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Conventional non-local total variation (NLTV) approaches use the weight of a non-local
means (NLM) filter, which degrades performance in low-dose cone-beam computed
tomography (CBCT) images generated with a low milliampere-seconds (mAs) parameter
value because a local patch used to determine the pixel weights comprises noisy-
damaged pixels that reduce the similarity between corresponding patches. In this
paper, we propose a novel type of NLTV based on a combination of mutual information
(MI): MI-NLTV. It is based on a statistical measure for a similarity calculation between the
corresponding bins of non-local patches vs. a reference patch. The weight is determined
in terms of a statistical measure comprising the MI value between corresponding non-local
patches and the reference-patch entropy. The MI-NLTV denoising process is applied to
CBCT images generated by the analytical reconstruction algorithm using a ray-driven
backprojector (RDB). The MI-NLTV objective function is minimized based on the steepest
gradient descent optimization to augment the difference between a real structure and
noise, cleaning noisy pixels without significant loss of the fine structure and details that
remain in the reconstructed images. The proposed method was evaluated using patient
data and actual phantom measurement data acquired with lower mAs. The results show
that integrating the RDB further enhances the MI-NLTV denoising-based analytical
reconstruction algorithm to achieve a higher CBCT image quality when compared with
those generated by NLTV denoising-based approach, with an average of 15.97% higher
contrast-to-noise ratio, 2.67% lower root mean square error, 0.12% lower spatial non-
uniformity, 1.14% higher correlation, and an average of 18.11% higher detectability index.
These quantitative results indicate that the incorporation of MI makes the NLTV more
stable and robust than the conventional NLM filter for low-dose CBCT imaging. In
addition, achieving clinically acceptable CBCT image quality despite low-mAs projection
acquisition can reduce the burden on common online CBCT imaging, improving patient
safety throughout the course of radiotherapy.

Keywords: low-dose cone-beam computed tomography, mutual information, non-local total variation, ray-driven
backprojector, low mAs, image-guided radiation therapy
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INTRODUCTION

Cone-beam computed tomography (CBCT) is used as an image
guidance system in many radiotherapy institutions (1). It
provides a transformation through registration with a reference
image that can be used to adjust the patient’s position to align
appropriately with the radiation isocenter, ensuring that the
planned dose is accurately delivered to the patient during
treatment (2–5). Although there is currently no clinical
application of dual-energy CBCT in radiotherapy, with the
increase in the use of CBCT imaging devices, the CBCT
imaging guidance can potentially be extended to dual-energy
capabilities to improve tumor visualization or localization in
patients. The only method that is readily adaptable to existing
commercial scanners involves two sequential CBCT scans at
different tube voltage settings for a high-energy kilovoltage peak
and a low-energy kilovoltage peak. Thus, tissues and other
materials can be distinguished by exploiting the nature of X-
ray attenuation changes in different photon spectra. However,
the material decomposition process is highly sensitive to noise
fluctuations owing to the overlap of x-ray spectra at low and high
energies. Even this approach comes at the expense of doubling
radiation dose. Accordingly, the need for patient exposure
management is emerging. Particularly, considering the high
radiation sensitivity of pediatric cancer patients, early detection
of cancer, and increased life expectancy of cancer patients,
it is necessary to appropriately manage the imaging dose
accompanying image-guided radiation therapy (IGRT),
according to the principle of “as low as reasonably achievable”
(6, 7). The report of the American Association of Physicists in
Medicine (AAPM) Task Group 75 also emphasizes the need for
an imaging dose management in the field of radiation oncology
(8). Of note, the CBCT image dose management has a correlation
with the image quality. In general, it is correlated with lower dose
values when the milliampere-second (mAs) parameter related to
the tube current and exposure time per projection is adjusted
toward a lower value (9, 10), resulting in excessive noise in the
reconstructed CBCT images. If a clinically acceptable CBCT
image quality can be obtained with a lower mAs of the
projection data, the risk of radiation exposure to imaging doses
is minimized (11). Therefore, it is necessary to develop an
algorithm that can improve the CBCT image quality while
appropriately managing the indication-oriented patient dose.

