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A large number of studies have revealed that epigenetics plays an important role in cancer
development. However, the currently-developed epigenetic drugs cannot achieve a stable
curative effect. Thus, it may be necessary to redefine the role of epigenetics in cancer
development. It has been shown that embryonic development and tumor development
share significant similarities in terms of biological behavior and molecular expression
patterns, and epigenetics may be the link between them. Cell differentiation is likely a
manifestation of epigenetic homeostasis at the cellular level. In this article, we introduced
the importance of epigenetic homeostasis in cancer development and analyzed the
shortcomings of current epigenetic treatment regimens. Understanding the dynamic
process of epigenetic homeostasis in organ development can help us characterize
cancer according to its differentiation stages, explore new targets for cancer treatment,
and improve the clinical prognosis of patients with cancer.
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INTRODUCTION

As a common disease in multicellular organisms, cancer has always been the focus of scientific
research, especially in its pathogenesis (1–4). An increasing number of studies have revealed that
epigenetics plays an important role in cancer development. However, existing drugs targeting tumor
epigenetics have not achieved stable long-term curative effects. Perhaps we need to rethink the role
of epigenetics in cancer development.

In this article, we will refer to existing research to analyze the shortcomings of current epigenetic
treatment regimens and review our view: Epigenetic homeostasis refers to the fact that various
epigenetic regulatory substances in cells change only in a small range under normal physiological
conditions to jointly maintain cell differentiation. Cell differentiation is the manifestation of
epigenetic homeostasis at the cellular level, and attention to epigenetic homeostasis may be more
important than to level of genome-wide methylation or acetylation. While explaining the important
role of epigenetic homeostasis in multicellular organism, the term ‘differentiation lock’ will be used
to refer to the composition of epigenetics in cell differentiation. Exploring the dynamic changes in
the differentiation lock during organ development may contribute to changing our understanding of
cancer and exploring new targets for the epigenetic homeostasis.
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RESEARCH HOTSPOTS OF
CANCER EPIGENETICS

Several studies have revealed that epigenetics plays an important
role in the development of cancer and drug resistance (5), which has
stimulated the enthusiasm of researchers (Table 1). Current studies
mainly focus on histone codes, methyl compounds, and non-coding
RNAs (ncRNAs), and related drugs are being developed.

Histone Code
The nucleosome is the basic chromatin repeating unit, and the
core histones that make up the nucleosome are small proteins.
Histone modifications mainly include acetylation, methylation,
and ubiquitination, and the histone modification state controls
whether the transcription complex can come into close
proximity with the target gene, affecting its expression activity
(25–27). The quantity, position, and type of histone
modifications are collectively referred to as histone codes,
which play an important role in cell differentiation and
maintenance (28–30). Studies have shown that abnormal
expression of histone codes is an important feature of cancer
tissues and is related to the heterogeneity of cancer cells (31, 32).
Studies have shown that abnormal levels of the histone
demethylases, KDM6A and KDM6B, are associated with
pediatric acute myeloid leukemia (AML) (33). Moreover,
modification of the histone proteins H3K9ac, H3K27ac, and
H4K16ac plays an important role in the progression and
prognosis of head and neck squamous cell carcinoma
(HNSCC) (34).
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Methyl Compounds
DNA methylation widely exists in prokaryotes and eukaryotes
and is an epigenetic mechanism controlling gene expression (35,
36). Previous studies have revealed epigenetic reprogramming
during embryo development (5, 37, 38). With cell differentiation,
new methylation patterns are formed to ensure the specific
expression of genes in organisms (39, 40). DNA methylation is
catalyzed by methyltransferases, including DNMT1, DNMT3A,
and DNMT3B (41). Among these enzymes, DNMT1 is
responsible for the transmission of methylation patterns during
mitosis to prevent passive demethylation. Dysplasia and death
have been observed in DNMT1 knockout mice (42). DNMT3A
and DNMT3B can methylate unmethylated CpG sites, which is
important for embryonic development and tumorigenesis (43,
44). Methylation of cytosine residues leads to gene silencing,
which plays a key role in the proper regulation of gene
expression, genomic imprinting, X-inactivation, and
development. Interestingly, abnormal DNA methylation is
often observed in clinical specimens of cancer tissues (45).
During tumorigenesis, abnormally high methylation of
cytosines in promoter CpG islands, as well as overall gene
hypomethylation, lead to genome-wide instability and altered
gene expression profiles, including silencing of oncogenes,
activation of endogenous retroviruses, and upregulation of
tumor antigens and oncogene expression (46, 47). Tumor-
specific methylated genes can be detected in circulating tumor
cells, blood, urine, and other body fluids and are therefore
commonly used in the diagnosis and prognosis of early-stage
tumors (48, 49).
TABLE 1 | Associations between epigenetic disorders and cancers.

