properties of circRNAs (136).
CircRNA microarrays can provide genome-wide circRNA
expression profiles between tumor specimens and normal
tissues. High-throughput sequencing of circRNAs indicated
increased expression of 354 circRNAs and decreased
expression of 356 circRNAs in HGSOC tissues compared to
normal ovarian tissues (127). Among these dysregulated
circRNAs, circRNA1656 was downregulated and the
expression of circRNA1656 was associated with the FIGO
stages of OC patients (127). In addition, circRNA sequencing-
based circRNA expression profiles showed that 2556 circRNAs
were upregulated and 1832 circRNAs were downregulated in
EOC tissues compared with normal ovarian tissues (128). Higher
expression of circEXOC6B and circ-N4BP2L2 indicated a better
prognosis in EOC patients (128). CircRNA microarray analysis
was also performed in PAC-sensitive and PAC-resistant OC
tissues (129). This study showed that 341 circRNAs were
upregulated and 492 circRNAs were downregulated with fold
change ≥ 2.0, and the length of most circRNAs was less than
1500 bp (129). Among these dysregulated circRNAs,
hsa_circ_0063809, hsa_circ_0001946, hsa_circ_0026134,
hsa_circ_0025033, and hsa_circ_0014130 were the five most
upregulated circRNAs (129). In particular, the suppression of
hsa_circ_0063809 can reverse PAC resistance in OC cells (129).
Upregulation of 148 circRNAs and downregulation of 191
circRNAs between cisplatin-sensitive and cisplatin-resistant
OC tissues were observed by circRNA microarray analysis
(130). Among these circRNAs, Cdr1as was downregulated in
cisplatin-resistant OC, and Cdr1as sensitized OC to cisplatin by
suppressing miR-1270 expression and subsequently upregulating
suppressor of cancer cell invasion (SCAI) expression (130). In
conclusion, a genome-wide circRNA expression profile is via
lncRNA microarray could facilitate the understanding of ovarian
oncogenesis and drug resistance.
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Proteomics
Proteomics techniques can provide the whole proteome or all
proteins from a particular cell, tissue, biofluid or organism.
Protein expression profiling by proteomics facilitates the
identification of potential biomarkers for disease diagnosis and
prognosis prediction. Moreover, proteomics techniques are
widely applied to assess OC carcinogenesis, and a panel of
proteins that are considered helpful biomarkers for OC
patients has been identified (Table 3).

By employing peptide ligand library beads (PLLB) and 1D gel
liquid chromatography tandem mass spectrometry (LC-MS/MS)
approaches, one report found that retinol binding protein 4
(RBP4) was highly expressed in the serum of OC patients (137).
Lectin-directed tandem labelling (LTL) and isobaric tags for
relative and absolute quantitation (iTRAQ) proteomics
approaches identified 45 N-linked sialylated glycopeptides
comprising 46 glycosylation sites, among which 10 sialylated
glycopeptides were overexpressed in the serum of OC patients
(138). Moreover, glycoproteomic analysis was performed in
endometrioid OC tissues and normal ovarian tissues, and
periostin and thrombospondin were confirmed as candidate
biomarkers with tumor-specific glycosylation in endometrioid
OC patients (139). In addition, iTRAQ-tagging and mass
spectrometry analysis showed that the serum proteins
serotransferrin, slbumin, hemopexin, C-reactive protein and
amyloid A1 were dysregulated in OC samples compared with
benign ovarian tumor samples and healthy control samples
(140). Notably, the combination of serum amyloid A1,
albumin, serotransferrin, human epididymis protein 4 (HE4)
and CA125 elevated the diagnostic capacity for differentiating
Frontiers in Oncology | www.frontiersin.org 12
benign and malignant OC (140). Increased expression of 52
peptides and decreased expression of 52 peptides were detected
in the ascites fluid of OC patients compared to that of those with
benign gynecological conditions (150). Label-free liquid
chromatography-mass spectrometry was performed between
favorable prognosis and poor prognosis primary HGSOC
specimen and revealed that higher expression of 288 proteins
was found in the favorable prognosis cluster, while higher
expression of 370 proteins was found in the poor prognosis
cluster (141). Additionally, the overexpression of a1-antitrypsin
(AAT), NFkB, and phosphomevalonate kinase (PMVK)
predicted a favorable PFS, and the overexpression of vascular
adhesion protein 1 (VAP1), fatty acid-binding protein 4
(FABP4), and platelet factor 4 (PF4) indicated a poor PFS
of HGSOC patients (141). Upregulation of 8 proteins,
including actin beta (ACTB), T-cell immunoglobulin mucin
(TIM), protein disulfide isomerase A3 (PDIA3), PDIA1,
dynactin subunit 2 (DCTN2), KIC17, SIAS, and KIC10) and
downregulation of 9 proteins, such as KIC18, G protein-coupled
receptor 78 (GRP78), capping actin protein, gelsolin like (CAPG),
peptidylprolyl isomerase A (PPIA), replication origin activator 2
(ROA2), lamin A/C (LMNA), EZRI, ADRM1, and ENOA) were
detected in vascular endothelial growth factor (VEGF)-treated OC
cells compared with normal OC cells through proteomic analysis
by two-dimensional electrophoresis (2-DE) (142). These 17
proteins are frequently involved in cell growth and metabolism
processes (142).