CBCT reconstruction generates a volumetric image from the
projection data acquired at various angular positions during a
single gantry rotation. The reconstruction problem is formulated
as a set of mathematical relations considering the scanning
geometry between the volume and projections and is solved
through various assumptions and strategies. These solutions
generally fall into the three broad categories of analytical,
iterative, and deep learning approaches. Analytical methods
calculate the volume directly from the voxel-driven backward
projection transform, describing pixels of projections
corresponding to each value of the voxels. Certain types of
analytical methods are based on a filtered backprojection (FBP)
algorithm involving two main steps, first performing filtering on
each set of projection data and then backprojecting the filtered
Frontiers in Oncology | www.frontiersin.org 2
projection data (12–14). CBCT image quality is biased via an
advanced denoising technique (10, 15–17) because the
performance relies on the filtering operation. The total
variation (TV) tended to keep the edge information too
smooth by uniformly penalizing the local image gradient (18,
19). Anisotropic TV was introduced to reduce the blurriness at
edge regions by deriving an adaptively weighted local image
gradient (17). However, these local edge detection operators have
limitations in reliably separating structures with low contrast to
noise. NLTV was developed to allow for more global searches
and non-uniform weights, depending on non-local means
(NLM) filter, which accounts for the difference in intensity
between pixel pairs (10, 20, 21). This NLM filter can reduce
the similarity between corresponding patches when the patches
used to determine the pixel weights contain noise-damaged
pixels. Conversely, iterative reconstruction methods continually
refine the volume to find an optimal solution by repetitively
performing forward and backward projection operations.
Accurate reconstructions have been realized by integrating
physical, statistical, and/or heuristic modeling of a CT system
(22–26). Its efficacy has been improved by incorporating a
compressed sensing theory (19, 20, 27). A disadvantage of
iterative techniques is that the noise properties are non-linear
and unpredictable across the field of view (FOV) as compared to
linear noise in analytical methods. Several deep learning-based
reconstructions have recently been introduced as supervised
training using paired images and unsupervised training using
unpaired images (28–34). Achieving satisfactory results requires
sufficient training data. The lack of stability and injectivity of
deep learning approaches to image reconstruction poses
potential problems that require further investigation (35).

In a previous study, we implemented a conventional non-
local total variation (NLTV) based on NLM filter that focused
mainly on optimizing the performance of the denoiser on the
projection domain (10). However, in general, because the
number and resolution of the projections are larger than those
of the reconstructed images, the calculation time is longer than
when the denoiser is applied in the image domain. Therefore, in
this study, we propose a mutual information-based NLTV (MI-
NLTV), which is a new type of NLTV applied to the image
domain. To our knowledge, this study, integrating MI into
NLTV, is the first to augment the image quality of low-dose
CBCT generated with a low mAs parameter value. In particular,
this approach is effective when used in conjunction with an
analytical reconstruction algorithm using a ray-driven
backprojector (RDB) (14). The RDB tends to be susceptible to
aliasing artifacts but is potentially more accurate because it
maintains the exact geometric path of the rays forming the
projection data. The algorithm consists of two main steps. The
FBP reconstruction algorithm based on RDB is first performed
by calculating the length of the intersection between the ray
paths and each voxel to be reconstructed. A post-refinement
process is subsequently performed using the MI-NLTV denoiser
by minimizing the weighted total variation objective function
based on the steepest gradient descent optimization with an
adaptive step size. This minimization process removes noisy
pixels remaining in the reconstructed images and cleans the
October 2021 | Volume 11 | Article 751057
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edges without losing a large amount of fine structure and details.
The effectiveness of the proposed method is demonstrated using
patient data and actual measurement data based on the
Catphan®503 and anthropomorphic head-and-neck phantoms.
METHODS

Ray-Driven Backprojector Based on X-Ray
Transmission Length Calculation
A circular pre-weighting factor on each projection was applied to
circumvent the intensity drop caused by the cone angle effect
(17). A one-dimensional (1D) ramp filter using the product of
the Shepp–Logan filter and raised cosine window function was
thereafter applied to repress the high frequency in the frequency
domain (10). The ramp filter was multiplied by the Fourier-
transformed values from each line parallel to the horizontal
direction of the pre-weighted projection via 1D Fourier
transformation. The filtered projection was obtained by
applying an inverse 1D Fourier transformation.

