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Background: Although notable therapeutic and prognostic benefits of compound
kushen injection (CKI) have been found when it was used alone or in combination with
chemotherapy or radiotherapy for triple-negative breast cancer (TNBC) treatment, the
effects of CKI on TNBC microenvironment remain largely unclear. This study aims to
construct and validate a predictive immunotherapy signature of CKI on TNBC.

Methods: The UPLC-Q-TOF-MS technology was firstly used to investigate major
constituents of CKI. RNA sequencing data of CKI-perturbed TNBC cells were analyzed
to detect differential expression genes (DEGs), and the GSVA algorithm was applied to
explore significantly changed pathways regulated by CKI. Additionally, the ssGSEA
algorithm was used to quantify immune cell abundance in TNBC patients, and these
patients were classified into distinct immune infiltration subgroups by unsupervised
clustering. Then, prognosis-related genes were screened from DEGs among these
subgroups and were further overlapped with the DEGs regulated by CKI. Finally, a
predictive immunotherapy signature of CKI on TNBC was constructed based on the
LASSO regression algorithm to predict mortality risks of TNBC patients, and the signature
was also validated in another TNBC cohort.

Results: Twenty-three chemical components in CKI were identified by UPLC-Q-TOF-MS
analysis. A total of 3692 DEGs were detected in CKI-treated versus control groups, and
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CKI significantly activated biological processes associated with activation of T, natural
killer and natural killer T cells. Three immune cell infiltration subgroups with 1593 DEGs
were identified in TNBC patients. Then, two genes that can be down-regulated by CKI
with hazard ratio (HR) > 1 and 26 genes that can be up-regulated by CKI with HR < 1 were
selected as key immune- and prognosis-related genes regulated by CKI. Lastly, a five-
gene prognostic signature comprising two risky genes (MARVELD2 and DYNC2I2) that
can be down-regulated by CKI and three protective genes (RASSF2, FERMT3 and
RASSF5) that can be up-regulated by CKI was developed, and it showed a good
performance in both training and test sets.

Conclusions: This study proposes a predictive immunotherapy signature of CKI
on TNBC, which would provide more evidence for survival prediction and treatment
guidance in TNBC as well as a paradigm for exploring immunotherapy biomarkers in
compound medicines.
Keywords: compound kushen injection, triple-negative breast cancer, RNA sequencing, tumor microenvironment,
prognostic signature
INTRODUCTION

Triple-negative breast cancer (TNBC) is the most malignant and
aggressive subtype of breast cancer, which is pathologically
featured by the lack of estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2
(HER2) expression (1–3). Despite its clinical characteristics of
high invasion, metastasis, a high rate of early relapse, a dismal
prognosis , and a limited response to conventional
chemotherapies or targeted therapies, immunotherapy are
showing great promise and its use has been approved in
combination with traditional treatment options in TNBC
(2, 4–9).

Compound kushen injection (CKI) is an anticancer Chinese
patent medicine (CPM) approved by National Medical Products
Administration (NMPA) in China, which is extracted from the
roots of two medical herbs Kushen (Radix Sophorae Flavescentis)
and Baituling (Rhizoma Heterosmilacis) via standardized Good
Manufacturing Practice (GMP) (10, 11). Multiple bioactive
ingredients in compound kushen injection have been
extensively reported, such as matrine, oxymatrine,
oxysophocarpine and sophocarpine (11–13). CKI has been
widely used alone or in combination with chemotherapy or
jection; TNBC, triple-negative breast
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radiotherapy in the treatment of patients with liver cancer,
lung cancer, breast cancer, gastric cancer, colorectal cancer and
other cancer types (12–19), indicating that it has a broad
spectrum of anti-cancer activity. Notably, increasing clinical
evidence has shown that CKI synergizes the efficacy of
chemotherapy and radiotherapy, decreases the toxicity or side
effects induced by chemotherapy and radiotherapy, enhances
quality of life, and improves the immune function of cancer
patients (14–16). A survey on the use of anti-cancer CPMs
among 51,382 insured cancer patients demonstrates that CKI
is the second frequently used anti-cancer CPMs and is also the
CPM with the highest use rate in 17 cancers; moreover, CKI is
also the second commonly used anti-cancer CPMs in breast
cancer (20). For breast cancer, a meta-analysis of randomized
controlled trials included 16 studies with 1,315 participants
reports that CKI combined with chemotherapy might enhance
performance status and reduce the rate of adverse drug reactions
among postoperative patients with breast cancer (16).
Meanwhile, CKI has been found to inhibit human breast
cancer stem-like cells by inactivating the canonical Wnt/b-
catenin pathway (12). Furthermore, a recent study aimed at
illustrating the effect of CKI on tumor immunity demonstrates
that CKI relieves the immunosuppression mediated by tumor-
associated macrophages and afterwards alleviates the
immunosuppressive effects on CD8+ T cells, which enhances
the efficacy of low-dose sorafenib and avoids chemotherapy-
induced adverse effects (10). However, the effects and underlying
regulatory mechanisms of CKI on TNBC microenvironment are
still largely unclear.

The tumor microenvironment (TME) plays a crucial role in
tumor initiation, progression, relapse, metastasis and treatment
response (21, 22). For example, tumor-infiltrating lymphocytes
(TILs) in the tumor and stroma have shown an important
prognostic value in TNBC, and more importantly TILs have
also been identified as an indicator of response not only to
neoadjuvant or adjuvant chemotherapy but also to anti-PD-1 or
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anti-PD-L1 antibodies in patients with TNBC (23–29).
Immunohistochemistry (IHC), immunofluorescence (IF), flow
cytometry and cytometry by time of flight (CyTOF) mass
spectrometry as traditional techniques are commonly used to
quantify cells from the complex components in TME (30).
However, these methods have the weaknesses of laborious, low
throughput and demanding preselected cell markers, while
single-cell RNA sequencing (scRNA-seq) is expensive to be
used on large patient cohorts and demands particular sample
preparation at this stage, which hinder their application in a large
number of clinical samples (30). Fortunately, multiple
computational approaches have been developed to estimate the
relative abundance of distinct cell types in the TME based on
bulk expression data, which provide a systematic strategy to
comprehensively explore the TME in an unbiased manner and
most importantly can be applied to existing datasets with
thousands of genetically profiled and clinically well-annotated
tumor samples (30, 31). Therefore, researchers have developed a
large number of signatures based on tumor-infiltrating cells
using computational methods in breast cancer, which has
provided clinicians with more precise information for deeply
understanding the immunogenomic profile of breast cancer,
stratifying patients, and predicting patient outcome or
treatment response (32–34). Due to the high levels of
heterogeneity and complexity in TNBC microenvironment, it
remains necessary to propose novel prognostic signatures based
on TME-relevant genes in TNBC.