Cell Type Epigenetic Abnormalities Characterization Consequences References

Breast cancer, DNA repeat sequence hypermethylation Reduced stability of the genome (6, 7)
Lung cancer,
Liver cancer
Breast cancer, Promoter hypomethylation Protooncogene activated (8, 9)
Melanoma
Colorectal cancer, CpG island hypermethylation Tumor suppressor genes are inhibited (10, 11)
Gastric cancer
Acute myelocytic leukemia High expression of demethylase FTO Tumor suppressor genes are inhibited (12, 13)
Pancreatic cancer, High expression of demethylase ALKBH5 Promoting self-renewal and proliferation of tumor stem cells (14, 15)
Liver cancer
Lung cancer, High expression of METTL3 Increased growth, survival and invasion of cancer cells (15)
Liver cancer
Colorectal cancer, Loss of H4K16ac / H3K4me3 / H4K20me3, Transcriptional function was inhibited (16)
Prostate cancer, Increase of H3K9me / H3K27me3
Gastric cancer
Glioma, Overexpression of miR-218, miR-21, miR-15b, miR-515-5p Inhibition of migration, invasion and proliferation of cancer cells (17, 18)
Breast cancer,
Lung cancer
Hepatocellular carcinoma, Overexpression of miR-125b and miR-346 Promoting cancer cell metastasis and invasion (19, 20)
Breast cancer,
Renal cell carcinoma
Hepatoma Overexpression of lncTCF7, lnc-b-Catm, lncBRM Promoting self-renewal of cancer stem cells (21, 22)
Promyelocytic leukemia, Overexpression of f-circRNA, circ-Amotl1 Promoting transformation and proliferation of cancer cells (20, 23, 24)
Breast cancer
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Non-Coding RNA
Non-coding RNAs (ncRNAs), which are not involved in protein-
coding, mainly include microRNAs (miRNAs), circular RNAs
(circRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs),
small nuclear RNAs (snRNAs), and small nucleolar RNAs
(snoRNAs) (50–52). ncRNAs mainly affect gene expression at
the transcriptional and translational levels, and play an
indispensable role in embryonic development, cel l
differentiation, damage repair, and regulation of cell function
(53–55). Dicer1 is one of the most important enzymes that
produce miRNAs. It has been reported that Dicer1-deficient
mice have abnormal organ development or face embryonic
death, which was attributed to the failure of embryos to
correctly process miRNAs (56). Abnormal ncRNAs have been
reported to play an important role in tumorigenesis, metastasis,
and drug resistance (51, 52, 57). For instance, miRNA-143
regulates a variety of signaling pathways, including WNT/b-
catenin, RAS-MAPK, and PI3K/AKT, thereby affecting tumor
growth (58). miR-193a-5p promotes tumor cell metastasis by
regulating the EMT signaling pathway (59). Furthermore, both
germline and somatic mutations in Dicer1 have been identified
in diverse types of cancer (60, 61). The errors in ncRNAs are
closely related to cancer. However, the exact mechanism is still
surprisingly controversial. This may be related to the complexity
of the ncRNA regulatory mechanism.
CURRENT SITUATION OF EPIGENETIC
DRUGS

A wide range of therapeutic strategies in cancer treatment are
compared to conventional chemotherapeutic agents that target
cell proliferation. Currently, epigenetic drugs are being
progressively developed and used for cancer treatment (62),
such as DNA methyltransferase inhibitors (DNMTi) and
histone deacetylase inhibitors (HDACi).

