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Matanes E, López-Ozuna VM,

Octeau D, Baloch T, Racovitan F,
Dhillon AK, Kessous R, Raban O,

Kogan L, Salvador S, Lau S,
Gotlieb WH and Yasmeen A (2021)

Inhibition of Poly ADP-Ribose
Glycohydrolase Sensitizes

Ovarian Cancer Cells to Poly
ADP-Ribose Polymerase

Inhibitors and Platinum Agents.
Front. Oncol. 11:745981.

doi: 10.3389/fonc.2021.745981

ORIGINAL RESEARCH
published: 27 October 2021

doi: 10.3389/fonc.2021.745981
Inhibition of Poly ADP-Ribose
Glycohydrolase Sensitizes
Ovarian Cancer Cells to Poly
ADP-Ribose Polymerase
Inhibitors and Platinum Agents
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Background: Poly ADP-ribose glycohydrolase (PARG) is responsible for the catabolism
of PARP-synthesized PAR to free ADP-ribose. Inhibition of PARG leads to DNA repair
interruption and consequently induces cell death. This study aims to evaluate the effect of
a PARG inhibitor (PARGi) on epithelial ovarian cancer (OC) cell lines, alone and in
combination with a PARP inhibitor (PARPi) and/or Cisplatin.

Methods: PARG mRNA levels were studied in three different OC datasets: TCGA,
Hendrix, and Meyniel. PARG protein levels were assessed in 100 OC specimens from
our bio-bank. The therapeutic efficacy of PARGi was assessed using cell migration and
clonogenic formation assays. Flow cytometry was used to evaluate the cell apoptosis rate
and the changes in the cell cycle.

Results: PARG protein was highly expressed in 34% of the OC tumors and low
expression was found in another 9%. Similarly, Hendrix, Meyneil and TCGA databases
showed a significant up-regulation in PARG mRNA expression in OC samples as
compared to normal tissue (P=0.001, P=0.005, P=0.005, respectively). The use of
PARGi leads to decreased cell migration. PARGi in combination with PARPi or Cisplatin
induced decreased survival of cells as compared to each drug alone. In the presence of
PARPi and Cisplatin, PARG knockdown cell lines showed significant G2/M cell cycle
arrest and cell death induction.

Conclusions: PARG inhibition appears as a complementary strategy to PARP inhibition
in the treatment of ovarian cancer, especially in the presence of homologous
recombination defects.

Keywords: ovarian cancer, targeted therapies, homologous recombination, poly (ADP-ribose) glycohydrolase
(PARG), poly (ADP-ribose) polymerase (PARP) inhibitors
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INTRODUCTION

Ovarian cancer (OC) is the most lethal gynecologic malignancy,
with an estimated 313 959 new cases and 207 252 deaths
worldwide in 2020 (1, 2). Current treatment for OC patients
consists of a combination of maximal cytoreduction and
platinum-taxane based chemotherapy (3). Despite these
aggressive frontline treatments, the prognosis for advanced
stages is poor, and the 5-year survival rate is less than 25% for
women diagnosed with stages III or IV (4). Hence, new
treatment strategies and paradigms are needed to deal with
persistent and recurrent tumor cells, and ultimately
improve prognosis.

Germline mutations in BRCA1 or BRCA2 genes are present in
approximately 20% of patients with newly diagnosed OC (5).
Recently, it has been shown that a significant proportion of
sporadic tumors have a phenotype similar to the tumors found in
patients with inherited BRCA mutations and this led to the
concept of BRCAness (5). In addition to Germline mutations in
BRCA1/2 genes, BRCAness results from DNA-repair defect(s)
arising from loss of homologous recombination (HR) function
secondary to epigenetic perturbations such as aberrant
methylation (5-31% in ovarian cancer), somatic mutations
(<5%) and other abnormalities of the following HR repair
genes: TM, ATR, BARD1, BLM, BRIP1, CDK12, CHEK1,
CHEK2, FANCA, FANCC, FANCD2, FANCE, FANCF, FANCI,
FANCL, FANCM, MRE11, NBN, PALB2, RAD50, RAD51,
RAD51B, RAD51C, RAD51D, RAD52, RAD54L, and RPA1 (5–
8). Loss of HR function leads to impaired ability of cells to repair
double-stranded DNA breaks (DSB). Inhibition of single
stranded DNA repair in HR deficient cells can result in cell
death by synthetic lethality (9–11). Together, HR mutations have
been implicated in up to 50% of OC (5, 6, 12), representing an
important therapeutic target in this disease as exemplified by the
efficacy of platinum analogues, as well as the advent of PARP
inhibitors, which exhibit synthetic lethality when applied to
HRD cells.