In this study, we detected differential expression genes
(DEGs) after analyzing RNA-seq data of CKI on TNBC cells,
and later applied the GSVA algorithm to explore significantly
changed pathways regulated by CKI. Then, we estimated the
relative quantitative infiltration levels of 28 immune cell
signatures in TNBC patients with the single sample gene set
enrichment analysis (ssGSEA) algorithm. Meanwhile, we divided
these patients into different immune cell infiltration patterns
with the consensus clustering method and next detected DEGs
among these subgroups. Furthermore, we performed univariate
Cox analysis to select prognosis-related genes from immune-
related genes, and overlapped them with DEGs regulated by CKI.
Finally, we constructed a prognostic signature of immune-related
genes with the least absolute shrinkage and selection operator
(LASSO) regression method to predict mortality risks in TNBC
patients, and we also confirmed the predictive capability of this
immune gene signature in another TNBC cohort.
MATERIALS AND METHODS

Ultra-Performance Liquid Chromatography
Coupled to Quadrupole Time-of-Flight
Mass Spectrometry Analysis
CKI (Batch No: 20181034, total alkaloid concentration of
25 mg/mL) was provided by Zhendong Pharmaceutical Co.,
Ltd (China). The CKI was diluted ten-fold in ultrapure water,
and 2 μl of the solution was used for further analysis. Five control
compounds were obtained, including sophocarpine (Batch No:
Frontiers in Oncology | www.frontiersin.org 3
20052711, purity ≥ 99.84%), oxymatrine (Batch No: 20041315,
purity ≥ 98.76%), matrine (Batch No: 20200820, purity ≥ 98%),
hesperidin (Batch No: 200621, purity ≥ 98%) and sophoridine
(Batch No: 19113001, purity ≥ 96.97%). Matrine was purchased
from Beijing North Weiye Metrology Institute Co., Ltd (Beijing,
China), and the other four compounds were purchased from
Beina Biotechnology Institute Co., Ltd (Beijing, China).

The CKI was separated by applying a Waters ACQUITY
UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm, Waters
Corporation, Milford, MA, United States) at 35°C. Mobile phases
comprised 0.1% aqueous formic acid and acetonitrile. A gradient
elution with the flow rate of 0.2 mL/min was executed as follows:
6% acetonitrile at 0-2 min, 6-15% acetonitrile from 2 to 4 min,
15-25% acetonitrile from 4 to 8 min, 25-45% acetonitrile from 8
to 14 min, 45-60% acetonitrile from 14 to 16 min, 60%
acetonitrile from 16 to 18 min, 60-6% acetonitrile from 18 to
19 min, and 6% acetonitrile from 19 to 22 min. The MS analysis
was performed using the electrospray ionization (ESI) source in
both positive and negative ion modes, and leucine enkephalin
was utilized for mass accuracy correction. The temperatures of
ion source and desolvation gas were set at 120°C and 350°C,
respectively. The flow rates of the cone and the desolvation gas
were 50 L/h and 600 L/h, respectively. The capillary voltages were
set to 3.0 kV and 2.5 kV in positive and negative ion modes,
respectively. The cone and extraction cone voltages were set to
40kV. MS/MS analysis was performed with a low collision energy
of 4 eV and a high collision energy of 20-35 eV. The scan area
was set at m/z 50-1200. Data acquisition and analysis were
conducted with MassLynx™ v4.1 (Waters Co., Ltd) and UNIFI
R Scientific Information System v1.7 (Waters Co., Ltd).

Transcriptome Data Acquisition and
Processing
The RNA-seq dataset of CKI on breast cancer MDA-MB-231
cells was download from European Nucleotide Archive (35) with
the accession number PRJNA517432 (36, 37), in which 12
samples at 48-hour (three untreated in batch 1, three untreated
in batch 2, three CKI-treated in batch 1 and three CKI-treated in
batch 2) were included in our study (Supplementary Table 1).
FastQC (version 0.11.9, Babraham Bioinformatics) was used to
check the quality of raw reads before proceeding with
downstream analysis. Trim_galore (version 0.6.6, Babraham
Bioinformatics) was used to trim adaptors and low-quality
sequences. STAR (version 2.7.7a) (38) was then applied to
construct a reference genome index based on the DNA
sequence and gene transfer format (GTF) files of the reference
genome [GRCh38, Ensembl Release 103 (39)], and thereby the
trimmed reads were further aligned to the above index by the
STAR software and Binary Alignment/Map (BAM) format files
were sorted by samtools (version 1.10) (40). Then, read counts
data was generated after preparing reference sequences
(reference genome: GRCh38, Ensembl Release 103) and
calculating expression values by RSEM (v1.3.3) (41).

Differential expression analysis was performed by the DESeq2
(42), edgeR (43) and limma (44, 45) packages, respectively. The
official pipelines of the three R packages that consider batch
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effects in RNA sequencing data in Bioconductor (46) were
referenced in our study. The “filterByExpr” function in edgeR
was used to screen genes with sufficiently large counts for a
statistical analysis and scaling factors were calculated with the
trimmed mean of M values (TMM) method (47) to convert raw
library sizes into effective library sizes. The apeglm method (48)
in the “lfcShrink” function was used to shrink log2 fold changes
(FCs) when applying the DESeq2 method to perform differential
expression analysis. The significance threshold for differential
gene expression screening was set as adjusted P < 0.05 and
|log2FC| > log21.5, and the overlapping genes from the three
methods were considered as DEGs. Normalized expression
values of RNA-seq data were obtained with the voom
algorithm (49), and batch effects were removed by the sva
package (50) for further analysis.

Gene Set Variation Analysis
Pathway analyses were performed on the 50 hallmark gene sets
described in the Molecular Signatures Database (MSigDB,
version 7.4) (51), and were then accomplished on biological
process signatures in the Gene Ontology (GO) (52) and six kind
of pathways comprising metabolism, genetic information
processing, environmental information processing, cellular
processes, organismal systems and human diseases deposited
in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Last updated: May 1, 2021) (53). The gene sets with
at least two genes found in the RNA-seq data were retained, and
the GSVA algorithm was called from within the GSVA package
(54) to calculate the enrichment score of each biological pathway
in each sample with transcriptomic data. Subsequently, the
empirical Bayesian approach within the limma package was
applied to determine significantly changed pathways, with
adjusted P < 0.05 as a significant cutoff criterion.

TNBC Datasets and Samples
The METABRIC (55) cohort (a total of 1,980 patients, 100%
female; including 320 patients with ER-, PR- and HER2- status)
of breast cancer patients was included as the training set in our
study. Non-primary breast cancer cases or patients without
expression profiles were excluded, so 298 primary TNBC
patients (100% female, average age = 56 ± 14 years) were
reserved for further analysis (Supplementary Table 2). The
event was defined as died of disease and the patients who were
living or died of other causes were censored. Furthermore,
another cohort with 107 TNBC patients (56) was included as
the test set to externally validate the performance of our survival
model (GSE58812; 100% female, average age = 57 ± 13 years),
and the metastasis-free survival (MFS) time of these cases was
extracted (Supplementary Table 3). The CEL format files of this
microarray data were downloaded and were normalized with the
Robust Multi-array Average (RMA) method in the affy
package (57).