In the proposed approach, the backprojection step is
performed after this filtering step to achieve a volumetric
image from the filtered projection data. In contrast to the use
of a pixel-driven backprojector (PDB) that determines the
corresponding location on the detector from the voxels to be
reconstructed, in this work, we developed an RDB based on ray
tracing (36). This RDB is potentially more accurate than a PDB
because it retains the exact geometry of the rays that form the
projection data (14). It computes the length of the intersection
between the ray paths and each voxel and is expressed as follows:

mj =
Skl

jkPk
Skljk

, (1)

where m j is the attenuation coefficient to be reconstructed on the
j th indexed voxel (Vj) in the volume, Pk is the value of the k-th
indexed pixel in the filtered projection data, and ljk is a voxel-
dependent weighting factor that is the length of the intersection
between Vj and the ray originating from Pk (l

jk = 0, if there is no
intersection). This ray-tracing process is applied to all the pixels
in the projection data. First, all the mj values are set to zero. To
determine the voxels that affect Pk, a backprojection ray (ak) that
originates from the center position of Pk and travels back to
the focal point is considered. The intersections between ak and
the voxels in the volume are subsequently calculated using the
Siddon method. At each voxel Vj where ak passes, the current
value of mj is increased by ljkPk. The volume is finally normalized
by dividing each mj by Skl

jk :

Mutual Information-Based Non-Local Total
Variation Denoiser
A weighted total variation denoising process is applied on the
reconstructed images to enhance the intensity difference between
the striking features and unsolicited noise by determining the
similarities between non-local patches (10, 20, 37, 38). When ∅i,j

is the area affected by the center point of each patch, the state of
the stationary patch is determined by calculating the statistical
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measurements with the moving patches included in the search
set. The MI (39, 40) is used as a metric of image matching that
does not require a linear relationship between the corresponding
intensities. If the stationary patch and the moving patch do not
match, then the MI has a low value. A stationary patch with a
pattern comprising noise-corrupted pixels without noticeable
features is considered a high-entropy region. Therefore, it is
likely to be in the smoothing state. Conversely, the area to be
placed in the preserving state may be a patch with low entropy
and a high MI value. Moreover, the MI value is less than or equal
to the amount of marginal entropy for each patch. Considering
these characteristics, a statistical measure M(∅i,j) is defined
as follows:

M(∅i,j ) =
MI(IA, I

W
B )

H(IA)
(2)

Here, IA indicates a region in the stationary patch and the
search set for the non-local patch, IB is defined as Ω. IWB implies
all the non-local patches included in the search set corresponding
to the stationary patch.

MI(IA, IB) = H(IA) + H(IWB ) − H(IA, I
W
B ), (3)

where H(IA)and H(IWB ) represent the marginal entropy of the
stationary patch and moving patch, respectively. These entropies
are defined as follows:

H(IA) = −Si∈IApi log2 pi, (4)

H(IWB ) = −Si∈IWB
pi log2 pi, (5)

H(IA, I
W
B ) = −Si∈IASj∈IWB

pi,j log2 pi,j : (6)

Here, Pi and Pi,j are the marginal probability distribution and
the joint probability distribution of IA and IWB , respectively. For
the probability distributions required to calculate these entropies,
a joint histogram is used to consider the relationship between the
intensities of the corresponding pixels in two stationary and
moving patches. The joint histogram is developed by scaling the
intensity value of each patch according to the binning size that is
adjusted such that the maximum value of each axis of the joint
histogram equals the specified value.

The penalty with different weights based on M(∅i,j) is
expressed as follows:

wj = exp ( − (Vj=t)
rM(∅i,j )), (7)

where j identifies the index of the voxel element in the image, and
VJ is the jth voxel element. wj denotes the weights between the
voxels in Ω and the current voxel j. A patch size is defined to be
(2a + 1) × (2a + 1) with unit variance and a was set to 2, such that
the patch size is 5 × 5 in this study. The non-local search extent is
21 × 21 with unit variance. (Vj/t)r is the spatially encoded factor
that reduces the weighted averaging effect at high-intensity
localities to maintain the contrast (37). The normalization
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lee et al. Mutual Information-Based NLTV
factor t ensures that the Vj/t ratio exceeds 1. It was set to 90% of
the cumulative distribution function histogram that accumulates
the intensity at each voxel of the reconstructed image. The
scaling factor g ensures smaller weights for higher intensities
(in this study, r = 10). Figure 1 depicts the MI-NLTV weighting
map calculated using Equation (7) on the CBCT image. The dark
regions indicate the preservation voxels, and the light regions
represent voxels affected by smoothing.

Minimizing the weighted TV objective function in Equation
(8) indicates that the edges with high contrast relative to the non-
local patches are preserved and that the noisy voxels with low
contrast are smoothed.