DIGE quantitative proteomics analysis revealed the
downregulation of UBC13 (UBE2N, ubiquitin conjugating
enzyme E2 N) in PAC-resistant OC cells, and UBC13
TABLE 3 | The application of proteomics for exploring the candidate biomarkers for ovarian cancer.

Applied Methods Subjects Protein Symbol(s) Ref.

LC-MS/MS Serum RBP4
(137)

LTL, iTRAQ Serum N-linked sialylated glycopeptides
(138)

MS Tissues periostin, thrombospondin
(139)

iTRAQ, MS Serum Serotransferrin, Albumin, Hemopexin, C-reactive protein, Amyloid A1
(140)

LC-MS Tissues AAT, NFkB, PMVK, VAP1, FABP4, PF4
(141)

2-DE, MALDI-TOF MS Cells ACTB, TIM, PDIA3, PDIA1, DCTN2, KIC17, SIAS, KIC10, KIC18, GRP78, CAPG, PPIA, ROA2, LMNA, EZRI,
ADRM1, ENOA (142)

MALDI-TOF/TOF, MS/
MS

Cells UBC13
(143)

iTRAQ, LC-MS/MS Tissues Plxdc2, CK7
(144)

MP, MAC Cells palmitoylprotein thioesterase 1 precursor, triose phosphate isomerase, ER-associated DNAJ, tumor rejection antigen
(gp96) 1 (145)

LC-MS/MS Cells AKAP12
(146)

RPPA Tissues PDGFRb, VEGFR2
(147)

2-DE, MALDI-TOF-MS Serum haptoglobin proteins, transthyretin, apolipoprotein E, alpha-1-antitrypsin, clusterin, carbonic anhydrase 1
(148)

2-DE Tissues stress-70 protein, elongation factor Tu, PRDX2, G3P, GRP75, ENOA, APOA1, EFTU, ANXA
(149)
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modulated PAC sensitivity through the DNA methyltransferase
1 (DNMT1) checkpoint with forkhead and ring finger domain
(CHFR)-aurora kinase A (Aurora A) signalling pathway in OC
cells (143). iTRAQ-based proteomic analysis in combination
with LC-MS/MS revealed that the expression of plexin domain
containing 2 (Plxdc2) and cytokeratin 7 (CK7) proteins was
elevated in PAC-resistant OC tissues (144). One study indicated
that 47 proteins were upregulated and 309 proteins were
downregulated both at more than 1.5-fold quantitative alterations
in PAC-resistant OC cells versus PAC-sensitive OC cells, through
LC-MS/MS label-free quantitative proteomics (151). Most of the
356 identified differential proteins were related to pyruvate
metabolism, metabolic pathways, glycolysis/gluconeogenesis,
protein processing in the endoplasmic reticulum, regulation of
actin cytoskeleton, systemic lupus erythematosus, tight junctions
and ribosomes (151). Multiplexed proteomics (MP) technology
andmultilectin affinity chromatography (MAC) indicated that four
glycoproteins (palmitoyl protein thioesterase 1 precursor, triose
phosphate isomerase, ER-associated DNAJ and tumor rejection
antigen (gp96) 1) were upregulated in PAC-resistant A2780TC1
OC cells compared with A2780 OC cells (145). A kinase (PRKA)
anchor protein 12 (AKAP12) was overexpressed in the PAC-
resistant HGSOC cell secretome according to proteomic analysis,
and the upregulation of AKAP12 indicated a poor prognosis in
HGSOC patients (146). Strikingly, 11 signalling pathway proteins
were upregulated in platinum-resistant OC compared with
platinum-sensitive OC according to reversed-phase protein array
(RPPA) analysis; the platelet-derived growth factor receptor beta
(PDGFRb) and VEGF receptor 2 (VEGFR2) proteins were most
prominently overexpressed (147). Moreover, higher expression of
PDGFRb was associated with worse progression-free and overall
survival, while VEGFR2 expression had no considerable
relationship with the OS of OC patients (147). Matrix-assisted
laser desorption/ionization time of flight mass spectrometry
(MALDI-TOF-MS) indicated that serum haptoglobin proteins,
transthyretin and apolipoprotein E were upregulated, while
serum alpha-1-antitrypsin, clusterin, and carbonic anhydrase 1
were downregulated in chemo-sensitive EOC patients compared
with chemo-resistant EOC patients (148). Proteomics analysis of
OC tissues illustrated that stress-70 protein, elongation factor
Tu, peroxiredoxin (PRDX2), glyceraldehyde 3-phosphate
dehydrogenase (G3P), mitochondrial GRP75, a-enolase (ENOA),
apolipoprotein A-1 (APOA1), mitochondrial EFTU and annexin
A (ANXA) were considered predictive indicators of drug-
resistant OC (149). Taken together, whole proteome profiles in
ovarian cancer give us a chance to determine the mechanism
of ovarian tumorigenesis. However, the changes of all proteins in
ovarian cancer should be validated by other approaches such as
western blotting analysis.