Calculation of Microenvironment
Cell Abundance
Feature gene sets of 28 subpopulations of tumor-infiltrating
immune cells (58) were referenced, which include 28 immune
Frontiers in Oncology | www.frontiersin.org 4
cell types (13 innate and 15 adaptive immune cells), namely,
activated dendritic cells (DCs), CD56bright natural killer (NK)
cells, CD56dim natural killer (NK) cells, eosinophils, immature
dendritic cells (DCs), macrophages, mast cells, myeloid-derived
suppressor cells (MDSCs), monocytes, natural killer (NK) cells,
Natural killer T (NKT) cells, neutrophils, plasmacytoid dendritic
cells (pDCs), activated B cells, activated CD4+ T cells, activated
CD8+ T cells, CD4+ central memory T (Tcm) cells, CD8+ central
memory T (Tcm) cells, CD4+ effector memory T (Tem) cells,
CD8+ effector memory T (Tem) cells, gamma delta T (gd T) cells,
immature B cells, memory B cells, regulatory T (Treg) cells, T
follicular helper (Tfh) cells, type 1 T helper (Th1) cells, type 17 T
helper (Th17) cells and type 2 T helper (Th2) cells. In the
METABRIC cohort, the ssGSEA algorithm was called from
within the GSVA package to quantify the relative infiltration of
the 28 immune cell types in the tumor microenvironment
(TME). The normalized enrichment score (NES) of these
immune cell signatures calculated by ssGSEA was utilized to
indicate the relative abundance of each immune cell in each
TNBC sample. The prognostic value of each cell subset was
evaluated with the univariate Cox proportional hazards model.
ESTIMATE (59) was applied to evaluate the infiltration level of
immune cells (immune score), the level of stromal cells (stromal
score) and tumor purity for each patient.

Screening of TME- and Prognosis-Related
Genes
The unsupervised clustering Pam method based on Euclidean
and Ward ’ s l inkage was ca l l ed f rom wi th in the
ConsensuClusterPlus package (60) to determine the optimal
number of stable immune-based TNBC clusters, and was
repeated 100,000 times to ensure the stability of classification.
The hierarchical clustering and k-means clustering were
performed to confirm the robustness of the clustering.
Principle component analysis (PCA) and t-Distributed
Stochastic Neighbor Embedding (t-SNE) were further applied
for dimensional reduction of TNBC patients based on tumor-
infiltrating immune cells. Kaplan-Meier survival analysis with
the log-rank test was implemented to compare the differences in
prognosis among distinct immune subgroups. To identify TME-
relevant genes, the patients in the METABRIC cohort were
grouped into three different clusters based on immune-cell
infiltration. The empirical Bayesian approach within the limma
package was applied to determine DEGs among distinct immune
phenotypes, and DEGs with adjusted P < 0.05 and |log2FC| >
log21.5 were considered as TME-related genes. The correlation
between the relative expression value (Z-Score transformed) of
each gene and DSS was evaluated by the univariate Cox
regression analysis, and genes with P < 0.05 were considered as
prognosis-related genes. The genes associated with both TME
and prognosis were finally reserved for further analysis.

Development and Validation of an
Immune-Related Gene Signature
The CKI-perturbed genes were intersected with the TME- and
prognosis-relevant genes, and subsequently the down-regulated
September 2021 | Volume 11 | Article 747300
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genes with HR > 1 and the up-regulated genes with HR < 1 were
reserved. Functional annotation for immune-related genes
regulated by CKI was performed by the hypergeometric test.
The formula is as follows:

P = 1 − o
m−1

i=0

M
i

� �
N−M
n−i

� �

N
n

� �

where N is the number of all genes annotated by GO; n is the
number of target genes in N; M is the number of all genes
annotated in a specific GO term; m is the number of target genes
that can be annotated in a specific GO term. After the P value was
adjusted by the Benjamini-Hochberg correction, GO terms that
met adjusted P < 0.05 were defined as significantly enriched GO
terms. To obtain the most useful immune-related prognostic
markers in the training set, the least absolute shrinkage and
selection operator (LASSO) penalty within the glmnet package
(61) was implemented to reduce dimensionality. Genes
represented by an optimal value of the penalty parameter l
(the l with minimum mean cross-validated error) that was
determined by five-fold cross-validation constituted the
immune-related gene signature in this study. Finally, these
genes were fitted into a multivariate Cox regression model, and
the linear combination of the expression value of the gene
multiplied by its regression coefficients derived from the
multivariate Cox regression model generated a prognostic risk
score with the genes. The formula is as follows:

Risk Score = h0(t)� eS
n
i=1 bixi

where t is the survival time, h0(t) is the baseline hazard, n is the
number of genes, xi is the expression value of the ith gene and bi
is the regression coefficient of the ith gene.

The patients were divided into either low- or high-risk group
according to the optimal cut-off point determined via the
maximally selected rank statistics method in the survminer
package, and meanwhile the minimal proportion of
observations per group was set to 30% to prevent the problem
of too few patients in a certain group. The survival curves were
generated by the Kaplan-Meier method, and the log-rank test
was used to assess the differences between the low- and high-risk
groups. Survival predictive accuracy of the prognostic model was
estimated through receiver operating characteristic curve (ROC)
and Harrell’s concordance index (C-index) analyses. The
predictive efficacy of the gene signature for patients’ prognosis
was further validated in the test set mentioned above. The
univariate and multivariate Cox proportional hazards models
were utilized to analyze whether the risk scores had a prognostic
significance. Age, tumor size, the number of positive lymph
nodes and PAM50 subtypes were firstly evaluated in the
univariate Cox proportional hazards model, and all statistically
significant variables were then added as covariates in the
multivariate Cox proportional hazards model. Further
validation on the prognostic value of risk scores was performed
by comparing the predictive ability between two models: one
comprising tumor size and the number of positive lymph nodes
as covariates; and the other including risk scores as the third
Frontiers in Oncology | www.frontiersin.org 5
covariate. The time-dependent C-index and the area under curve
(AUC) of time-dependent ROC curve were set as the indicators
of prognostic efficacy.

Statistical Analysis
For two-group comparisons, the Shapiro-Wilk test was applied
to assess the assumption of normal distribution, and statistical
significance of differences between non-normally distributed
variables was estimated with the Wilcoxon test. For
comparisons among more than two groups, the Kruskal-Wallis
test was utilized as a non-parametric method. Correlation
coefficients (r) were generated by Spearman’s and distance
correlation analyses. Survival analysis was performed via the
Kaplan-Meier method, and differences in survival distributions
were evaluated using the log-rank test. The “surv-cutpoint”
function in the survminer package, which repeatedly tests all
potential cut points to find the maximum rank statistics, was
applied to determine the best cut-off level for each prognostic
marker. Univariate and multivariate analyses were conducted
employing Cox proportional hazard models. All the tests were
two sided, and statistical significance was set at P < 0.05, unless
otherwise stated. The Benjamini-Hochberg correction was
applied in multiple tests to reduce false positive rates. All
statistical analyses in this study were performed with the R
software (version 4.0.3, http://www.R-project.org).
RESULTS

Main Constituents of CKI Detected by
UPLC-Q-TOF-MS
In this study, we identified a total of 23 chemical components
from CKI by using UPLC-Q-TOF-MS analysis (Figure 1 and
Table 1). Consistent with previous findings (37, 62), we also
identified the six alkaloids that have been considered as the major
active ingredients of CKI, namely, matrine, oxymatrine, N-
methylcytisine, sophoridine, sophocarpine and oxysophocarpine.