Poly ADP-ribose (PAR) formation is one of the earliest events
in the mechanism of DNA damage repair and is catalyzed by
PARP (Poly ADP-ribose polymerase) enzymes (13–15).
Additionally, PARP plays a role in cell proliferation,
differentiation and transformation (16). Although the
inhibition of PARP activity was initially demonstrated nearly
50 years ago, by Preiss (1971), following treatment of HeLa cells
with thymidine and nicotinamide (17), the elucidation of its
structure and functions had to wait for modern molecular
biology techniques, which subsequently led to the screening of
many potent small molecule PARP inhibitors (PARPi). While
increased PARP expression and activity has been found in many
different cancers, the loss of PARP activity in cells or in knockout
mouse models leads to both radio and chemo-sensitisation (18,
19). PARPi trap PARP on damaged DNA site, thus interfering
with the catalytic cycle of PARP, preventing DNA repair (20).
Inhibition of PARP activity would lead to collapse of the
replication forks and of the subsequent HR-dependent repair
of these forks. Therefore, given that BRCA1/2 mutated tumor
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cells have defective HR activity, the collapsed replication forks
are unable to be repaired and cell death occurs (21). There are
currently several PARP inhibitors approved for the treatment of
BRCA1/2 mutation carriers with ovarian, breast, prostate and
pancreatic cancers (22–24). More recent studies suggest that
PARPi may have much wider applications including the
treatment of tumors with alternative HR deficiencies (21, 25,
26) or tumors with high levels of oxidative and replicative stress,
regardless HR status (27–29). Despite the promising antitumor
activity of PARPi in tumors with impaired HR repair, 40 − 70%
of BRCA1/2 mutated OC fail to respond to PARPi (10, 22, 30).
Previously, we showed that PARP1 protein levels were reduced
following chemotherapy in vitro and in vivo (31), which could
explain in part the reported prevalent PARPi resistance (22, 30).
These findings in addition to the high frequency of HR defects in
OC emphasize the need to look for additional treatment options.

Poly ADP-ribose glycohydrolase (PARG) is responsible for
the catabolism of PARP-synthesized PAR to free ADP-ribose
(16, 32). Like PARP and other repair proteins, PARG is recruited
to sites of DNA damage and involved in the degradation of PAR
by cleaving glycosidic ribose–ribose bonds within PAR chains,
thus avoiding excessive PAR formation and preventing cell death
(33, 34) (Figure 1). PARG deficient cells have been reported to
display reduced efficiency of double strand break (DSB) and
single strand break (SSB) repair, suggesting that PARG might be
used as a potential target in OC (35, 36). Only a few PARG
inhibitors (PARGi) are available (37) as the first selective
inhibitor, PDD00017273, was developed in 2016 (38).
This inhibitor was shown to have anti-tumor activity in
breast, pancreatic, non-small lung cancers, and most recently
in ovarian cancer (34, 36, 39–43). Moreover, we assume that
unexplored synthetic lethality relationships with HRD cells may
exist, and these might represent valuable drug targets for
metastatic, refractory and PARPi-resistant HR-deficient
tumors. By screening two pairs of BRCA2 isogenic cell lines
with DNA repair-focused shRNA and CRISPR-based libraries,
Mengwasser et al. identified APEX2 and FEN1 as synthetic lethal
genes with both BRCA1 and BRCA2 loss-of-function (44).
Another screening of the whole-genome CRISPR-Cas9
synthetic-viability/resistance was done by Dev et al. (45) in
BRCA1-deficient breast cancer cells treated with PARP
inhibitors. Two previously uncharacterized synthetic lethal
proteins were identified, C20orf196 and FAM35A, whose
inactivation confers strong PARP-inhibitor resistance. Most
importantly, screening in vitro cultures derived from
BRCA2mutant mouse mammary tumors, cell lines (KB2P1.21,
KB2P3.4) and three-dimensional cancer organoids (ORG-
KB2P26S.1), using DNA repair-focused shRNA and CRISPR-
based libraries, confirmed PARG as a synthetic lethal gene, and
loss of this gene represents a major resistance mechanism for
PARPi (46).

Given the high rate of HR defects in OC, we hypothesize that
inhibiting PARG may be an effective alternative therapeutic
strategy for targeting specific OC cancer cells that are
dependent on this activity. In addition, PARGi might increase
the cytotoxicity of DNA damaging agents and may be useful
October 2021 | Volume 11 | Article 745981
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against diverse ovarian malignancies, including PARPi-resistant
tumors. In this study, we aimed to assess the expression of PARG
in OC cells and evaluate the effect of PARGi on OC cell lines,
alone and in combination with PARPi and Cisplatin.
METHODS

The study was approved by the Jewish General Hospital Research
Ethics Board and all patients participating in this study gave
informed consent in accordance with the JGH ethics committee
regulations (protocol #15-070).

PARG Expression
Gene Set Analysis (GSA)
Oncomine ™ database categorized patients according to
different datasets, based on variations in gene expression
patterns derived from different cDNA microarrays analysis.
Ovarian cancer RNA-seq expression data were obtained from
browser website (https://www.oncomine.org). Using this
database, we investigated PARG mRNA levels in normal
ovarian tissue and ovarian cancer cases.

