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Most electronic medical records, such as free-text radiological reports, are unstructured;
however, the methodological approaches to analyzing these accumulating unstructured
records are limited. This article proposes a deep-transfer-learning-based natural language
processing model that analyzes serial magnetic resonance imaging reports of rectal
cancer patients and predicts their overall survival. To evaluate the model, a retrospective
cohort study of 4,338 rectal cancer patients was conducted. The experimental results
revealed that the proposed model utilizing pre-trained clinical linguistic knowledge could
predict the overall survival of patients without any structured information and was superior
to the carcinoembryonic antigen in predicting survival. The deep-transfer-learning model
using free-text radiological reports can predict the survival of patients with rectal cancer,
thereby increasing the utility of unstructured medical big data.

Keywords: rectal cancer, MRI, deep learning, survival prediction, natural language processing (NLP)
INTRODUCTION

The likelihood of cancer patient survival is important information for the patient, their family, and
clinicians. Countless studies (1–3) have used serum tumor markers, clinicopathologic features, or
clinical trials to predict cancer patient survival, but these methods have exhibited limited
effectiveness. Clinicians depend on the clinical histories of patients, their responses to treatment,
clinical guidelines, and personal clinical experience. Since the widespread adoption of electronic
medical record (EMR) systems (4), medical records have been gradually accumulating in medical
institutions (5). The utilization of certain EMR components offers objective and real-time survival
information for cancer patients on a precise medical scale.
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An obstacle to this objective is that most EMR data are
unstructured free-text clinical notes without a standard format.
This makes it challenging for the data to have a direct impact on
clinical decisions (6–11).Various studieshaveusedunstructureddata
to assist in clinical decision-making based on deep-learning
technology, such as natural language processing (NLP) (12–14).
However, the NLP used in previous studies did not include recently
introduced state-of-the-art text-comprehension technologies. It thus
didnotproducekey information for clinicaldecision-making, suchas
individual patient prognosis prediction. In addition, an advanced
analyticalmethod that processes time-series data is required to utilize
the EMR data, which accumulate with patient visits.

In this study, we propose a novel deep-transfer-learning model
for predicting patient survival based on unstructured free-text data
obtained from radiological reports of rectal cancer patients.
Radiological reports, which consist of text only and contain a
body of findings followed by an impression, provide commonly
used types of unstructured EMR data to aid clinical decision-
making for cancer patients. Serial radiological reports reflect the
changes in the disease status of cancer patients and guide treatment
plans. The proposedmodel obtains the feature vector of the patient
from serial radiological reports using a recurrent neural network
(RNN) (15) and a state-of-the-art languagemodel pre-trained with
public clinical notes. The model predicts the survival risk of the
patient from its feature vector using a Cox-proportional hazards
(Cox-PH)model. A retrospective study for evaluation revealed that
the proposed model successfully predicted rectal cancer patient
survival using only free-text radiological reports without any
clinical information. Furthermore, we extended the proposed
model to a practical algorithm to infer the survival graphs of new
patients based on their individual radiological reports.
Frontiers in Oncology | www.frontiersin.org 2
METHODS

Study Population and Preprocessing
The retrospective cohort analysis was performed at Yonsei
Cancer Center, Seoul, Korea. Based on the EMR review, we
identified patients who were diagnosed with rectal cancer
between April 2012 and October 2019. The EMR data,
including the rectal magnetic resonance imaging (MRI)
reports, sexes, ages, and carcinoembryonic antigen (CEA)
levels, determined by electrochemiluminescence immunoassay,
of the rectal cancer patients, were obtained. A total of 25
radiologists reported MRI reading during that period. Patients
without rectal MRI reports were excluded. The study was
reviewed and approved by the institutional review and ethics
board of the Severance Hospital, Seoul, Korea (IRB no. 4-2020-
1003). The requirement of obtaining informed consent was
waived owing to the retrospective nature of the study.