Metabolomics
Metabolomics are utilized to obtain metabolites expression
profiles in a specific cell, tissue or biofluid via a high-throughput
technology, which can help us understand the cellular metabolism.
Metabolomics function in identifying and quantifying the
alteration of diverse metabolite levels of samples in response to
Frontiers in Oncology | www.frontiersin.org 13
disease status, dietary patterns and pharmaceutical interventions
(152). Metabolomics is a promising tool for cancer research, and
mass spectrometry (MS) and nuclear magnetic resonance (NMR)
spectroscopy are commonly used techniques (34). Metabolite
profiling by metabolomics helps researchers to gain deeper
insight into the changes and interactions of metabolites related
to ovarian cancer biology and could improve the personalized
clinical treatment of ovarian cancer patients (Table 4).

According to ultra-performance liquid chromatography and
quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF
MS), metabolites , including 2-piperidinone and 1-
heptadecanoylglycerophosphoethanolamine, in the serum were
closely associated with OC and could potentially serve as
biomarkers of OC (153). Wide spectrum targeted metabolomics
showed that lipid compounds (lysoPC a C16:1, PC aa C32:2, PC
aa C34:4 and PC aa C 36:6) in serum were correlated with OC
metabolism and potentially related to the growth and progression
of OC (154). Moreover, increased expression of saturated fatty
acids and decreased expression of unsaturated fatty acids were
detected in the serum of EOC patients compared to that of healthy
controls, which was confirmed by the gas chromatography-mass
spectrometry (GC-MS) metabolomics approach (155). Moreover,
serum esterified fatty acids (EFAs) (C16:0), EFAs (C18:0) and free
fatty acids (FFAs) (C16:0) were considered biomarkers for
discriminating EOC patients from healthy controls (155). Using
hydrophilic interaction liquid chromatography(HILIC) and tandem
mass spectrometry, this report integrated serummaltose, maltotriose,
raffinose, and mannitol into the panel for differentiating OC patients
from benign ovarian tumor patients and healthy patients (156). Ultra
performance liquid chromatographic-mass spectrometry (UPLC-
MS) showed that the upregulation of serum 27-nor-5b-cholestane-
3,7,12,24,25 pentol glucuronide (CPG) could be a predictive indicator
for EOC in the early stage (157). Metabolic profiling based on UPLC-
MS revealed that plasma piperine, 3-indolepropionic acid, 5-
hydroxyindoleacetaldehyde and hydroxyphenyllactate could be
used for differentiating EOCs from benign ovarian tumors (BOTs)/
uterine fibroids (UFs), and for differentiating early-stage EOCs from
late-stage EOCs (158). Additionally, one study explored the
metabolomics profiles of plasma samples from early-stage EOC
patients and healthy controls by UPLC/Q-TOF MS, and 18
metabolites were dysregulated in early stage EOC (159). Among
these metabolites, adrenoyl ethanolamide, lysophospholipids
(LysoPCs), LysoPE and one unknown compound were identified
as potentially useful for discriminating early-stage EOC patients from
healthy controls (159). Global metabolomic profiles in the pre- and
post-operative plasma of EOC patients were assessed, and the
results identified hydroxyphenyllactic acid, coproporphyrinogen,
uric acid, lysine, 3-(3,5-diiodo-4-hydroxyphenyl) lactate, 24,25-
hydroxyvitamin D3, carnitine, creatinine, l-beta-aspartyl-l-glutamic
acid and phosphohydroxypyruvic acid as predictive biomarkers for
the recurrence of EOC, and indicated that the combination of pre-
and post-operative serum biomarkers showed the best predictive
capacity for the recurrence of EOC (160).