DNMTi
By inhibiting the activity of DNMTs, the expression of tumor
suppressor genes is promoted to inhibit the growth of tumor
cells. The main nucleoside and non-nucleoside DNMT inhibitors
(DNMTis) include azacitidine (AZA) and decita21bine (63).
Azacitidine blocks cytosine methylation by noncompetitive
inhibition of DNMT1, resulting in the depletion of
methyltransferases and DNA hypomethylation, but it is
ineffective for quiescent cells that cannot divide (64). Low-dose
azacitidine and decitabin can induce reactivation of the genes
that were previously silenced by methylation, thereby inducing
the formation of new phenotypes, reducing proliferation, and
increasing apoptosis of offspring cells. High-dose drugs have
cytotoxic effects and can directly cause tumor cell death (65, 66).
Azacitidine and decitabin are approved by the Food and Drug
Administration (FDA) as first-line drugs for the treatment of
myelodysplastic syndromes (MDS) and leukemia. However,
these drugs did not show significant efficacy in solid tumors
such as gastrointestinal cancer, lung cancer, breast cancer, and
Frontiers in Oncology | www.frontiersin.org 3
melanoma, and their use was limited due to their side effects and
drug instability (67, 68). Dniunaite (69) observed that
downregulation of miR-155-5p was significantly correlated
with promoter methylation in prostate cancer. DOT1L
inhibitors SYC-52221 and EPZ004777 inhibited DNMT3A-
mutant cell proliferation, inducing cell cycle arrest and
terminal differentiation (70).

HDACi
HDAC is a highly conserved group of enzymes that removes
acetyl groups from the tail of histone lysine. HDAC promotes
chromatin closure and inhibits gene transcription by
deacetylating histones (71). HDACi is a new antitumor drug
that regulates gene expression. It has extensive effects on
malignant tumors, including inhibition of cell differentiation,
cell cycle growth, and angiogenesis, as well as induction of
apoptosis, and immune regulation (72). In animal models,
HDAC inhibition was found to inhibit tumor growth and
reduce malignant proliferation by downregulating positive cell
cycle regulators, such as cell cycle proteins D1, c-Myc, and AKT
(73, 74).

Currently, vorinostat and romidepsin are approved for the
treatment of skin T-cell lymphoma (75). However, these drugs
do not achieve long-term stable efficacy (76–78). This is not only
related to low drug stability and high toxicity, but also to
abnormal pathway activation. Abnormal activation of the
PI3K/AKT, MEK/ERK, and FAK signaling pathways has been
observed in the treatment of multiple myeloma with HDACi (79,
80). 5−aza−2’-deoxycytidine promotes migration of acute
monocytic leukemia cells via activation of the CCL2/CCR2/
ERK signaling pathway (81).

Since the drugs target DNA methyltransferase and histone
deacetylase, those non-specific alteration of cancer cell
methylation and acetylation levels cannot inhibit the
development of cancer. In contrast, epigenetics may form
complex networks in cells, thereby affecting other genes and
signaling pathways, that may be an important reason for the
existing epigenetic drug resistance. According to the epigenetic
landscape theory (82), it is believed that cell differentiation is a
manifestation of epigenetic homeostasis. In other words,
targeting epigenetic homeostasis at the molecular level is the
future direction of epigenetic treatment for cancer.
THE NORMAL DIFFERENTIATION
PROCESS

In this section, we describe the normal differentiation process,
which helps us to further understand the causes of drug
resistance in tumor epigenetics and possible future research
directions from the perspective of cell differentiation.

The essence of cell differentiation is the expression
combination of genes (83). According to classical epigenetic
landscape theory, for cells in a certain period, the gene
expression profile may maintain dynamic stability (84). This
may be attributed to epigenetic homeostasis. Blanca Pijuan-Sala
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report the transcriptional profiles of single cells from mouse
embryos (85), thus portraying the early differentiation trajectory
of the mouse embryo and the altered stages of epigenetics in cell
differentiation. To characterize epigenetic stage changes, we
introduced the concept of differentiation locks and classified
differentiation locks into standard differentiation locks (SDLs),
epistatic differentiation locks (EDLs) and hypostatic
differentiation locks (HDLs) according to the stage cells are in.
(Figure 1). Changes in epigenetic homeostasis in the cell
differentiation pathway have been a hot topic of research. The
mouse embryonic hindgut 1-specific genes Trap1a and Rhox5
were also found to be expressed in the ExE endoderm and ExE
ectoderm, consistent with the extra-embryonic origin of hindgut
1, suggesting that differentiation locks present different stages in
Frontiers in Oncology | www.frontiersin.org 4
cell differentiation during embryonic development, while the
SDLs may inherit some or all of the EDLs (85). Equally
important, differentiation lock may be changed, updated
during cell division and differentiation to complete the entire
differentiation process (86–89). The Human Developmental Cell
Atlas (HDCA) is a great human project whose goal is to
determine the expression profiles of different human cells and
to typify cell differentiation accordingly (90). The theoretical
basis of this program is different tissues have distinct
differentiation locks, and the same tissues hold similar
differentiation locks, thus forming the specificity of tissues and
organs and ensuring the normal operation of human functions.
The completion of HDCA will help us to deepen our
understanding of epigenetic changes during cell differentiation,
FIGURE 1 | The differentiation locks in cell differentiation. A coordinated gamete and embryo epigenetic reprogramming can eliminate the epigenetic markers carried
by their parents, reverse and restore to the state of totipotency, which is the condition of post-fertilization differentiation. Differentiation lock is the composition of
epigenetics in cell differentiation The existence of differentiation lock is crucial to maintain the irreversible state of differentiation. The formation of differentiation locks is
dependent on intercellular signaling and cell-mesenchymal interactions. The differentiation locks that maintain the state-specific modifications of a cell are called the
standard differentiation locks (SDLs), those that maintain the modifications of the previous stage are called the epistatic differentiation locks (EDLs), and the
differentiation locks that maintain the modifications of the next stage are called the hypostatic differentiation locks (HDLs). The SDLs may contain parts or all of the
EDL modifications. Differentiation locks that do not exist in a cell’s own differentiation path are collectively called ectopic differentiation locks (EcDLs). Differentiation
locks replicate, inherit, and develop during the differentiation and division of cells.
October 2021 | Volume 11 | Article 747022