Survival Prediction Model Implementation
The primary endpoint of this study was the concordance of the
patient risk predicted by the deep-transfer-learning-based
survival prediction model and the actual overall patient
survival. The proposed model predicted patient survival based
on four steps (model structure shown in Figure 1). The first step
was to convert the input radiological report into an embedding
vector that corresponded to each word with a bidirectional
encoder representation from transformers (BERT) language
model (16), which, among other recent language models, has
demonstrated state-of-the-art performance in many fields. The
second step was to aggregate the word-embedding vectors into
single-feature vectors to represent the radiological reports using
FIGURE 1 | Structure and risk stratification of the deep-transfer-learning model. The radiological report of a patient is first converted into an embedding vector using
a pre-trained language model and attention mechanism. If the patient has multiple serial radiological reports, a recurrent neural network (RNN) model aggregates the
embedding vectors of the serial reports and generates an embedding vector that represents the patient. Based on the patient embedding vector, a Cox-proportional
hazards model predicts the patient’s survival risk.
November 2021 | Volume 11 | Article 747250
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an attention technique (17–19) for weighting the more
important words in the report. The third step was the serial
analysis of multiple radiological reports from a single patient to
obtain a patient embedding vector using the gated rectified unit
(20) among all RNN implementations. Finally, patient survival
was predicted using a Cox-PH (21) model with the patient
embedding vector. Detailed descriptions of the loss function
and hyperparameters used in the deep-transfer learning are
provided in Supplementary Material.

High- and Low-Risk Feature Extraction
Through N-Gram Clustering
To extract high- and low-risk features from radiology reports, we
obtained N-grams, a continuous sequence of N items in a text or
sequence, from the radiology reports for each risk group. Then,
N-grams with statistically significant differences in the frequency
of appearance for each risk group were selected, and we clustered
the selected N-grams using edit distance (22) and determined the
representative features from each cluster. See Supplementary
Material for details.

Visualization of the Patient
Embedding Vectors
To investigate what determines the survival prediction of the
deep-transfer learning model, the patient embedding vectors
were extracted from the last hidden layer of the model using
the first radiological report of the patient. The embedding vectors
were then reduced to two-dimensional vectors using the t-
stochastic neighbor embedding (t-SNE) algorithm (23) for
visualization. The p-values were calculated using the log-rank
test (24) to compare survival between patient groups stratified by
the appearance of the terms.

N-year Survival Classification
Based on the patient risk, the N-year survival prediction
performance was also evaluated using the area under the
receiver operating characteristic (AUROC) curve. The patients
Frontiers in Oncology | www.frontiersin.org 3
in the test set were assigned binarized labels with 1-, 2-, 4-, and 5-
year survival thresholds. The binarized labels for the patients in
the test set were assigned to be positive for patients who survived
longer than a certain threshold and negative for patients who
did not.

Statistical Analysis
The performance metrics that were used to evaluate the survival
prediction of the deep-transfer-learning model were the C-index
(25) and the p-value of the log-rank test. To evaluate the
association between the patient risk and actual survival time,
the Spearman correlation coefficient (Rs) (26) was used. A p-
value < 0.05 was considered statistically significant. See
Supplementary Material for details.
RESULTS

Patients
In total, theEMRdata of 7,402 patients diagnosedwith rectal cancer
from April 2012 to October 2019 were reviewed, and data of 4,338
patients with available rectal MRI radiological reports were
analyzed. Approximately 40% of the patients had two or more
serial MRI reports available. The survival cut-off date was October
28, 2019 (median follow-up duration, 49 months). Among the
patients, 3,470 were assigned to the training dataset and 868 were
assigned to the test dataset (Supplementary Figure 1). To
maximize the effectiveness of the unstructured data, the clinical
data, including the sex, age, and CEA levels, were not used. Only
survival or death events were used for the deep-transfer-learning
model implementation, which were well balanced between the
training and test sets (Table 1).

Generation of Survival Prediction of the
Deep-Transfer-Learning Model
We developed a novel deep-transfer-learning model to predict
patient survival using unstructured serial MRI radiological
TABLE 1 | Patient demographic and clinicopathologic characteristics.

Training set (n = 3470) Test set (n = 868) p-value

Sex, No. (%)
Male 2186 (63.0) 555 (63.9) 0.637
Female 1284 (37.0) 313(36.1)

Age, No. (%)
<65 2110 (60.8) 839 (62.2) 0.67
≥65 1360 (39.2) 525 (37.8)

CEAa

median (range), ng/mL 2.62 (0.0–9561.6) 2.675 (0.0–12382.1) 0.826
>5, No. (%) 911 (26.3) 239 (27.5)

Survival event, No. (%)
Alive 2934 (84.6) 715 (82.4) 0.119
Death 536 (15.4) 153 (17.6)