R(V) = SjR(Vj) = SjwjD(Vj), (8)

D(Vj) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(V(x,y) − V(x−1,y))

2 + (V(x, y) − V(x,y−1))
2

q
, (9)

where V(x,y) is the voxel element at the 2D position (x, y). The
weighted TV objective function is minimized based on the
Frontiers in Oncology | www.frontiersin.org 4
steepest gradient descent method with an adaptive step size
that is expressed as follows:

Vt+1
j = Vt

j − l∇ R(Vj)= ∇R(V)j j, (10)

l = g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj(V

t
j )

2
q

, (11)

where l is an adaptive parameter that reduces the smoothing
degree as the iteration step progresses (10). By using the square
root of all voxel elements updated in each step, l is enforced to
gradually smaller values with an increase in the number of
iterations. To escape local minimization due to sudden
changes, a scaling parameter g is used and set to an initial
value of 1.0. If R(V) in the current iteration step is larger than
that in the preceding step, this value is linearly decreased by
multiplying a constant value (rred = 0.8. ∇R(Vj) is the gradient of
the objective function R(V) at the jth indexed pixel. The root sum
square of the gradient calculated at all the pixels, |∇R(V)|, is
required for the normalized gradient calculation. The expression
below is provided for clarity.
FIGURE 1 | Weight map of the MI-NLTV denoiser that composes the MI-based statistical measure and the spatially encoded factor. The first row shows the original
image generated by applying the analytical reconstruction algorithm based on RDB. The ROI in the left image identifies the location of the background for CNR
calculation, and the ROI in the middle is for SNU calculation. The second row shows the corresponding weight map. These weight maps are displayed at the
window (width and level) settings of (0.2, 0.9).
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∇R(Vj) =
∂R(V)
∂Vj

=
∂R(V)
∂V(x,y)

=

w(x,y)
2V(x,y)−V(u−1,v)−V(u,v−1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(V(x,y)−V(x−1,y))
2+(V(x,y)−V(x,y−1))

2
p

+w(x+1,y)
V(x,y)−V(x+1,y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(V(x+1,y)−V(x,y))
2+(V(x+1,y)−V(x+1,y−1))

2
p +w(x,y+1)

V(x,y)−V(x,y+1)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(V(x,y+1)−V(x−1,y+1))

2+(V(x,y+1)−V(x,y))
2

p

0
BBBBBB@

1
CCCCCCA
,

(12)

∇R(V)j j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj(∇ R(Vj))

2 :
q

(13)

The number of iterations is fine-tuned for the gradient
descent optimizer. In this study, it was set to 20, which was the
optimal number of iterations. The pseudo-code of the MI-NLTV
denoiser considers all the abovementioned components and is
presented in Appendix A.

Experimental Studies
The Catphan®503 phantom (The Phantom Laboratory Inc.,
Salem, NY) and anthropomorphic phantom CIRS ATOM 701
(Computerized Imaging Reference Systems Inc., Norfolk, VA,
USA) were used for CBCT acquisition. The acquisitions were
performed on an Infinity™ LINAC system with XVI R5.0 (Elekta
Limited, Stockholm, Sweden) in its service mode. The
Catphan®503 phantom includes different modules for assessing
the quality of 3D images. CBCT projection acquisitions were
performed with full gantry rotation in a small FOV protocol
using the S20 collimator and F0 filter cassettes into the kV source
arm. The F0 filter cassette is a blank filter and has no effect on the
X-ray beam. The S20 gives a nominal irradiation field width of
27.6 cm at the isocenter. The total number of scan projections
was 670 for the Catphan®503 phantom and 655 for the
anthropomorphic phantom. The size of the X-ray projection at
the detector panel was 409.6 mm2 × 409.6 mm2, containing
1,024 × 1,024 pixels. The source to detector panel distance and
the source to axis distance were 1,536 and 1,000 mm,
respectively. The low-dose acquisition protocol settings were
100 kVp and 0.1 mAs during each projection. The
reconstructed CBCT images of the phantom were generated
with 512 × 512 × 100 voxels, comprising 0.5 × 0.5 × 1.0 mm3

per voxel. For quantitative comparison, a high-dose CBCT with
increased mAs settings (100 kVp and 1.6 mAs) was scanned as a
benchmark image. A transformation to the Hounsfield unit
(HU) was performed for all the reconstructed CBCT images.
The quantifications of image quality were based on contrast-to-
noise ratio (CNR), root mean square error (RMSE), spatial non-
uniformity (SNU), and correlation (17, 19). Task-based image
quality assessments were also performed using an open-source
software (imQuest, Duke University, Durham, NC, USA), which
includes a task-based transfer function (TTF) for the spatial
resolution and a noise power spectrum (NPS) for the noise
texture and magnitude (41, 42). The combined results of NPS
and TTF were used to evaluate the detectability index (43).
Frontiers in Oncology | www.frontiersin.org 5
For the detectability index calculation, a non-prewhitening
matched filter (NPW) and 2D option were used as an
observation model and NPS interpolation method, respectively.