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yu et al. Therapeutic Targeting of Cancer
and will also have a profound impact on the treatment of
congenital diseases, cancer and other diseases.
THE RELATIONSHIP BETWEEN THE
DEFECTIVE DIFFERENTIATION LOCK
AND CANCER

With the progress in developmental biology, a large number of
studies have revealed that early embryonic development and
carcinogenesis have great similarities in biological characteristics
such as migration and invasion (91), gene expression and protein
spectrum (92), signal pathways (93), cell differentiation (94), and
energy metabolism mechanisms (95). Epigenetics has attracted
considerable attention as a key cause of these similarities.

Why do mature tissues have biological characteristics similar
to those of embryos when transformed into cancer? Daughter
cells with defective differentiation lock in their own
differentiation path transform into cancer cells during stem cell
division. Any factor that can promote the proliferation of stem
cells is a promoting factor for cancer. Because the environment
forming the ectopic differentiation locks (EcDLs) has changed,
cancer cells can no longer differentiate correctly and undergo
multidirect ional differentiation, resulting in cancer
heterogeneity (96).

The Defective Differentiation Lock Is the
Internal Factor of Carcinogenesis
Study have reported the C2H2 zinc finger transcription factor B
cell CLL/lymphoma 11A (Bcl11a) is essential for lymphoid
development. The deletion of Bcl11a prevents further
development of hematopoietic stem cells (HSCs) into
lymphocytes (97). Bcl11a-/- HSC alters cell cycle progression. A
general upregulation of cell cycle protein genes and a
downregulation of the quiescent regulator Cdkn1c (p57) and
G2/M markers such as Prc1, Plk1 and Mki67 (Ki-67) of Bcl11a-/-

HSC can be observed, and cells eventually appear to proliferate
uncontrollably (98, 99).。Similar results can be found in the
corresponding studies: DNMTi can inhibit the further
differentiation of bone marrow mesenchymal stem cells into
osteoblasts and chondrocytes. At the same time, the expression
of the anti-senescence genes (TERT, bFGF), and the anti-
apoptosis gene (BCL2) was up-regulated and the expression of
the apoptotic gene (BAX) was down-regulated (100, 101). The
above studies illustrate that cells fail to complete differentiation
to form a differentiation lock, i.e., they do not reach epigenetic
homeostasis and are transformed into cancer cells. Some
mutations in tumor suppressor genes can lead to damaged
DNA repair function, such as the BRCA1/2 and P53, and
differentiation locks are more likely to be damaged since the
gene coding sequences only account for a small proportion of
their genome (102, 103). The current research may indirectly
confirm our opinion that cancer is a population of cells without
epigenetic homeostasis. The non-coding RNA and protein
profiles of cancer cells are quite different from those of normal
cells, which is also a consequence of the imbalance in epigenetic
Frontiers in Oncology | www.frontiersin.org 5
homeostasis and is often manifested as cell differentiation
disorder and cellular dedifferentiation (104, 105).