MRIb reports per patient, No. (%)
1 2013 (58.0) 503 (57.9) 0.969
≥2 1457 (42.0) 365 (42.1)
November 2021 | Volume 11 | Article
aCEA, carcinoembryonic antigen.
bMRI, magnetic resonance imaging.
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reports from rectal cancer patients. Firstly, the radiological
report of a patient was represented in the form of word-
embedded hidden vectors by a pre-trained language model that
comprehends the input text as a sequence of words. For the pre-
trained language model, we used ClinicalBERT (27), which
employs transferred knowledge extracted from public clinical
notes. The hidden vectors were then aggregated to construct the
feature vector of the patient, which was used as input to the Cox-
PH model, which predicts the patient survival risk. For an
individual patient with multiple serial rectal MRI radiological
reports available, the risk status was predicted by an RNN that
combined all the feature vectors obtained from all the available
radiological reports.
Performance of Survival Prediction
Deep-Transfer-Learning Model
To evaluate the performance of the deep-transfer-learning
model, three comparative experiments were conducted. Firstly,
survival predictions obtained from four different language
models were compared. An un-pre-trained BERT and three
pre-trained BERT language models (original BERT (16),
BioBERT (28), and ClinicalBERT (27)) were compared
through five-fold cross-validation with the training dataset and
external validation using a separate test set (see Supplementary
Material and Supplementary Table 1). The model performance
was evaluated using the concordance index (C-index) (25),
which is widely used to evaluate the performance of survival
prediction models. C-index shows a higher value when the
higher survival probability does the model predict for the long-
time survived patients. Among the three language models,
ClinicalBERT yielded the best survival prediction performance.

Subsequently, we assessed whether survival prediction was
improved when multiple serial MRI radiological reports from the
patient were utilized. The deep-transfer-learning model
predicted the patient survival with serial radiological reports
using the RNN, as described earlier. Compared with the single-
time-point model (using only the first radiological report from
the patient), the serial model (using multiple serial radiological
reports from the patient) exhibited an improved C-index for the
entire test set (C-index of 0.595 vs. 0.579, p-value < 4.9×10−2,
Table 2). In particular, when two serial radiological reports were
used, the survival prediction of the patient was improved in the
serial model case (C-index of 0.667) compared with those of
patients with single radiological reports (C-index of 0.626).
These results imply that the serial model has a better
prediction of survival when interpreting subsequent MRI
reports that occur following the course of treatment based on
the patient’s first MRI report.

We divided the patients into three subgroups (high-,
intermediate-, and low-risk) based on the predicted risk for
each patient. Then, the deep-transfer-learning-based survival
prediction model successfully stratified patients into the high-
risk group (defined as patients with risks in the top 33rd
percentile according to the deep-transfer-learning model) or
low-risk group (patients with risks in the bottom 33rd
percentile) (log-rank p-value < 2.0×10−3, Figures 2A, B).
Frontiers in Oncology | www.frontiersin.org 4
In addition, two experiments were conducted to compare the
effect of the risk prediction obtained from the tumor marker
CEA, which is known to predict the survival outcome of
colorectal cancer patients (29), on survival prediction with
those of the radiographic reports. Firstly, we visualized how
the CEA and risks predicted by our model correlated with the
actual survival time using the Spearman correlation coefficient
(Rs) (26). The scatter plot results revealed that the predicted risk
(Rs= −0.590) had a higher correlation with the actual survival
time compared with the CEA (Rs= −0.195) (Figures 2C, D).
Secondly, we compared the effectiveness of CEA and the risks
predicted by our model in forecasting N-year survival using
receiver operating characteristic (ROC) curves. Use of the risk
obtained through the deep-transfer-learning model yielded
higher AUROC values than that of CEA in predicting N-year
survival (Figure 2E). Additionally, we obtained ROC curves for
patients with more than one MRI report (Supplementary
Figure 5) and found higher AUROC values than the curves for
whole patients in most cases. This result means our model
performed better when a patient had serial radiological reports.

Model Interpretation Analysis
To obtain deeper clinical insights for utilization of the proposed
deep-transfer-learningmodel, we visualized the embedding vectors
of thepatients and investigated thehiddenknowledge that thedeep-
transfer-learning model learned from the training data. We
considered the hidden vector of the last layer of the model as the
patient embeddingvector andobtained the scatter plot visualization
via dimensionality reduction with the t-SNE algorithm (Figure 3).
When we projected the actual patient survival on the same
scatterplot, we identified the distribution of clusters of patients
with poor versus favorable survival (Figure 3A). To identify which
clinicopathologic features were related to high-risk patients, we
obtained sequences of words (N-grams) that were prevalent among
MRI reports of a high-risk group compared with those of the low-
risk group.Thenweextracted representativehigh-risk termfeatures
based on clustering the sequence of words. In the same way, the
representative low-risk term features were extracted. We found the
extracted term features were closely related to the patients’
prognosis and clinically acceptable (Supplementary Figure 2).
Then we visualized these term features on the scatterplot. Terms
that were clinically related to worse prognoses, such as “T3,” “M-
rectum,” and “with mesorectal fat infiltration,” were highly
prevalent among patients with worse survival [p-value < 0.05
between patient groups stratified by the appearance of the terms
(Figures 3B–D)]. In addition, other terms associated with negative
prognoses, suchas “enlarged lymphnode,” “CRMthreatening,”and
“suspicious regional lymph node metastases,” were prevalent
among patients with worse prognoses. Moreover, a positive
prognostic term, “No evidence of significant lymph node
enlargements in both pelvic side walls,” was prevalent among
patients with favorable survival (Supplementary Figure 3).