Data Analysis for the Drug-Perturbed Cell
Line Samples
The results of RNA-seq data analysis for the CKI-perturbed cell
line samples were shown in Figure 2 and Supplementary Tables
4–6. The PCA showed the difference in the sample distribution
before or after removing batch effects (Figures 2A, B). The
hierarchical clustering presented a strong intra-group correlation
and a relatively low inter-group correlation (Figure 2C). We
found 1925 consistent up-regulated genes and 1767 consistent
down-regulated genes between CKI-treated and control groups
(Figure 2D), and Pearson’s correlation analysis exhibited high
correlation of log2FC calculated by three methods. The heatmap
and volcano plots for the DEGs were displayed in Figures 2F, G.

Pathways Regulated by CKI
Analysis of hallmark pathway gene signatures highlighted that cell
cycle-related pathways likeMYC targets, G2M checkpoint and E2F
targets were significantly down-regulated in the CKI treatment
September 2021 | Volume 11 | Article 747300
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group compared with the control group (Figures 3A, B).
According to the GSVA results of KEGG pathways (Figure 3C),
113 biological pathways (including 53 activated and 60
suppressed) were significantly changed between CKI-treated and
control groups, which exhibited a comprehensive influence of CKI
on metabolism, cellular processes, genetic and environmental
information processing, and organismal systems. Metabolic
pathway analysis showed CKI decreased pathways involved in
nucleotide metabolism (purine and pyrimidine metabolism) and
lipid metabolism (fatty acid biosynthesis) (Figure 3D). Especially,
the KEGG pathways associated with immune system such as
natural killer cell mediated cytotoxicity, T cell receptor signaling
pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation
and B cell receptor signaling pathway were activated in the CKI-
treated group versus the control group, which suggested its
potential effects on immunoregulation (Figures 4A, B). Analysis
of GO gene signatures highlighted that most of biological processes
Frontiers in Oncology | www.frontiersin.org 6
that promote immune response were activated after CKI treatment
(Figures 4C, D). Compared with the samples in the control group,
most biological processes that improve T cell proliferation,
differentiation and T cell receptor signaling pathway or induced
cell death of T cells were activated, whereas those that inhibit T cell
activation, proliferation, differentiation and T cell receptor
signaling pathway were inactivated in the CKI-perturbed
samples (Figure 4C). Meanwhile, the activation and proliferation
of NK, NKT and B cells were up-regulated after CKI treatment.
Notably, for the Th1 cells, which execute anti-tumor immunity
functions, multiple processes that promote their activities such as
positive regulation of T-helper 1 cell cytokine production and
positive regulation of T-helper 1 type immune response
were positively regulated in the CKI-treated group. However, for
the Th2 cells, which executing pro-tumor, immune suppressive
functions, the cell cytokine production of Th2 cells was down-
regulated in the CKI-treated group (Figure 4D).
A

B

C

D

E

F

FIGURE 1 | UPLC-Q-TOF-MS analysis of CKI. Chromatographic fingerprints of control (A), standard components (B) and CKI (C) in the positive ion mode.
Chromatographic fingerprints of control (D), standard components (E) and CKI (F) in the negative ion mode.
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Immune Subtypes and Immune-Related
Genes
Spearman’s correlation analysis showed that the abundance of
cells executing anti-tumor reactivity was positively associated
with the abundance of cells delivering pro-tumor suppression
(Figures 5A, 8A). The universal landscape of immune cell
interaction in TME was visualized in Figure 5B, which
demonstrated that the relative abundance of most infiltrating
immune cell populations was positively correlated with each
other, stromal scores and immune scores and negatively
correlated with tumor purity. Prognostic significance of each
microenvironment cell in TNBC was shown in Figures 5C, D.
Based on the enrichment scores of 28 gene signatures for the 298
TNBC samples, we performed unsupervised clustering to classify
these patients into three independent subtypes (we named them
as immunity low, immunity medium and immunity high)
(Figures 6A–F, 8B). The three clusters witnessed a remarkable
difference in the relative infiltration of immune cell populations
(Figures 7, 6G, 8C, D), stromal scores, immune scores and
tumor purity (Figures 6H, 8E). Considering the vital role of
TME in prognosis, we investigated the clinical relevance of the
immune clusters. Kaplan-Meier analysis exhibited significant
associations between immune clusters and DSS (log-rank test,
P = 0.012), and the immunity high or medium cluster had a
Frontiers in Oncology | www.frontiersin.org 7
longer survival time than the immunity low cluster (Figure 6I).
The multivariate Cox proportional hazards model also disclosed
that the immune clusters independently predicted a better DSS in
TNBC (Immunity medium: HR, 0.55; 95% confidence interval,
0.36-0.82; P = 0.004; Immunity high: HR, 0.47; 95% confidence
interval, 0.26-0.84; P = 0.011; Table 2). We also analyzed the
three crucial immune checkpoints PD-L1, PD1 and CTLA4 in
each immunity subtype. The immunity high cluster was featured
by a significantly higher PD-L1/PD1/CTLA4 expression levels
while the immunity low cluster with a lower PD-L1/PD1/CTLA4
expression levels (Figure 9). After conducting differential
expression analysis, we found 1591 DEGs between the
immunity high and immunity low groups, and 313 between
the immunity medium and immunity low groups
(Supplementary Table 7). We aggregated these genes and
finally identified 1593 unique genes as immune-related genes
in TNBC.

Key CKI-Perturbed Immune-Related
Genes and Their Prognostic Values
For the 1593 immune-related genes in TNBC, univariate Cox
analysis showed 304 of them were correlated with DSS time (P <
0.05), in which two genes (DYNC2I2 and MARVELD2) with
HR > 1 can be down-regulated by CKI and 26 genes (PRKCH,
TABLE 1 | Compounds of CKI detected by UPLC-Q-TOF-MS.

Peak
No.

Compounds tR
(min)

Formula Observed
mass (Da)

Calculated
mass (Da)

Mass error
(ppm)

Adducts MS/MS

1 5a,9a-
dihydroxymatrine

2.43 C15H25N2O3 281.1856 281.1860 -1.4 [M+H]+ 263.1784, 245.1643, 218.1799, 148.1144, 134.0966

2 Oxysophoranol 2.93 C15H25N2O3 281.1856 281.1860 -1.4 [M+H]+ 263.1784, 245.1675, 138.0924
3 9a-hydroxymatrine 3.32 C15H25N2O2 265.1912 265.1911 0.3 [M+H]+ 247.1837, 205.1368, 177.1410, 150.1284, 148.1144,

134.0966, 120.0816
4 9a-

hydroxysophocarpine
3.80 C15H21O2N2 261.1607 261.1598 3.4 [M+H]+ 177.1410, 148.1119

5 Cytisine 3.95 C11H15N2O2 191.1184 191.1179 2.6 [M+H]+ 148.0771, 133.0773, 120.0861, 96.0789
6 Oxymatrine1) 4.99 C15H25N2O2 265.1938 265.1911 10.0 [M+H]+ 247.1837, 205.1368, 176.1104, 148.1144, 136.1134,