Protein Extraction and Western Blot Analysis
In total, 100 tumor samples were analyzed including 20 ascites cell
pellets, 62 primary tumors and 18 omental metastases. Snap-frozen
tumor tissueswereminced and lysed in lysis buffer (25mMTris∙HCl
pH7.6, 10%glycerol, 420mMNaCl, 2mMMgCl2, 0.5%NP-40, 0.5%
TritonX-100, 1mMEDTA, protease inhibitor) on ice.Additionally,
OVCAR3, SNU251, SKOV3, A2780PAR (parental), A2780CR
(Cisplatin resistant), and primary tumor cell lines were harvested
(2mL 0.25% Trypsin-EDTA 1x, Wisent Bio Products) and then
lysed in 500mL of radio-immunoprecipitation assay (RIPA) buffer
Frontiers in Oncology | www.frontiersin.org 3
(25mM/LTris-HCl pH7.6, 150mM/LNaCl, 1%NP-40, 1% sodium
deoxycholate, 0.1%SDSand1mM/LEDTA).Protein concentration
was determined using bicinchoninic acid assay (BCA) kit (Ref
23225, Pierce) using a spectrophotometer at 570nm.

Protein lysates (10-25mg) were separated electrophoretically
on a 7.5 to 10% denaturing SDS-polyacrylamide gels and
transferred to 0.2mm nitrocellulose membranes. Primary
antibodies specific for BRCA1 (Cell Signaling, Beverly, MA,
USA. 1:1000), PARG (#; Cell Signaling; 1:500) and b-actin
(#4967, Cell Signaling; 1:2000) were diluted in 0.1% Tween-
PBS/5% Milk and put in presence of the membrane overnight at
4°C. After 3 washing (0.1%Tween-PBS1X), membranes were
exposed to secondary anti-rabbit-horseradish peroxidase (HRP;
L170-6515; Bio-Rad, USA; 1:10000) or anti-mouse HRP (L170-
6516; Bio-Rad; 1:10000) for 1 hour at room temperature.
Immunoblotting proteins were visualized using horseradish
peroxidase (HRP)-conjugated secondary antibodies, and
antigen-antibody complexes were detected using the Clarity™

Western ECL Substrate kit (Bio-Rad, Hercules, USA).

Cell Lines and Treatments
Cell lines (Table 1): OVCAR3 (#HTB-161), SNU-251 (#CVCL-
5040) and SKOV3 (#HTB-77) were purchased from ATCC.
A2780PAR and A2780CR cells were provided by Dr. Seftor
(Northwestern University, Chicago).

All the cell lines were authenticated by short tandem repeat
(STR) profiling by the DNA sequencing and analysis core of the
University of Colorado (51). All cell lines were frequently tested
for mycoplasma infection using MycoAlert Detection Kit (Lonza
#LT07-710). OVCAR3, SKOV3, A2780PAR and A2780CR
display wild-type BRCA1 genes, and SNU-251demonstrates a
homozygous 1815 G>A BRCA1mutation (50, 52). OVCAR3 and
SKOV3 were cultured in RPMI-1640 medium supplemented
FIGURE 1 | The cycle of Poly ADP-Ribose (PAR) metabolism “PARylation”. Poly ADP-ribose polymerase (PARP) binds the damaged DNA (caused by a platinum
agent) and becomes active and catalyzes the formation of PAR polymers on a variety of protein acceptors, including itself. Electrostatic repulsion between the newly
formed polymer and DNA causes the release of PARP, thereby inactivating it. The poly (ADP-ribose) glycohydrolase (PARG) enzyme degrades the PAR, thereby
allowing for PARP to once again bind to damaged DNA and initiate “PARylation”.
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with 10% fetal bovine serum (FBS), 2mM glutamine, 100 U/ml
penicillin, and 100mg/ml streptomycin. SNU-251 was cultured in
DMEM medium supplemented with 10% FBS, 2mM glutamine,
100 U/ml penicillin, and 100mg/ml streptomycin. A2780PAR
and A2780CR were cultured in RPMI-1640 medium
supplemented with 10% FBS, 2mM glutamine, 1% Hepes,
100U/ml penicillin, and 100mg/ml streptomycin. A2780CR
cells were maintained in media with 1mM Cisplatin every 2-3
passages to maintain Cisplatin resistance.

Patient tumor-derived ovarian cancer cells labeled GOC31
and GOC17 were isolated in our laboratory from two high-grade
serous OC specimens obtained fresh at surgery. Primary cell lines
were grown in OSE medium supplemented with 20% FBS and
growth factors (insulin, EGFR, hydrocortisone, BPE). The cells
were routinely passaged every 4 to 6 days. All cells were
maintained at 37°C, in a 5% CO2, 95% air atmosphere incubator.

Treatments
The PARGi (PDD00017273, Cat#5952) was purchased from
Tocris (38). Olaparib (PARPi) (AZD2281, Cat#A10111) was
purchased from AdooQ Bioscience. The drugs were diluted in
DMSO (10mM and 10mM stocks respectively) and stored at
-20°C. To avoid drug degradation, new aliquots were prepared
directly from stocks every 5-10 uses. Cisplatin was ordered from
the Jewish General Hospital Satellite Pharmacy. In a previous
study (53), we showed the half maximal inhibitory
concentrations (IC50) range of the same cell lines used in the
current study after treatment with Olaparib, assessed by
clonogenic assays. Accordingly, the final concentrations used
in the present study were 0.5 and 1mM of Olaparib which is at the
lower range of that used in a phase 1 clinical trial (11). For
SNU251 cell line as an exception, we used a dose of 0.05 mM of
Olaparib. With regard to PARGi, since there is no clinical trial
reporting its plasmatic concentration, its inhibitory activity was
first tested in similar range of concentrations to that employed
for Olaparib. Based on our preliminary results, PARGi had a
lower inhibition effect than Olaparib, and we modified the
dosage accordingly, bringing the final PARGi concentrations to
0.5,1,2,5 and 10mM. Drug concentrations used for Cisplatin were
0.5mg/mL, 1mg/mL, according to the IC50 concentrations shown
previously (53).