New Patient Survival-Graph Generation
Using the trained survival risk prediction model, we produced a
survival graph for the radiological reports of a new patient. To
obtain reliable survival information, the survival graph of the
November 2021 | Volume 11 | Article 747250
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patient was generated by aggregating the survival information of
other patients in the training dataset who were the most similar
to the given patient in terms of the predicted risk. After
predicting the survival risk value of the new patient using the
radiological reports of the patient, the Kaplan–Meier survival
curve (30, 31) was plotted using the survival data from 5% of
patients in the training dataset with the most similar risk values
in the deep-transfer-learning model. Supplementary Figure 4
presents an example of the survival-graph generation of a new
patient. The survival risks predicted by the deep-transfer-
Frontiers in Oncology | www.frontiersin.org 5
learning model for three new rectal cancer patients with MRI
radiological reports were plotted in a distribution graph, and
Kaplan–Meier survival plots were drawn for each patient.
DISCUSSION

This study aimed to determine whether the deep-transfer-
learning model could predict the survival of cancer patients
based only on free-text radiological reports. The results suggest
TABLE 2 | C-index comparison between serial and single time-point models based on visit counts using ClinicalBERT.

Number of serial MRI reports per patient Patients, No. (%) Single time-point model Serial model

1 503 (57.9) 0.555 0.572
2 286 (32.9) 0.626 0.667
3 53 (6.1) 0.486 0.422
4 26 (3.0) 0.638 0.663
≥2 365 (42.1) 0.617 0.638
Total patients 868 (100.0) 0.579 0.595
November 2021 | Volume 11 |
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FIGURE 2 | Performance of the deep-transfer-learning-based survival prediction model. (A) Distribution of predicted risks of patients in the test set. The patients
were divided into high-, medium-, and low-risk groups according to the predicted risks. (B) Kaplan–Meier survival graph of each risk group. (C) Visualization of the
association between log carcinoembryonic antigen (CEA) values and survival times. (D) Visualization of the association between the predicted risks and survival
times. (E) Receiver operating characteristic (ROC) curves for comparing CEA and the predicted risk on N-year survival prediction. The values of each area under the
ROC (AUROC) for both the serial model and the CEA are shown (Rs: Spearman’s correlation coefficient).
Article 747250
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that the deep-transfer-learning model can predict the survival
risk of rectal cancer patients by using only rectal MRI reports.
Compared with the use of a single-time-point report, survival
prediction was improved when multiple serial radiological
reports were incorporated by the RNN. The performance
improvement of the deep-transfer-learning model when using
the past records of the patient can overcome the current problem
of non-utilization of accumulated unstructured EMR data
because previous approaches require preprocessing steps,
which impose an additional workload. Moreover, our proposed
method of utilizing serial natural language data for survival
prediction is not limited to radiological reports but can be
extended to other unstructured data: clinical progress notes
and dialogue records between clinicians and patients.

The deep-learning model requires a considerable amount of
labeled data (32). However, usually, the amount of training data
from a retrospective cohort is limited. Therefore, research using
deep-learning models in single institutions has been limited. To
overcome the lack of training based on MRI radiological reports,
we used transfer learning (33). By comparing three pre-trained
language models for transfer learning, we determined that
ClinicalBERT, a model trained with clinical notes, was the most
effective in predicting cancer patient survival. This result is
consistent with the nature of transfer learning; i.e., the transfer is
more effective when the source and target tasks are similar (34).
Frontiers in Oncology | www.frontiersin.org 6
The greatest strength and implication of our deep-transfer
model is that it can predict the survival of cancer patients, which
is the most important endpoint of any cancer research study. To
the best of our knowledge, this is the first study conducted to
predict patient survival directly using natural language data.
There have been attempts to obtain information about tumor
progression automatically based on radiological report text with
deep learning (13) but not information about survival itself. Our
deep-transfer-learning model directly leverages the patient
survival time with the Cox-PH model and predicts
patient survival.