120.0839
7 Isokuraramine 5.17 C12H18N2O2 223.1464 223.1447 7.6 [M+H]+ 189.1406, 175.1261,
8 Oxysophocarpine 5.29 C15H23N2O2 263.1759 263.1754 1.8 [M+H]+ 245.1675, 203.1196, 177.1410, 150.1284, 136.1134
9 Sophoridine1) 5.63 C15H24N2O 249.1984 249.1961 9.2 [M+H]+ 247.1837, 218.1496, 190.1240, 180.1411, 150.1284,

148.1144, 112.0781
10 Isokuraridin 5.75 C26H30O6 437.1679 437.1669 2.2 [M-H]- 301.0666, 287.0548, 244.0340, 243.0312, 149.0443
11 14b-hydrsophoridine 6.14 C15H25O2N2 265.1905 265.1911 -2.2 [M+H]+ 164.1083, 148.1119
12 Baptifoline 6.28 C15H21O2N2 261.1607 261.1598 3.4 [M+H]+ 243.1485, 115.0962, 114.0930, 96.0829
13 Kushenol Q 6.60 C25H30O7 441.1908 441.1918 -2.6 [M-H]- 109.0301
14 N-methylcytisine 6.67 C12H17N2O 205.1338 205.1335 1.4 [M+H]+ 146.0621, 108.0830
15 Sophoranol 6.80 C15H25O2N2 265.1938 265.1911 10.0 [M+H]+ 247.1805, 150.1309, 148.1144,
16 Lupanine 6.90 C15H25N2O 249.1984 249.1961 9.2 [M+H]+ 231.1861, 166.1249, 150.1309, 148.1144, 136.1134,

122.0991, 114.0930
17 Oxysophoridine 7.56 C15H25N2O2 265.1938 265.1911 10.0 [M+H]+ 247.1837, 245.1658, 188.1485, 168.1395, 150.1281,

148.1117, 122.0954, 112.0772
18 Lamprolobine 7.69 C15H25N2O2 265.1912 265.1911 -0.3 [M+H]+ 247.1837, 245.1675, 188.1457, 150.1284,

148.1144,122.0991
19 Matrine1) 8.49 C15H24N2O 249.1984 249.1961 9.2 [M+H]+ 247.1837, 176.1077, 150.1284, 148.1144
20 Formononetin 9.40 C16H12O4 267.0659 267.0650 3.3 [M-H]- 267.0626, 252.0430, 223.0327
21 Sophocarpine1) 9.50 C15H22N2O 247.1805 247.1805 0 [M+H]+ 245.1675, 179.1566, 150.1284, 148.1144, 136.1134
22 8-lavandulyl

kaempferol
10.79 C26H30O5 421.2064 421.2020 10.0 [M-H]- 379.1642, 271.0573, 149.0493

23 Maackiain 11.25 C16H12O5 283.0606 283.0600 2.1 [M-H]- 255.0638, 240.0447, 211.0762, 185.0567, 137.0223
1) standard components.
September 2021 | Volume 11 | Article 747300

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Compound Kushen Injection TNBC
A B

D

E

F G

C

FIGURE 2 | RNA-seq data analysis for six CKI-perturbed and six control cell line samples. (A, B) PCA for the transcriptome profiles before removing batch effects
(A) and after removing batch effects (B). (C) Hierarchical clustering of 12 samples using Spearman distance. (D) Venn diagram of DEGs calculated by three
methods. (E) High correlation of log2FC calculated by three methods. The correlation coefficient (r) is generated by Spearman’s correlation. (F) Hierarchical clustering
of consistent DEGs detected by three methods. Top 15 up- and down-regulated DEGs are shown in the heatmap. (G) Volcano plot of DEGs. Log2FC and P values
calculated by DESeq2 were used. The red dot represents up-regulated genes (adjusted P < 0.05 and log2FC > log21.5) and the green dot represents down-
regulated genes (adjusted P < 0.05 and log2FC < -log21.5). A total of 28 TME- and prognosis-relevant genes perturbed by CKI were labeled.
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TNFRSF1B, PAG1, LAT2, ARHGAP4, SEL1L3, RASSF2, LPXN,
IL23A, ALDH2, ST8SIA4, HSD11B1, ARHGAP9, STX11,
SLCO2B1, STAT4, FERMT3, GBP2, CTSW, CD7, SLCO3A1,
SEMA4D, SERPINA1, MICA, SIPA1 and RASSF5) with HR < 1
can be up-regulated by CKI (Figure 10A). In the present study,
these 28 genes were considered as key TME- and prognosis-
related genes regulated by CKI. Clearly, the 26 genes were
Frontiers in Oncology | www.frontiersin.org 9
positively associated with the relative abundance of most
infiltrating immune cell populations, while the other two genes
showed negative associations (Figure 10B). GO functional
annotation presented that the 28 CKI-perturbed immune-
related genes were significantly enriched in immune system
process, immune response, regulation of immune response,
adaptive immune response, T cell activation and T cell
A B

D

C

FIGURE 3 | Differences in hallmark or KEGG pathway activities scored per sample by GSVA between CKI-treated and control groups. (A) Differential hallmark
pathway activities in CKI-treated versus control groups. (B) Clustering results of hallmark pathway activities between CKI-treated and control groups. The heatmap
visualizes differential hallmark gene sets (adjusted P < 0.05). (C) Significantly different KEGG functional categories and pathways between CKI-treated and control
groups. The pathways with |log2FC| > 0.5 and adjusted P < 0.05 are visualized. KEGG functional categories and pathways that were significantly enriched in the
CKI-treated group are shown in red; those significantly enriched in the control group are shown in green. (D) Clustering results of KEGG metabolic pathway activities
between CKI-treated and control groups. The heatmap visualizes differential KEGG metabolic pathway (adjusted P < 0.05).
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FIGURE 4 | Differences in immune-related process activities scored per sample by GSVA between CKI-treated and control groups. (A) Clustering results of KEGG
immune system pathway activities between CKI-treated and control groups. (B) Main differential KEGG immune system pathways activated in the CKI-treated group
(P < 0.05). (C) Significantly different GO biological processes (adjusted P < 0.05) correlated with T cells between CKI-treated and control groups. (D) Significantly
different GO biological processes (adjusted P < 0.05) correlated with Th1, Th2, B, NK and NK T cells between CKI-treated and control groups (*0.01 < P < 0.05;
**0.001 < P < 0.01; ***0.0001 < P < 0.001; ****P < 0.0001).
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mediated immunity (Figure 10C). The expression of the 26
genes that up-regulated by CKI were positively correlated with
each other, PD-L1, PD-1 and CTLA4, while the expression of
MARVELD2 and WDR34 that down-regulated by CKI were
Frontiers in Oncology | www.frontiersin.org 11
negatively correlated with the other 26 genes (Figure 10D).
These genes were enrolled to construct a prognostic signature.