Generation of Stable Cell Lines
SKOV3 cells were used to generate stable cell lines with PARG
knockdown. Cells were cultured to 90% confluence and
transfected with lentiviral constructs expressing shRNA
targeting PARG (shPARG1305, shPARG1306) (34) .
Twelve hours post-transfection, the cell culture medium with
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lentivirus were collected. SKOV3 cells were plated to 70–80%
confluence and infected with lentivirus. Cells were selected with
5mg/ml puromycin for 3 days post infection. SKOV3
shPARG1305 were used for cell cycle and apoptosis assessment
experiments because we observed an 80% inhibition of the PARG
expression with this cell line.

Cell Migration Assays
Cells were grown to near confluence in 6-well adherent cell
culture flat bottom plates (BD Falcon, Life Technologies). A
‘‘wound’’ was then inflicted to the cells in triplicate in each well
using a sterile 200-KL pipette tip. The cells were then carefully
rinsed with phosphate-buffered saline to remove any floating
cells. Medium containing various concentrations of PARGi was
then added. Pictures were taken of all “wounds” under an optical
microscope (Olympus CKX41) at different time points (time 0,
24 and 48 hours), and the “wound”mean width was measured at
three cross-sections along the length of the “wound”, using
Photoshop CS3 Extended version (Adobe Systems, Inc).
“Wound” closure was then calculated as a percentage value
over time. At the completion of the wound healing assay, cells
from the 6-well plates were collected for protein extraction and
Western blotting.

Survival Assays
The clonogenic assay was used to determine survival fraction of
cells. Briefly, 500–800 cells were plated in 6-well flat bottom cell
culture plates (BD Falcon, Life Technologies). 24 hours after
plating, cells were washed, and fresh medium was added in the
presence or absence of increasing doses of PARGi alone and in
combination with Olaparib and Cisplatin. Media containing the
drug was refreshed on day 4. Colonies were fixed and stained
after 7-10 days of treatment with 1.5 ml of 6% glutaraldehyde
and 0.5% crystal violet and colonies were counted using the
GelCount Optronix. The surviving fraction (SF) and Plating
Efficiency (PE) of cells were calculated as follows (54):

SF =
Number   of   colonies   formed   after   treatment
Number   of   cells   seeded   x   Plating  Efficiency

PE =
Number   of   colonies   formed   in   control

Number   of   cells   seeded

The interaction between PARGi, Olaparib and Cisplatin was
assessed using the multiple drug effects analysis method of Chou
and Talalay (55). This method quantitatively describes the
interaction between two or more drugs, with combination
index (CI) less than 1 indicating synergistic interactions, values
TABLE 1 | Characteristics of ovarian tumors from which cell lines were established.

Cell line Histology Isolated from Treatment received Response

OVCAR3 (47) Serous Ascites CYC, CIS, DOX Unknown
SKOV3 (48) Adenocarcinoma Ascites THI Unknown
SNU251 (49) Endometroid Ascites CYC, ADR, CIS Unknown
A2780 (50) Unknown Primary tumor None N/A
October 2021 | Volume 11 | Art
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greater than 1 indicating antagonistic interactions, and values
equal to 1 indicating additive interactions. Calculations of the CI
values were performed with CompuSyn Software (ComboSyn,
Inc., Paramus, NJ. 07652 USA).

Cell Cycle Analysis
Cell cycle analysis was performed by propidium iodide (PI)
staining for DNA content and flow cytometry analysis. For this
experiment we used SKOV3-shVector and SKOV3-
shPARG1305 cell lines. Briefly, 106 cells were seeded in flat
bottom cell culture plates (GBO, Bioscience, Frickenhausen,
Germany). 24 hours after plating, fresh medium was added in
the presence or absence of 2mM Olaparib or/and 1mg/mL
Cisplatin. After 48 hr treatment, Hoechst 33342 was added for
30 minutes, then adherent cells were collected using trypsin-
EDTA by centrifugation at 10000 rpm for 5 min and washed
twice with ice cold PBS. During the last spin, 5ul PI was added for
every ml of hypotonic buffer (0.1% Sodium Citrate, 0.1% Triton
X-100), and incubated on ice in the dark (at least 20 min).
Stained cells were analyzed (at least 20,000 events per sample)
with a FACS Fortessa flow cytometer (BD BioSciences, CA).
ModFit LT software (Verity Software House, Topsham, ME) was
used to analyze the percentage of cells at different phases. Cells
treated with DMSO (0.1%, v/v) were used as control.
Frontiers in Oncology | www.frontiersin.org 5
Annexin V/PI Apoptosis Detection Assays
Apoptosis was assessed by Annexin V/PI assay using flow
cytometry, according to the manufacturer ’s protocol
(eBioscience™ Ann exin V Apoptosis Detection Kit eFluor™

450). Apoptotic cells were determined using the FACS Fortessa
(BD BioSciences, CA) (56).