The Catphan®503 CTP404 module was used for evaluating
the correlation, the RMSE, the CNR, and the TTF. A central
region of interest (ROI) shown in the left column of the first row
in Figure 1 identifies the location of the background for CNR
calculation. The TTF was calculated using a circular ROI around
each density insert to derive an edge spread function followed by
Fourier Transform. Twenty-one consecutive axial slices
including density inserts were selected for analysis. The
Catphan®503 uniformity module was used for calculating the
SNU and the NPS. The ROIs for SNU calculation are shown in
the middle column of the first row of Figure 1. The 104 ROIs for
NPS calculation were selected on 13 consecutive axial slices (8
ROIs/slice × 13 slices = 104 ROIs). Overall frequencies were
compared using 1D profiles. To visually compare spatial
resolution differences with bin sizes in the joint histogram,
profiles were obtained using a resolution gauge in the
Catphan®503 phantom.

A patient with pelvic bone metastases was also scanned for
clinical data collection. The patient projection data were acquired
by a Versa HD™ LINAC system with XVI R5.0 in its clinical
mode. The S20 collimator, F0 filter, x-ray tube current, pulse
duration per projection, and the resolution and voxel size of the
reconstructed images were set to the same values as those of
the phantom acquisition. In contrast, the voltage of the x-ray
tube was set to 120 kVp, and 185 projections were obtained,
lower than the number of projections obtained during the
phantom scan by a factor of 0.28, including partial scans
within 200° instead of a full rotation. The resolution of each
projection was 512 × 512 pixels, which was lower than the
phantom setting.
RESULTS

The MI-NLTV denoiser was applied to CBCTs generated by
analytical reconstruction algorithms using PDB or RDB
based on the Catphan®503 phantom. Its performance was
compared with that observed in case of the NLTV based on an
NLM filter, as well as without a denoiser. Figure 2 shows a
representative slice of the CBCT reconstructed by the analytical
reconstruction algorithm based on the PDB without the
denoiser and the PDB followed by NLTV and MI-NLTV as
well as the RDB without the denoiser and the RDB followed
by NLTV and MI-NLTV. The RDB evidently achieved
substantial gains when no denoiser was used and when NLTV
and MI-NLTV were employed. The artifacts were significantly
suppressed in the CBCT images processed by the proposed
RDB in conjunction with the MI-NLTV denoiser compared
with those processed through other approaches. In particular,
the CBCT images followed by the MI-NLTV denoiser
were smoother and exhibited fewer artifacts for both PDB and
RDB, resulting in slightly lower spatial resolution compared
to NLTV.
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A B

C D

E F

G

FIGURE 2 | Comparison between the same views of the CBCT images generated by applying the analytical reconstruction algorithm based on (A) PDB, (B) RDB,
(C) PDB followed by NLTV, (D) RDB followed by NLTV, (E) PDB followed by MI-NLTV, and (F) RDB followed by MI-NLTV using the Catphan®503 phantom.
(G) Benchmark image. These images are displayed at the window width (975 HU) and the window level (0 HU).
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In addition, we calculated the CNR for each image for all
reconstructed CBCTs included in the Catphan®503 CTP404
module. The CTP404 module contains seven sensitometry targets
made from Delrin™, Teflon, air, polymethylpentene (PMP), low-
density polyethylene (LDPE), polystyrene, and air. By selecting a
central ROI and seven ROIs within the density target, the mean HU
values and standard deviation were recorded to calculate the CNR
for each CBCT image. The relative image contrast between the
corresponding regions could be compared. Table 1 provides the
average value of the CNRs calculated for each insert in the CBCT
images obtained based on the analytical reconstruction algorithms
followed by no denoiser, NLTV, and MI-NLTV. Table 2 provides
the statistical significance (p-values) of comparing the CNR values
of six combinations to determine whether the CNR values are
statistically higher or lower for each type of insert.