After performing LASSO and multivariate Cox regression
analysis, a five-gene signature correlated with prognosis was
A B

DC

FIGURE 5 | Correlations of microenvironment cells and prognostic significance of them in TNBC. (A) Correlations between infiltration of cell types executing anti-
tumor immunity (activated CD4+ T cells, activated CD8+ T cells, CD4+ Tcm cells, CD8+ Tcm cells, CD4+ Tem cells, CD8+ Tem cells, Th1 cells, Th17 cells, activated
DCs, CD56bright NK cells, NK cells, NKT cells) and cell types executing pro-tumor, immune suppressive functions (Treg, Th2 cells, CD56dim NK cells, immature
DCs, macrophages, MDSCs, neutrophils, and pDCs). The correlation coefficient (r) is generated by Spearman’s correlation. The shaded area represents 95%
confident interval. (B) Correlations of the relative abundance of tumor-infiltrating immune cells using Spearman analysis. The stromal score, immune score and tumor
purity were also plotted. A negative correlation is marked with blue and a positive correlation with red. “×” means the corresponding correlation coefficient is
regarded as insignificant (P > 0.05). (C, D) Estimation of the prognostic value of each cell subset by using a univariate Cox proportional hazards model for the
METABRIC cohort (C) and the GSE58812 cohort (D).
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FIGURE 6 | Constructions of TME signatures in the METABRIC cohort. (A, B, D) Consensus clustering (A), hierarchical clustering (B) and k-means clustering (D) of
TNBC patients based on tumor-infiltrating immune cells to classify patients into three groups. (C) Screening for the optional number of clusters with k-means
clustering. (E, F) PCA (E) and t-SNE (F) for dimensional reduction of TNBC patients based on tumor-infiltrating immune cells. The three clusters detected by the
consensus clustering were shown. (G) The relative abundance of tumor-infiltrating immune cells in the three immune clusters. (H) A comparison of stromal score,
immune score and tumor purity among the three clusters. (I) Kaplan-Meier curves of the three immune clusters. Plots were truncated at 15 years, but the analyses
were conducted using all of the data ****P < 0.0001; ns, P > 0.05).
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constructed, in which two genes (DYNC2I2 and MARVELD2)
with HR > 1 were considered as risky genes and three genes
(RASSF2, FERMT3 and RASSF5) with HR < 1 were considered
as protective genes (Figures 11–13). The regression coefficient
for each gene was also generated, and the survival risk score was
computed as follows: risk score = (0.1202 × expression level of
DYNC2I2) + (0.2372 × expression level of MARVELD2) +
(-0.3560 × expression level of RASSF2) + (0.4986 × expression
level of FERMT3) + (-0.5813 × expression level of RASSF5). For
Frontiers in Oncology | www.frontiersin.org 13
the training set, the 206 patients with risk scores higher than the
cutoff value (1.464) were classified into the high-risk group, while
the rest 92 patients were classified into the low-risk group
(Figure 11A). The Kaplan-Meier survival analysis exhibited
that patients in the high-risk group had shorter survival time
in comparison with patients in the low-risk group (Log-rank test
P < 0.001), suggesting the expression levels of the five genes could
effectively discriminate the survival risks of these TNBC patients
(Figure 11C). The C-index was 0.646 in the training set, and the
FIGURE 7 | Unsupervised clustering of TNBC microenvironment phenotypes in the METABRIC cohort. Rows represent tumor-infiltrating immune cells and columns
represent samples.
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FIGURE 8 | The landscape of TME signatures in the GSE58812 cohort. (A) Correlations between infiltration of cell types executing anti-tumor immunity and cell types
executing pro-tumor, immune suppressive functions. The correlation coefficient (r) is generated by Spearman’s correlation. The shaded area represents 95% confident
interval. (B) Consensus clustering of TNBC patients based on tumor-infiltrating immune cells to classify patients into three groups. (C) Unsupervised clustering of TNBC
microenvironment phenotypes. Rows represent tumor-infiltrating immune cells and columns represent samples. (D) The relative abundance of tumor-infiltrating immune
cells in the three immune clusters. (E) A comparison of stromal score, immune score and tumor purity among the three clusters (*0.01 < P < 0.05; **0.001 < P < 0.01;
***0.0001 < P < 0.001; ****P < 0.0001; ns, P > 0.05).
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TABLE 2 | HRs and P values of the covariates in the univariate and multivariate Cox proportional hazards model for DSS.

Variables Univariate Multivariate

HR (95% CI) P HR (95% CI) P

Age 1 (0.98-1.01) 0.638 Not included
Tumor size 1.01 (1-1.02) 0.005 1 (1-1.01) 0.221
Positive lymph nodes 1.13 (1.09-1.16) < 0.001 1.13 (1.1-1.17) < 0.001
PAM50 subtypes Basal Ref Not included

Nonbasal 0.79 (0.54-1.14) 0.208
Immune clusters Immunity low Ref Ref

Immunity medium 0.62 (0.42-0.93) 0.021 0.55 (0.36-0.82) 0.004
Immunity high 0.5 (0.28-0.89) 0.019 0.47 (0.26-0.84) 0.011
Frontiers in Oncology | www.frontiersin.org
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FIGURE 9 | Correlations of PD-L1, PD-1 and CTLA4 expression with survival and comparison of PD-L1, PD-1 and CTLA4 expression among the immune clusters.
(A, C) Correlations of PD-L1, PD-1 and CTLA4 expression with survival in the METABRIC cohort (A) or the GSE58812 cohort (C). (B, D) Differences in PD-L1, PD-1 and
CTLA4 expression among the immune clusters in the METABRIC cohort (B) or the GSE58812 cohort (D) ***0.0001 < P < 0.001; ****P < 0.0001; ns, P > 0.05).
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FIGURE 10 | Roles of 28 TME-relevant genes perturbed by CKI. (A) Differential expression of 28 TME-relevant genes between CKI-treated and control
groups. The P values were generated by the DESeq2 method. (B) Associations between the expression of 28 TME-relevant genes and the relative
abundance of 28 tumor-infiltrating immune cells using Spearman’s correlation based on the METABRIC cohort (*0.01 < P < 0.05; **0.001 < P < 0.01;
***0.0001 < P < 0.001; ****P < 0.0001; ns, P > 0.05). (C) GO enrichment analysis for 28 TME-relevant genes. A total of 13 significant biological processes
with adjusted P < 0.05 are shown. (D) Correlations of the expression of 28 TME-related genes using Spearman analysis based on the METABRIC cohort.
PD-L1, PD-1 and CTLA4 were also plotted. Negative correlation is marked with blue and positive correlation with red. “×” means the corresponding
correlation coefficient is regarded as insignificant (P > 0.05).
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AUC of the ROC curve was 0.70, 0.68, 0.68, 0.68, 0.68 and 0.66
for 1-year, 2-year, 3-year, 5-year, 7-year and 10-year DSS,
respectively, confirming a good predictive efficacy of the
prognostic gene signature (Figure 11E). For the test set, the 83
patients with risk scores higher than the cutoff value (1.464) were
classified into the high-risk group, while the rest 24 patients were
included into the low-risk group (Figure 11B). The Kaplan-
Meier survival analysis showed that patients in the high-risk
group had shorter survival time in comparison with patients in
the low-risk group (Log-rank test P = 0.001), suggesting the
expression levels of the five genes could effectively discriminate
the survival risks of these TNBC patients (Figure 11D). The C-
index was 0.696 in the test set, and the AUC of the ROC curve
was 0.72, 0.73, 0.72, 0.71 and 0.72 for 2-year, 3-year, 5-year, 7-
year and 10-year MFS, respectively, confirming a good predictive
efficacy of the prognostic gene signature (Figure 11F). The
multivariate Cox proportional hazards model also revealed that
the risk score independently predicted a worse DSS in TNBC
(HR, 1.51; 95% confidence interval, 1.27-1.81; P < 0.001;
Table 3). The time-dependent C-index and the time-
dependent ROC curve demonstrated that the addition of risk
scores into the Cox proportional hazards model enhanced the
prognostic efficacy (Figures 11G, H). Higher expression of
DYNC2I2 and MARVELD2 was correlated with worse
prognosis, whereas higer expression of RASSF2, FERMT3 and
RASSF5 was correlated with better prognosis (Figures 12A, B).
As shown in Figures 12C, D, DYNC2I2 and MARVELD2 were
up-regulated in the high-risk group versus the low-risk group,
and RASSF2, FERMT3 and RASSF5 were down-regulated in the
high-risk group versus the low-risk group. The expression of
RASSF2, FERMT3 and RASSF5 that up-regulated by CKI were
positively correlated with each other, PD-L1, PD-1 and CTLA4,
whereas the expression of MARVELD2 and WDR34 that down-
regulated by CKI were negatively correlated with RASSF2,
FERMT3 and RASSF5 (Figures 12E, F). We also analyzed the
expression of PD-L1, PD-1 and CTLA4 in the high- and low-risk
groups. The low-risk group was characterized by a significantly
higher PD-L1/PD1/CTLA4 expression levels, while the high-risk
group with a lower PD-L1/PD1/CTLA4 expression levels
(Figures 12G, H).
DISCUSSION