The concentrations of four dysregulated urinary metabolomics
markers, including N4-acetylcytidine, succinic acid, urate-3-
ribonucleoside, and pseudouridine, showed a trend towards the
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normal level in the post-operative condition compared with the
preoperative condition of EOC patients according to UPLC/Q-TOF
MS (161). Based on HILIC and reversed-phase liquid
chromatography (RPLC) coupled to mass spectrometry, this
study identified five urinary metabolites specific to OC, including
homovanillic acid sulfate, phytosphingosine, hippuric acid and
pseudouridine, and one unknown component (162). Gas
chromatography/time of flight mass spectrometry (GC/TOF-MS)-
basedmetabolomics analysis revealed that a higher concentration of
glucose and other metabolites from carbohydrate metabolism were
found in AMP-activated protein kinase (AMPK)-negative OC than
those in the AMPK-positive OC (163). Based on a genome-scale
metabolic model and microarray data, one study demonstrated that
cisplatin could not kill resistant OC cells, but it could confer a more
vulnerable metabolic condition in the cancer cells (164).
Metabolites expression profiles in ovarian cancer could enhance
the understanding of cellular metabolism, leading to contribution to
combating ovarian cancer via targeting tumor cell metabolism.
CONCLUSION AND PERSPECTIVE

Multi-omics has been used to discover the biomarkers for ovarian
cancer prognosis and therapeutic efficacy. However, several
disadvantages of multi-omics must be discussed. For example,
several factors of technical, instrumental and computational
nature will affect the precision of microarray data. The poor
storage of clinical sample in hospitals causes the poor quality of
RNA samples, leading to inaccurate data by transcriptomics.
Moreover, no standard methodology is available for microarrays
so far. It is also difficult to develop standard methods to integrate
data obtained from various types of microarrays. Appropriate
statistical analyses are necessary to analyze multi-omics approaches.
Frontiers in Oncology | www.frontiersin.org 14
Through different microarrays, thousands of genes and
proteins are changed in ovarian carcinogenesis and promotion.
How can we judge which genes and proteins are key drivers to
induce ovarian tumorigenesis? Different microarray approaches
often obtain inconsistent results, which could be due to biological
heterogeneity, different statistical and computational analyses,
and target selection criterion, indicating that identified genes and
proteins by each microarray method should be validated by other
several approaches. Transcriptome profiles need to be validated
by other methods, such as RT-PCR assay.

In summary, multi-omics approaches are applied to study the
molecular mechanism of the development and progression of
OC (Figure 1). The combination of genomics, transcriptomics,
proteomics and metabolomics is helpful for exploring diagnostic
and prognostic biomarkers of OC and for gaining deeper insight
into the mechanism of OC chemoresistance. Without a doubt,
there is a long way to use multi-omics approaches for
personalized therapy in ovarian cancer patients.
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TABLE 4 | The application of metabolomics for exploring the candidate biomarkers for ovarian cancer.

Applied Methods Subjects Metabolite Symbol(s) Ref.

UPLC/Q-TOF MS Serum 2-piperidinone, 1-heptadecanoylglycerophosphoethanolamine
(153)

Wide spectrum
targeted
metabolomics

Serum lysoPC a C16:1, PC aa C32:2, PC aa C34:4, PC aa C 36:6
(154)

GC-MS Serum EFA (C16:0), EFA (C18:0), FFA(C16:0)
(155)

HILIC, MS/MS Serum combination of serum maltose, maltotriose, raffinose, and mannitol
(156)

UPLC-MS Serum CPG
(157)

UPLC-MS Plasm piperine, 3-indolepropionic acid, 5-hydroxyindoleacetaldehyde hydroxyphenyllactate
(158)

UPLC/Q-TOF/MS Plasm adrenoyl ethanolamide, LysoPCs, LysoPE
(159)

RRLC-MS Plasm hydroxyphenyllactic acid, coproporphyrinogen, uric acid, lysine, 3-(3,5-diiodo-4-hydroxyphenyl) lactate, 24,25-
hydroxyvitamin D3, carnitine, creatinine, l-beta-aspartyl-l-glutamic acid phosphohydroxypyruvic acid (160)

UPLC-QTOF/MS Urine N4-acetylcytidine, succinic acid, urate-3-ribonucleoside, pseudouridine
(161)

HILIC, RPLC, MS Urine homovanillic acid sulfate, phytosphingosine, hippuric acid, pseudouridine
(162)

GC/TOF-MS Tissues glucose
(163)
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