Statistical Analysis
Results are shown as means ± standard deviations of three
independent experiments. The difference between groups was
analyzed using Student’s t-test, and a p-value <0.05 was
considered statistically significant.
RESULTS

PARG mRNA Levels Are Over Expressed
in Ovarian Cancer
We initially evaluated the PARG mRNA expression in normal
ovarian samples compared to high grade serous adenocarcinoma
samples using two different datasets of ONCOMINE database:
the TCGA dataset (586 cases) (Figure 2A) and Hendrix dataset
(41 cases) (Figure 2B). Both datasets showed a significant over
expression of PARG mRNA in the malignant cases (P=0.001,
A B

D E

C

FIGURE 2 | PARG is over expressed in ovarian cancer. PARG mRNA expression was evaluated in normal and malignant ovarian samples using three different
datasets: the TCGA dataset (1- Normal ovary (n-8), 2 – Ovarian serous carcinoma (n-586)) (A) and the Hendrix dataset (1- Normal ovary (n-4), 2 – Ovarian serous
carcinoma (n-41)) (B), and the Meyniel dataset (1- Clear cell carcinoma (n-6), 2- Endometroid carcinoma (n-6), 3- mucinous carcinoma (n-7), 4- Serous carcinoma (n-
71)) (C). PARG protein levels were evaluated by western blot in 100 high grade serous ovarian cancer tumors kept in our biobank. PARG representative western blot
for each level category (low, high, and negative). The level category was set according to the intensity of the western blot band while OVCAR3 protein extract was
used as a positive control. (D). Expression of PARG and BRCA1 proteins were examined by western blot (E) in commercial (SNU251, SKOV3, OVCAR3,
A2780PAR, A2780CR) and patients derived (GOC17, GOC31) cell lines.
October 2021 | Volume 11 | Article 745981
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P=0.005 respectively). Next, we evaluated the expression of
PARG mRNA in different histological subtypes using Meyniel
dataset and found relatively higher expression levels of PARG
mRNA in serous adenocarcinoma cases compared to other
histological subtypes like endometrioid, mucinous, and clear
cell adenocarcinoma (Figure 2C).

PARG Is Expressed at the Protein Level in
Commercial and Tumor-Derived Ovarian
Cell Lines
We evaluated PARG protein levels in 100 unselected snap-frozen
high grade OC tumors kept in our biobank and checked the level
of PARG in commercial (OVCAR3, SNU251, SKOV3,
A2780PAR and A2780CR) and primary cell lines derived from
patient tumors (GOC31 and GOC17). Baseline characteristics of
the study population are displayed in Table 2.

Western blot analysis showed high expression level of PARG
protein in 34% and low expression in 9% of the tumors
(Figure 2D). In standard culture conditions, ovarian
commercial and tumor-derived cell lines showed different
expression levels of PARG protein (Figure 2E) and noticeably,
the BRCA1 protein was at a very low level in SNU251 cells.

Inhibition of PARG Impairs Ovarian Cancer
Cell Migration
Wound-healing assays were performed to investigate the potential
inhibitory effect of PARGi on cell migration of BRCA proficient
(SKOV3) and BRCA deficient (SNU251) cell lines. Results indicate
that the migration of both cell types was inhibited by PARGi
reaching a maximum at 48 hours, at which time the ‘‘wound’’ of
SKOV3 cells remained 42% (2mM) and 53% (5mM) open as
compared with 33% in untreated cells at the same time,
suggesting slower cell mobility (Figures 3A, C) (p-value<0.001).
More prominent results were found with SNU251 cells: 71% (2mM)
and 77% (mM) wound opening in the presence of PARGi versus
53% in the untreated controls (Figures 3B, D), (p-value<0.001).
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These results indicate that PARGi slows themigration of these 2 cell
lines in a time-dependent manner.

PARGi Decreases Survival of OC Cells
When Combined With Olaparib and
Cisplatin
We next evaluated the sensitivity of the OC cells to PARGi, alone
and in combination with Olaparib and Cisplatin by clonogenic
assays. All cell lines we used (SKOV3, OVCAR3, SNU-251,
A2780PAR and A2780CR) were treated with increasing doses
of PARGi (0.1–10mM), alone and in combination with olaparib
(0.5mM) or cisplatin (0.5mg/mL). Decreased survival of OC cells
was shown with combination treatment (PARGi+Olaparib/
PARGi+Cisplatin) as compared to single treatments
(Figures 4B–E). A2780CR cells are well known to be resistant
to platinum agents. Interestingly, treatment with PARGi re-
sensitize these cells to Cisplatin, as shown in Figure 4A.
Furthermore, the percent of survival values of BRCA mutated
SNU-251 cells in each experiment was greatly diminished
compared with that of other cell lines (Figures 4A–E).

To further determine the nature of the interaction between
PARGi, Olaparib and Cisplatin, we used the multiple drug effects
analysis method of Chou and Talalay (55). In all cell lines tested,
we calculated a combination index (CI) between (0.19-0.97),
with any number <1 indicating a synergistic effect (Figure 4F).