CKI has been approved by NMPA to treat cancer-induced pain
(11), and the extensive use alone or in combination with
chemotherapy or radiotherapy of CKI in the treatment of
breast cancer has witnessed remarkable therapeutic and
prognostic benefits (12, 16). Meanwhile, a recent study has
proved that CKI reshapes the immune microenvironment of
hepatocellular carcinoma (HCC) by regulating macrophages and
CD8+ T cells (10). Multiple studies have revealed the mechanism
of CKI on TNBC. CKI strongly reduces the migration and
invasion of MDA-MB-231 cells and induces cell cycle arrest
and apoptosis in them (36, 37, 63, 64). Furthermore, CKI has
been found to suppress energy metabolism and DNA repair
Frontiers in Oncology | www.frontiersin.org 17
pathways in MDA-MB-231 cells (63). However, the effects of
CKI on TNBC microenvironment are not fully understood.

In this study, we firstly analyzed the RNA-seq data of CKI-
perturbed TNBC cells and detected 3692 differential genes, and
later found CKI significantly regulated biological pathways
correlated with cell cycle, metabolism and immunity using the
GSVA algorithm. We then estimated the relative quantitative
infiltration levels of 28 immune cell signatures in TNBC patients
from the METABRIC cohort by the ssGSEA algorithm based on
gene expression data. Meanwhile, we classified these patients into
three distinct immune cell infiltration patterns with the
consensus clustering method and then detected 1593 DEGs
among these subgroups. Furthermore, we performed univariate
Cox analysis and selected two genes with HR > 1 that can be
down-regulated by CKI and 26 genes with HR < 1 that can be up-
regulated by CKI. Finally, we constructed a prognostic signature
of five immune-related genes with the LASSO regression method
to predict mortality risks in TNBC patients, and we also
confirmed the predictive capability of this immune gene
signature in another TNBC cohort. Together, this study
detected a signature comprising five immune-related genes
regulated by CKI, which could predict the outcomes of TNBC
patients with a good performance, and these genes have potential
to serve as immune-related biomarkers of CKI on TNBC.

Analysis of hallmark pathway gene signatures found that
MYC targets served as the top enriched pathway and it can be
remarkably inactivated in the CKI treatment group. Earlier
studies indicated that c-Myc is essential for tumor angiogenesis
(65). Furthermore, metabolic pathway analysis presented that
notably up-regulated pathways such as purine metabolism,
pyrimidine metabolism and fatty acid biosynthesis in TNBC
patients (66) were inhibited after CKI treatment. Eventually,
analysis of immunity-related signatures highlighted that CKI
could up-regulate pathways enhancing T, B, NK and NKT cell
activities and down-regulate pathways inhibiting these cells’
functions, which suggested the immunomodulatory potential
of CKI.

We found two genes (MARVELD2 andWDR34) with HR > 1
can be down-regulated by CKI and 26 genes (GBP2, LPXN,
ALDH2, SLCO2B1, SIPA1, SERPINA1, RASSF2, PRKCH,
SEMA4D, FERMT3, TCRVB, RASSF5, ARHGAP9,
ARHGAP4, SEL1L3, LAT2, SLCO3A1, TNFRSF1B, STAT4,
MICA, STX11, PAG1, CD7, ST8SIA4, HSD11B1 and CTSW)
with HR < 1 can be up-regulated by CKI. Meanwhile, these genes
were involved in multiple biological processes relevant to
immunoregulation, such as immune system process, immune
response, regulation of immune response, adaptive immune
response, T cell activation and T cell mediated immunity.
Therefore, we considered that CKI might increase immune
activities and improve patients’ prognosis by down-regulating
the risky genes and up-regulating the protective genes.
Interestingly, all the 26 genes that up-regulated by CKI were
positively correlated with PD-L1, PD-1 and CTLA4, which
suggested that CKI might have potential to enhance the
patients’ sensitivity for immune checkpoint inhibitors when
combined with them.
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The five-gene signature that we built for predicting patient
outcome consisted of two risky genes (MARVELD2 and
DYNC2I2) and three protective genes (RASSF2, FERMT3 and
RASSF5). For the two risky genes, the prognostic value of
Frontiers in Oncology | www.frontiersin.org 18
DYNC2I2 in breast cancer has been studied in former works,
while that of MARVELD2 has not. For DYNC2I2 (also known as
WDR34), an integrated bioinformatics study shows that high
DYNC2I2 mRNA expression is correlated with shorter overall
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FIGURE 11 | The prognostic value of the five-gene signature. (A, B) The distribution of risk scores, survival time, status and prognostic gene expression patterns for
the 298 patients in the testing set (A) or the 107 patients in the test set (B). For the METABRIC cohort, plots were truncated at 15 years, but the analyses were
conducted using all of the data. (C, D) Kaplan-Meier curves of patients in the high- and low-risk groups in the METABRIC cohort (C) or the GSE58812 cohort (D).
(E, F) ROC analysis of the five-gene signature for prediction of survival risk in the training set (E) or the test set (F). (G, H) Time-dependent C-index curves (G) or
time-dependent ROC curves (H) with two Cox proportional hazards models for DSS (based on the METABRIC cohort); one included two covariates (tumor size and
number of positive lymph nodes), and the other added immune clusters as covariates. The C-index was internally validated using Bootstrap cross validation for 1000
times. The significant difference in the C-index and AUC was observed after one year.
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survival and relapse-free survival in breast cancer patients (67),
which is consistent with our finding that DYNC2I2 could serve as a
risky factor in TNBC. DYNC2I2 is also found to play oncogenic
roles in the progression of HCC (68), whereas it is shown as a
Frontiers in Oncology | www.frontiersin.org 19
tumor-suppressor molecule in human oral cancer (69). With regard
to MARVELD2, pathogenic mutations of this gene cause autosomal
recessive non-syndromic hearing loss (DFNB49) (70), nevertheless,
little is known about the roles of MARVELD2 in cancer.
TABLE 3 | HRs and P values of the covariates in the univariate and multivariate Cox proportional hazards model for the risk score.