The consequences of epigenetic modifications may differ
according to their position in the differentiation lock. Invisible
damage may occur as a result of the defects in EcDL. Cell
maturation arrest caused by defective hypostatic differentiation
locks (HDLs) results in cancer cell transformation under the
continuous stimulation of proliferation signals. Cells with
defective standard differentiation locks (SDLs) dedifferentiate
and transform into cancer during proliferation, and the
invisible damage may become exposed. The invisible damages
may explain why the mutation frequency of oncogenes and anti-
oncogenes in the human population is much higher than the
incidence of cancer (106–109). A possible reason is that tissue-
specific alterations in differentiation locks, and defective EcDLs
may not impose an effect on the process of tissue carcinogenesis.

Any factor, including physical, chemical, and biological
factors, that can damage cells may lead to differentiation lock
defects, thereby increasing the incidence of cancer (110–112).

Stem Cell Division Is a Promoting Factor
for Carcinogenesis
In life, a variety of damages and stresses are often met. Mild
damage and stress are often dealt with by the asymmetric
division of stem cells. When stress exceeds tissue tolerance,
stem cells must deal with symmetric divisions (113, 114).

When the cells are asymmetrically divided, the HDL defect (if
exists) will lead to the maturation arrest of the daughter cells.
These cells cannot complete the next stage of differentiation, and
some of the daughter cells die. However, some daughter cells
survive and transform into cancer cells under the stimulation of a
continuous proliferation signal. When the stem cells are
symmetrically divided, the defects of the SDLs are exposed (if
exists). As a result, stem cells are dedifferentiated to transform
into cancer cells (115). Cell carcinogenesis is a gradual process,
and epigenetic homeostasis has a certain tolerance to damage.
DNMT1 mainly maintains DNA methylation pattern during
DNA replication, ensuring that the pattern is inherited by the
offspring. In the early stages, defects in DNMT1 may be related
to the accumulation of cell mutations. When the damage exceeds
the steady-state tolerance, the cells become cancerous, which
may be the internal relationship between aging and cancer.

Therefore, any pressure to stimulate stem cell division can
increase the possibility of defective differentiation lock exposure,
including injury, infection, and chronic inflammation (116–119).

Role of Differentiation Lock in Cancer
Heterogeneity
As discussed above, the essence of tumor is cells that cannot form
epigenetic homeostasis. The correct differentiation process
depends on information transmission between cells and the
interaction between cells and stroma (120, 121). The
environment required for normal development has disappeared,
and cancer cells cannot form the correct differentiation lock. Dr.
Tushar reported bone marrow microenvironment lead to b-
catenin activation and disease progression of MDS (122). Just
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like without the help of molecular chaperones, peptide chains
cannot form proteins properly. Under internal gene-driven and
error-induced environments, cancer cells produce heterogeneous
daughter cancer cells (123, 124).

Numerous studies comparing gene expression in tumor
tissues with paracancerous tissues have found that a large
number of genes normally silenced during cell differentiation
were activated in cancer. Moreover, these differences in gene
expression patterns correlated with the malignancy of the tumor
(125, 126). Those studies suggest that epigenetic homeostasis
makes a crucial contribution to malignancy.

The more distinct the defective EDLs from SDLs, the lower
the differentiation degree of cells, and the more apparent the
characteristics of malignant tumors are (127–129), and vice
versa. With the further cancer development, the differentiation
locks in the upper layer will change, and the cells will show the
characteristics of a lower differentiation stage. At this point,
cancer tissues show typical malignant tumor characteristics (130,
131).(Figure 2) In the late stage of cancer development, some or
all genes that had been closed in the embryonic stages are open.
CANCER TREATMENT STRATEGIES FOR
EPIGENETIC HOMEOSTASIS