PARG Silencing Induces G2/M Arrest and
Cell Death in Ovarian Cancer Cells
Treated With Olaparib and Cisplatin
To further decipher the mechanism of the anti-tumorigenic activity
of PARGi, we evaluated the effect of PARG inhibition on the
regulation of apoptosis and cell cycle. Olaparib 2 mM/Cisplatin 1mg/
mL combination treatment resulted in G2/M arrest in up to 78.4%
in the SKOV3-shPARG1305 and 53.5% in SKVO3-shVector
compared to 40.8%, 31.2% with Olaparib alone and 60.7%, 51.7%
TABLE 2 | Baseline characteristics of the cohort.

Total (n-100) Negative (n-57) Positive low (n-9) Positive high (n-34) P-Value

Age, mean (SD) 59.6 ± 13.6 59.9 ± 13.0 61.3 ± 14.2 58.8 ± 14.7 0.8
BMI, mean (SD) 28.8 ± 6.0 28.8 ± 5.5 28.9 ± 8.8 28.8 ± 6.3 1.0
Stage:
Early (I/II)
Advanced (III/IV)

27 (27.0%) 17 (63.0%) 2 (7.4%) 8 (29.6%) 0.7
73 (73.0%) 40 (54.8%) 7 (9.6%) 26 (35.6%)

CA125, mean (SD) 1340.1 ± 2260.2 1237.4 ± 2032.2 1566.5 ± 1501.5 1452.5 ± 2779.4 0.8
Histology 0.4
Serous 74 (74.0%) 41 (55.4%) 4 (5.4%) 29 (39.2%)
Clear cell 17 (17.0%) 11 (19.3%) 2 (11.8%) 4 (23.5%)
Endometroid 9 (9.0%) 5 (55.6%) 3 (33.3%) 1 (11.1%)
Debulking:
Optimal*
Non-optimal

92 (92.0%) 53 (57.6%) 8 (8.7%) 31 (33.7%) 0.9
8 (8.0%) 4 (50.0%) 1 (11.1%) 3 (37.5%)

Platinum sensitivity
Sensitive**
Resistant/refractory

74 (74.0%) 45 (60.8%) 5 (6.8%) 24 (32.4%) 0.2
26 (26.0%) 12 (46.2%) 4 (15.4%) 10 (38.5%)
O
ctober 2021 | Volume 11 | Articl
BMI, body mass index. *Optimal debulking- residual disease < 1mm. ** platinum sensitive- cancer that responds to platinum-based treatment and if it comes back, it come 6 or more
months after treatment.
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with Cisplatin alone and 11.7%, 17.8% without treatment,
respectively, (P<0.001) (Figures 5A–C). The G2/M arrest was
also confirmed at protein level by evaluating cyclins A, B, D1
with western blot (Figure 5D). Cyclin D1 is a protein required for
cell cycle G1/S transition. Cyclin A resides in the nucleus during S
phase where it is involved in the initiation and completion of DNA
replication. Cyclin A remains associated with CDK1 from late S
into late G2 phase when it is replaced by cyclin B. Cyclin B is a
mitotic cyclin and is necessary for the progression of the cells into
and out of M phase.While a stable level of cyclin D1 expression was
observed, an increase in cyclin A and cyclin B was induced after
Olaparib/Cisplatin treatment in SKOV3-ShPARG1305 cells as
compared with ShVector control treated with the same regimen.

We further investigated the effect of the treatments in
modulating apoptosis. First, we studied its effects by quantifying
the apoptotic cells using Annexin V/PI double staining assay
(Figure 6A). We found Olaparib monotherapy induced cell death
in ~14%, Cisplatin in ~12% and the combination of Olaparib/
Cisplatin in ~53% of SKOV3-ShPARG1305 cells compared to ~%,
~9% and ~13% in the SKOV3-ShVector, respectively (Figure 6B).
We also evaluated the pro-survival proteins Bcl2 and p-Bcl2, and
our results showed significant down regulation of these proteins in
SKOV3-ShPARG1305 cells, while pro-apoptotic proteins Bad, p-
Bad, and cleaved caspase-3 were up regulated, all after treatment
with Olaparib and Cisplatin alone and in combination (Figure 6C).
These results suggest that increased PARG inhibition correlated
with cell cycle arrest and induction of apoptosis.
Frontiers in Oncology | www.frontiersin.org 7
DISCUSSION

The cell lines used in this study represented both BRCA deficient
(SNU251) and wild type BRCA proficient (SKOV3, OVCAR3,
A2780PAR and A2780CR) ovarian cancers. Results of this study
suggest that PARGi reduces cell migration and suppresses
formation of clones in BRCA proficient and deficient ovarian
cell lines. In addition, knocking down PARG promotes G2/M
arrest and cell death when cells are exposed to PARPi as well as
DNA damaging agents (Cisplatin).

In order to spread and disseminate throughout the body,
ovarian cancer cells must migrate and invade through
extracellular matrix, intravasate into blood circulation, attach
to a distant site, and finally extravasate to form distant foci; cell
migration is a key property for the development of this process.
In this study, we observed the inhibitory effect of PARGi on cell
migration in a time- and concentration-dependent manner, in
support of our conclusion that the inhibitory effect of PARGi on
cell migration is genuine and is not only due to cell death.