Variables Univariate Multivariate

HR (95% CI) P HR (95% CI) P

Age 1 (0.98-1.01) 0.638 Not included
Tumor size 1.01 (1-1.02) 0.005 1 (0.99-1.01) 0.733
Positive lymph nodes 1.13 (1.09-1.16) <0.001 1.12 (1.09-1.16) <0.001
PAM50 subtypes Basal Ref Not included

Nonbasal 0.79 (0.54-1.14) 0.208
Risk score 1.51 (1.28-1.78) <0.001 1.51 (1.27-1.81) <0.001
Septe
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FIGURE 12 | Gene expression of DYNC2I2, MARVELD2, RASSF2, FERMT3 and RASSF5. (A, B) Correlations of DYNC2I2, MARVELD2, RASSF2, FERMT3 and
RASSF5 expression with survival time in the METABRIC cohort (A) or the GSE58812 cohort (B). (C, D) Correlations of DYNC2I2, MARVELD2, RASSF2, FERMT3
and RASSF5 expression with survival risks in the METABRIC cohort (C) or the GSE58812 cohort (D). (E) Differential expression of DYNC2I2, MARVELD2, RASSF2,
FERMT3 and RASSF5 between CKI-treated and control groups. The P values were generated by the DESeq2 method. (F) Correlations of the expression of
DYNC2I2, MARVELD2, RASSF2, FERMT3 and RASSF5 using Spearman analysis based on the METABRIC cohort. PD-L1, PD-1 and CTLA4 were also plotted.
Negative correlation is marked with blue and positive correlation with red. “×” means the corresponding correlation coefficient is regarded as insignificant (P > 0.05).
(G and H) Difference in PD-L1, PD-1 and CTLA4 expression among risk groups in the METABRIC cohort (G) or the GSE58812 cohort (H) (*0.01 < P < 0.05;
**0.001 < P < 0.01; ***0.0001 < P < 0.001; ****P < 0.0001; ns, P > 0.05).
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As for the three protective genes, the prognostic value of
FERMT3 and RASSF2 has been noted in breast cancer, while that
of RASSF5 has not. With regard to FERMT3 (also known as
Kindlin-3), whether this gene plays a suppressing or promoting
role in breast cancer progression is still controversial. It has been
reported that reduced expression of FERMT3 in breast cancer
promotes metastasis formation by mediating b3-integrin
activation (71). Conversely, this gene is also found to enhance
breast cancer progression and metastasis by activating Twist-
mediated angiogenesis (72). Moreover, FERMT3 expressed in
the TME is correlated with a poor prognosis of breast cancer
patients (73), which is inconsistent with our finding that
FERMT3 could serve as a protective prognostic factor in
TNBC. These results highlight the complex role of FERMT3
which could exhibit dual effects, so the prognostic value of this
Frontiers in Oncology | www.frontiersin.org 20
gene in breast cancer deserve more attention. RASSF2 and
RASSF5 belong to the RASSF family that shares a region of
homology (the Ras association domain), and RASSF proteins
functions as tumor suppressors by interacting either directly or
indirectly with activated Ras and regulating cell growth signaling
(74). RASSF2 has been reported as a tumor suppressor to be
frequently inactivated by promoter methylation in breast cancer
and to inhibit the growth of breast cancer cell lines both in vitro
and in vivo (75). Contrarily, although RASSF2 hypermethylation
predicts a worse prognosis in squamous cervical cancer (76),
nasopharyngeal carcinoma, gastric cancer and Ewing sarcoma, it
has also been shown as an independent indicator of better
prognosis (77) in breast cancer, which is inconsistent with our
finding that high RASSF2 levels might be a protective prognostic
factor in TNBC. Therefore, more studies in larger cohorts on the
A B

D E

C

FIGURE 13 | Correlations of the expression of DYNC2I2 (A), MARVELD2 (B), RASSF2 (C), FERMT3 (D) and RASSF5 (E) with 28 microenvironment cells (based on
the METABRIC cohort). Correlation coefficients were calculated by Spearman analysis. The color represents P values, and the size of the circles represents the
absolute value of correlation coefficients. Larger circles represent bigger correlations.
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clinical involvement of RASSF2 in breast cancer should be
performed. With regard to RASSF5 (also called NORE1), this
gene encodes at least three distinct isoforms and is clearly
regarded as a Ras effector and tumor suppressor, and its
methylation has been found in a variety of tumor cell lines
(including breast) and solid tumors (78–80), while the prognostic
value of RASSF5 in breast cancer has hardly been reported.
Taken together, apart from MARVELD2, the crucial roles of all
the rest four genes in tumorigenesis have been demonstrated,
and meanwhile large-scale multi-center clinical studies on these
genes are needed because conflicting results often occur.

In the current study, since we haven’t found transcriptome
data of CKI on TNBC patients or experimental animals in open-
source databases so far, we used TNBC cell line samples with or
without CKI perturbation for further analysis. This led to our
findings cannot totally reflect on in vivo biological effects to some
extent. Furthermore, we mainly applied the TNBC cohort with a
relatively large sample size, RNA expression data and long-term
survival information publicly accessed in the most authoritative
breast cancer database METABRIC, so whether our results could
be applied into the real-world population of TNBC patients
should be further validated considering the high heterogeneity of
TNBC. Ultimately, given that our findings came from
comprehensive in silico analysis, additional evidence from
larger TNBC cohorts with multi-omics profiles and long-term
outcome information will be pivotal in supporting our results. In
summary, our study integrates high throughput transcriptome
data analysis and multiple machine learning methods for the first
time to disclose the possible immune-related mechanisms and
biomarkers of CKI on TNBC. Our findings may be useful in
further studying the immune-based subtyping and prognostic
biomarkers of TNBC, and our analytic methods would lay the
foundation for further discovering possible therapeutic
biomarkers of CKI on TNBC.
CONCLUSIONS

In conclusion, this study proposes a predictive immunotherapy
signature of CKI on TNBC, which would provide more evidence
for survival prediction and treatment guidance on TNBC and a
paradigm for exploring immunotherapy biomarkers of
compound medicines. Meanwhile, further biological
experiments and large-scale multi-center clinical studies are
Frontiers in Oncology | www.frontiersin.org 21
warranted to validate our findings since this study was
conducted based on computational analysis.
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