When obtaining term features using N-gram extraction and
clustering, we systemically identified clinically acceptable high-
and low-risk term features, which frequently appeared in the
radiological reports of each patient risk group. This analysis can
help elucidate clinical features associated with a specific
prognosis. Moreover, by including other clinicopathologic
factors in the visualization, we expect an in-depth investigation
of the association between the clinical features and survival or
patient heterogeneity depending on risk. We also developed an
algorithm that provides the survival graphs of new patients using
their radiological reports based on the trained model and
training dataset. Given that the survival graph of a new patient
is generated based on the survival information of other patients
(with similar response characteristics), we can consider the
A B

DC

FIGURE 3 | Patient embedding vector scatter plot of the survival and high-risk features. The patient embedding vectors were obtained from the RNN of the deep-
transfer-learning model and visualized in a two-dimensional scatter plot using t-distributed stochastic neighbor embedding. (A) The survival of each patient is
depicted in red (worse survival) or blue (better survival). (B–D) The color represents whether clinically meaningful terms (high-risk features: T3, (B); mesorectal fat
infiltration, (C); Rb, (D) appear (red) in a patient’s radiological report or not (gray). p-values were calculated using the log-rank test to compare the survival between
patient groups stratified by appearance of the terms.
November 2021 | Volume 11 | Article 747250
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survival graph reliable. We expect that the survival-graph-
generating algorithm can assist clinicians in establishing
treatment strategies by providing the corresponding patient
survival graphs. The algorithm can be improved by considering
other clinical factors as well as radiological reports while
collecting survival information from other patients.

Deep-learning techniques intended for image analyses are
improving; however, they remain limited to certain modalities
(35–38). In this study, radiological reports produced by
radiologists were utilized to train the deep-transfer-learning
model. Hence, the training included not only anatomical
findings from the imaging scans but also clinical insights that
reflected the experiences of expert radiologists, which further
highlights the strength of this study. The increase in data
required for medical decision-making and the rapid
proliferation of medical data obscure the decision-making of
clinicians (39, 40). In this context, our deep-transfer-learning
model, which provides survival risk prediction using a free-text
report, will not only help reduce clinical errors but also enhance
clinical decision-making. It can thus serve as a foundation for an
artificial-intelligence-based clinical decision supporting system
utilizing medical big data.

This study has inherent limitations and biases: it was a
retrospective study conducted at a single institution. It is not
expected that a deep-transfer-learning model trained in one
institution will work properly at other institutions. However,
we did not include any institution-specific preprocessing or
labeling during training. In fact, although MRI reports by 25
radiologists with their own styles were used, every radiologist
followed the consensus guideline for rectal MRI reading and
therefore all the essential information were included (41).
Moreover, our deep learning model succeeded in predicting
survival despite having trained based on various styles of
reports, which shows the robustness of our model. Based on
these results, when our model is adapted to other institutions, we
expect that the model algorithm will work properly after
retraining with the accumulated natural language data of those
institutions (free-text radiological reports).

The main objective of our study is to demonstrate that it is
possible to utilize the accumulated unstructured medical text
data for a clinical purpose. It is regarded that five variables for a
decision-making are the limit of human cognitive capacity (40),
however, the recent increase of biomarkers and therapeutical
options may threaten to overwhelm a clinician’s cognitive
capacity. Therefore, a machine that reads radiological reports
in advance and provides an organized information related to
survival can be an effective way to reduce clinical errors, even
though clinicians are already proficient enough.

We trained our deep-transfer-learning model only with
rectal MRI reports from rectal cancer patients. Rectal MRI
has been regarded as a gold standard modality for rectal cancer
staging and treatment planning, and relevant anatomic
landmarks or key features that should be addressed in the
MRI reports have been validated (42). Thus, rectal MRI reports
are sound unstructured EMR data candidates for training by
deep transfer learning to predict patient survival. However, our
Frontiers in Oncology | www.frontiersin.org 7
deep-transfer-learning model structure does not contain any
rectal cancer or rectal MRI-dependent features. In fact, our
model per se is a deep-transfer-learning model that uses a serial
natural language model to predict survival, and thus our model
has tremendous application potential that can be extended to
the use of any type of unstructured EMR data from any type of
cancer patient.
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