At present, there are two kinds of tumor treatment strategies for
epigenetic homeostasis: 1.Destroy epigenetic homeostasis, thereby
inducing apoptosis of tumor cells, strengthening immunogenicity
and weakening drug resistance. 2. Reestablish new epigenetic
homeostasis to transdifferentiate tumor cells. At present, the two
treatment strategies are still in the preclinical stage or clinical trial
stage, but they have shown exciting therapeutic prospects.
Destroying Epigenetic Homeostasis
Epigenetic abnormalities in tumor cells have always been of
interest to scientists and physicians. Scholars have found that
epigenetically abnormal tumor cells often show apoptosis, which
may be a target for tumor therapy. Destruction of epigenetic
homeostasis can induce apoptosis of cancer cells. Existing studies
have found that cisplatin can not only directly kill cancer by
DNA crosslinking, but also induce epigenetic changes of cancer
cells and further induce apoptosis of cancer cells (132).
Destruction of epigenetic homeostasis may enhance cancer
immunogenicity. Researchers have found that inhibition of the
histone demethylase LSD1 enhances tumor immunogenicity and
T-cell infiltration in tumors. Thus, LSD1 could be used as an
anti-tumor immunosuppressant in combination with anti-PD-1
immunotherapy for tumor treatment, with encouraging results
in small-scale clinical trials (133, 134). Disruption of epigenetic
homeostasis may alter the drug resistance of tumor cells.
Methylguanine methyltransferase (MGMT), which repairs
temozolomide (TMZ)-induced O6-methylguanine (O6mG)
adducts, induces drug resistance in tumor cells. New study has
shown reduced production of MGMT in the presence of
Frontiers in Oncology | www.frontiersin.org 6
epigenetic instability, demonstrating that generating epigenetic
instability through destruction of epigenetic homeostasis may be
a viable strategy to mitigate anticancer drug resistance (135). The
above studies are all based on the biological effects generated
after the destruction of epigenetic homeostasis to kill tumor cells,
which are the current research hotspots.

Reestablishing Epigenetic Homeostasis
As mentioned above, imbalance of epigenetic homeostasis may
be the etiology of tumors. Some scholars believe that by re-
establishing epigenetic homeostasis may be a new strategy for
cancer treatment. Surprisingly, some studies have reported that
breast cancer cells can be terminally differentiated into
adipocytes by using the rosiglitazone combined with the
trametinib (136, 137). This exciting finding suggests that re-
establishing epigenetic homeostasis, i .e. , tumor cell
transdifferentiation, may be the therapeutic direction for
cancer. After transdifferentiation, tumor cells are transformed
into new, solid, controlled cells, and patients may achieve
durable, stable remission as a result. This fascinating
therapeutic prospect has attracted the attention of scientists.
However, the lack of understanding of human cell differentiation
pathways and differentiation-inducing conditions continues to
limit the development of cancer transdifferentiation therapies.
DISCUSSION AND FUTURE
PERSPECTIVES

Epigenetic changes may occur gradually during cell
development. At a specific stage, the composition of
epigenetics is stable and maintains the corresponding state of
cell differentiation, which is the role of differentiation lock. As
discussed above, tumors are cells without epigenetic homeostasis.
Existing epigenetic drugs alter the epigenetic status of cancer
cells to kill these cells through several pathways. Unfortunately,
these drugs have also led to serious adverse effects. In addition,
maintaining the low methylation level of cancer cells inevitably
leads to the activation of multiple signaling pathways, which is
one of the reasons for the consequent emergence of resistance to
epigenetic drugs.

With the above discussion, epigenetic homeostasis treatment
strategies for tumors may be divided into disruption and
reestablishment of epigenetic homeostasis. The biological
effects generated by the destruction of epigenetic homeostasis
can effectively kill tumors. Reestablishing epigenetic homeostasis
may be the focus of future development. Patients achieve long-
lasting remission through tumor cell transdifferentiation. To
achieve this goal, the following efforts are required: 1) mapping
of the differentiation lock changes that arise during cell
development to characterize cancer cells, 2) characterization of
the induction conditions for differentiation lock to induce cancer
cell transdifferentiation. These may require further collaboration
between cancer and embryonic development researchers.
Understanding the significance of differentiation lock in the
October 2021 | Volume 11 | Article 747022
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organ differentiation process is helpful for developing more
effective targeted therapy strategies and implementing
individualized treatment for cancer patients by inducing cancer
cell transdifferentiation. This measure can be used to improve the
prognosis of patients with cancer.
Frontiers in Oncology | www.frontiersin.org 7
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FIGURE 2 | Role of defective differentiation lock in cancer development. A cell can be damaged by physical, chemical, biological and other factors. Depending on the
site of damage, there may be different consequences. In the process of cell carcinogenesis, the occurrence of a defective differentiation lock in the differentiation path is
the turning point of cell fate. Any factors that promote division, such as chronic inflammation, injury, and infection, will increase the probability of a defective differentiation
lock, thereby accelerating the occurrence of cancer. Meanwhile, due to the following two reasons, cancer cells are heterogeneous: 1) the cells cannot complete their
differentiation path due to the defects in self-differentiation lock, 2) without correct development environment, ectopic differentiation lock cannot be formed.
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