The mechanisms by which PARG inhibition affects cancer cells
remain elusive with various reported potential mechanisms; (1)
HeLa-derived PARG deficient cells exhibited enhanced sensitivity
to radiotherapy, causedbydefects in the repair of single anddouble-
strand breaks and in mitotic spindle checkpoint, leading to
alteration of progression of mitosis (57); (2) PARG deficiency
sensitized mouse embryonic stem cells to linear-energy-transfer
radiation through the defective repair of double-strand breaks
A B

DC

FIGURE 3 | Effect of PARG inhibitor on cell migration. ‘‘Wounds’’ were made on monolayers of SNU251 (A) and SKOV3 (B) cells grown to near confluence. Cells
were then incubated in their media containing PARG inhibitor 2 and 5mM for 24 and 48 hours. Treated or untreated (control) cells were photographed only after
scratch (time 0) and after 24 and 48 hours. Results presented here are representative of triplicate independent samples of each cell line. The rate of migration was
measured by quantifying the total distance that the cells (as indicated by rulers) moved from the edge of the scratch toward the center of the scratch. A value of
100% was given to the wound area at time 0. The migration of treated samples was compared with wound area at time 0. Bar graph recapitulating the percent of
“Wound” closure that was calculated over time. P values were calculated by two-tailed t-test (C, D).
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resulted in the induction of apoptosis (58); (3) PARG inhibition in
the CF7 breast adenocarcinoma cell line increases endogenous
DNA damage, stalls replication forks and increases homologous
recombination. The authors proposed that it is the lack of HR
proteins at thePARGi-induced stalled replication forks that induces
cell death (39). Recently it was hypothesized that sensitivity of OC
cells arises due to an underlying DNA replication vulnerability that
renders cells dependent on PARG activity, such that upon PARG
inhibition, stalled DNA replication forks fail to restart, leading to
persistent replication stress and DNA damage (43).

All five commercial cell lines we investigated in our study are
widely used in ovarian cancer research. However, only OVCAR3 is
undoubtedly of high grade serous ovarian cancer origin. Although
SKOV3 line is frequently cited as “serous’’, it has been only vaguely
reported in the original paper as “adenocarcinoma cell line derived
from the ascitic fluid of ovarian cancer patient” (59). In addition, the
A2780 was originally described as a cell line established from an
“ovarian endometrioid adenocarcinoma tumor” (60). Thehistologic
diversity of the included cell lines can provide an explanation for the
different responses to treatments used in this study and it can also
explain the significant lower CI of OVCAR3 that is in keeping with
high grade serous ovarian cancer which is a highly PARPi and
platinum sensitive tumor. The effect of PARGi on cancer cell cycle
remains unclear aswell. Nakadate et al. demonstrated that depletion
Frontiers in Oncology | www.frontiersin.org 8
ofPARGled to the abrogationof radiation-inducedG2/Marrest and
checkpoint activation in lung and prostate cancers cells (41). G2/M
arrest is induced transiently to protect cells fromDNAdamage. The
abrogation of the G2/M checkpoint leads to a decrease in DNA
repair resulting in cell death (61). Ame et al. reported thatHeLa cells
treated with radiotherapy had an increased G2/M arrest and
accumulation of cells in metaphase (57). Consistent with Ame’s
et al.findings, in the present studywe found that PARGsilencing led
to induction of G2/M arrest in the presence of PARPi and DNA
damaging agents, resulting in accumulation of PAR, a delay in the
repair of DNA strand breaks and mitotic defects, generating
polyploid cells or causing cell death by mitotic catastrophe.

PARPi introduction has made considerable progress in the
clinical outcomes of ovarian cancer. The recognition that certain
molecular pathways including the PAR metabolism are critical to
carcinogenesis has triggered a revolution in ovarian cancer drug
development. However, PARPi resistance continues to be a
significant challenge and it is well-recognized that the failure of
PARPi arises due to an inability to induce apoptosis at a cellular level.
In this study, it has been shown that different OC cell lines responds
better when PARG is silenced, suggesting that PARGi canmaximize
the benefit of chemotherapy and delay the process of chemo-
resistance. By knocking down PARG, the ratio of pro-apoptotic
Bcl-2 familymembers (Bax, Bad)was favored to anti-apoptotic Bcl-2
A

B D E

F

C

FIGURE 4 | PARG inhibitor (PARGi) sensitizes ovarian cancer cells to Olaparib and Cisplatin. Survival curves: Blue- increasing doses of PARGi 0, 0.5, 1, 2, 5, and
10 mM. Orange- increasing doses of PARGi 0, 0.5, 1, 2, 5, and 10 mM + Olaparib 0.5 mM (0.05 mM for SNU251). Green- increasing doses of PARGi 0, 0.5, 1, 2, 5,
and 10 mM + Cisplatin 0.5 mg/mL In a clonogenic assay at day 7-10, the sensitivity to combination treatments including(PARGi+Olaparib) and (PARGi+Cisplatin) is
higher compared to PARGi, Olaparib and Cisplatin alone. PARGi re-synthesize A2780CR to Cisplatin (A). BRCA mutated cells “SNU251” (E) were more sensitive
compared to BRCA wild-type cells “SKOV3” “OVCAR3” “A2780PAR” (B–D). The evaluation of combination index (CI) for PARGi, Olaparib and Cisplatin (F) was
calculated where CI<1 indicates synergy between the drugs and CI>1 indicates an additive effect. Results are presented as means ± SEM for triplicates of three
independent experiments.*p < 0.001, Olaparib dose 0.05uM.
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family (Bcl-2 and Bcl-XL) members, with increased cell apoptosis as
indicated by flow cytometry analysis and western blot.

Our observations validate the potential anti-tumor role of
PARGi in the treatment of ovarian cancer which was shown
recently by Pillay et al. (43). By employing apoptosis, cell cycle
and clonogenic assays, on a subset of OC cell lines, Pillay confirmed
the synthetic lethality of PARGi with inhibition of DNA replication
factors and inducing cell death. The key question is whether PARG
inhibitors will offer dissimilar therapeutic opportunities compared
with PARP inhibitors in the treatment of cancer. Pillay et al. (43),
Gogola et al. (46) and Gravelles et al. (39) showed that these two
modalities are differentiated, with several ovarian and breast
cancers cell lines sensitive to one but not the other. Interestingly,
Gogola et al. showed that loss of (PARG) induces PARPi resistance
in BRCA2-mutated mouse mammary tumors by restoring PARP1
signaling. Be at variance with these findings, in the current study we
observed a synergistic interaction between PARGi and PARPi in all
cell lines. This dissimilar interaction might be explained by the
difference in cell lines and drug doses used in the studies: while we
chose SKOV3, A2780PAR, A2780CR and OVCAR3 cell lines to
represent BRCA wild type serous ovarian cancer, and SNU251
which is an endometroid ovarian cancer cell line that was
previously reported to carry a nonsense mutation at amino acid
1815 of BRCA1. Pillay et al. assembled a panel of six serous ovarian
cell lines, 3 are reported to have BRCA1/2 mutation: Kuramochi
(BRCA2mutant), OVSAHO (BRCA2mutant), COV362
(BRCA1mutant) and 3 BRCA wild type cell lines: COV318,
CAOV3, and OVCAR3. Lastly, Gogola’s group used two types of
Frontiers in Oncology | www.frontiersin.org 9
in vitro cultures that they derived from BRCA2 -/-; Trp53-/- mouse
mammary tumors from K14cre;Trp53F/F;BRCA2F/F (KB2P)
mice: two-dimensional (2D) tumor cell lines (KB2P1.21,
KB2P3.4) and three-dimensional (3D) cancer organoids
(ORG-KB2P26S.1). In regard to treatment protocol, while
“PDD00017273” was used in all studies, the doses used in our
study were remarkably different from the others. Unlike Gogola
and Pillay who used one fixed dose of 1μM in all experiments, we
used a wider range of doses, and we showed an increased effect of
the treatment in the higher doses (2, 5 and 10 μM).

Another added value of our study include: 1- this study opens
a window to the potential clinical benefit of PARGi as we report
on high expression of PARG in ovarian cancer cells using novel
analysis of online databases and in patient derived samples. 2-our
results show that PARGi also inhibits cancer cells migration in
addition to capability to induce cell death.

Limitations include: the use of commercial cell lines can differ
from real patient’s tumors which are often more heterogeneous.
We used BRCA1 deficient cell-line (SNU-251), however in
further studies it will be interesting to evaluate the influence of
BRCA2 mutation and evaluate xenograft models.
CONCLUSIONS

This study shows that in ovarian cancer, PARG inhibition reduces
cell migration, suppresses clone formation, and promotes G2/M
cell cycle arrest and cell death, alone and in combination with
A
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C

FIGURE 5 | PARG silencing induces G2/M arrest in ovarian cancer cells treated with Olaparib and Cisplatin. Expression of PARG in SKOV3-shVector and SKOV3_shPARG
cell lines (A). SKOV3-shVector and SKOV3_shPARG cells were treated with Olaparib 2 mM, Cisplatin 1mg/mL and combination of Olaparib and Cisplatin for 48 hours. Cells
were synchronized, and cell cycle analysis were performed using flow cytometry (B, C). Protein expression of cell cycle related proteins (cyclin A, cyclin B and cyclin D1) were
examined by western blot (D). Results are presented as means ± SEM for triplicates of three independent experiments, *p value < 0.05.
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PARPi and Cisplatin. PARG inhibitors suitable for clinical
evaluation are not yet available. Our results, however, support
the potential use of PARG inhibitors as viable, complementary
strategy to induce cell lethality and invasion arrest in ovarian
cancer and potentially other HR-deficient cancers.
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FIGURE 6 | PARG silencing induces apoptosis in ovarian cancer cells treated with Olaparib and Cisplatin. SKOV3-shVector and SKOV3-shPARG cells were treated
with Olaparib 2 mM, Cisplatin 1mg/mL and combination of Olaparib and Cisplatin for 48 hours, then apoptotic rates were assessed using Annexin V/PI double
staining followed by flow cytometry analysis (A, B). Protein expression of pro and anti-apoptotic proteins (Bcl2, p-Bcl, Bad, p-Bad, cleaved caspase3) were
examined by western blot (C). Results are presented as means ± SEM for triplicates of three independent experiments, *p value < 0.05.
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