The NLTV and MI-NLTV show improved CNRs in all ROIs
when compared with those obtained with PDB or RDB without a
denoiser. Compared with PDB+NLTV and RDB+NLTV, PDB
+MI-NLTV and RDB+MI-NLTV showed higher CNRs in all
ROIs except for those of Teflon. In the case of Teflon, which
has the highest HU of the seven inserts, MI-NLTV combinations
showed statistically insignificant results because the p-values were
greater than 0.05 when compared with the NLTV combinations.
The reason is that both NLTV and MI-NLTV use spatially
encoded factors to maintain high-intensity contrast in Teflon.
Although combining RDB in MI-NLTV yielded slightly higher
CNR values than combining PDB in MI-NLTV (except for
polystyrene), these values are considered statistically similar.

Figure 3 shows the NPS curves and the TTF curves at seven
density inserts for all reconstruction types. The eight square ROIs
were placed at different positions in the Catphan®503 uniformity
module, as shown on the right side in Figure 3A. The NPS peaks
Frontiers in Oncology | www.frontiersin.org 7
were lower for all RDB types than their corresponding PDB types.
The lowest NPS peak value was obtained as 1,139 HU2mm2 for
RDB+MI-NLTV. The NPS average spatial frequency shifted to
lower frequencies when combining NLTV or MI-NLTV with PDB
or RDB. Numerically, the NPS average spatial frequencies were
obtained as 0.29 mm-1 for PDB, 0.27 mm-1 for RDB, 0.13 mm-1 for
PDB+NLTV, 0.17 mm-1 for RDB+NLTV, 0.11 mm-1 for PDB+MI-
NLTV, and 0.12 mm-1 for RDB+MI-NLTV. In terms of spatial
resolution, TTF values tended to decrease as the noise magnitude
decreased for all ROIs. In particular, it should be noted that MI-
NLTV denoiser did not appear to enhance the whole spatial
resolution while reducing noise magnitude. In the comparison of
MI-NLTV and NLTV, TTF50% values with MI-NLTV denoiser
were lower than with NLTV denoiser for both PDB and RDB.
Conversely, TTF10% values showed that MI-NLTV was more
dominant than NLTV. As such, similar spatial resolutions were
found between MI-NLTV and NLTV when considering TTF50%
and TTF10%. However, the combined results of the NPS and the
TTF showed that the detectability index of the seven density inserts
was higher with RDB+MI-NLTV than with other reconstruction
types. This means that the CBCT image quality can be improved
with RDB+MI-NLTV because the noise reduction effect is much
greater than the spatial resolution reduction.

Table 3 provides three quantitative measures (RMSE,
correlation, and SNU) obtained from the CBCT images
generated based on six combinations. After calculating the
RMSE, correlation, and SNU for each image of all reconstructed
slices included in the Catphan®503 module section, the average
values were recorded. A paired t-test was also used to determine
whether the paired measurements of the proposed and alternative
combinations were statistically significant. The p-values obtained
by the paired t-test are listed in Table 4.
October 2021 | Volume 11 | Article 751057
TABLE 1 | Comparison of contrast-to-noise ratio (CNR) values at seven ROIs in the CBCT image generated by analytical reconstruction algorithms based on Pixel-
driven backprojector (PDB) and Ray-driven backprojector (RDB) using low-dose projection data of the Catphan®503 phantom.

ROI Material of insert PDB RDB PDB+non-local total variation (NLTV) RDB+NLTV PDB+mutual information (MI)-NLTV RDB+MI-NLTV

1 Delrin™ 2.5 10.5 17.2 21.1 25.3 25.8

2 Teflon 5.6 19.4 28.7 31.2 28.4 29.7
3 Air 5.9 27.1 40.3 51.8 44.1 61.6
4 Polymethylpentene 0.6 2.8 4.3 6.4 6.2 8.2
5 Low-density polyethylene 0.1 0.6 0.8 1.3 1.2 1.7
6 Polystyrene 0.3 1.0 2.4 2.2 3.8 2.9
7 Air 5.9 27.9 43.2 54.4 54.7 65.4
TABLE 2 | Statistical analysis comparing the CNR values of RDB+MI-NLTV vs. different combinations and PDB+MI-NLTV vs. PDB+NLTV for each type of insert using
the paired t-test.

p-value Delrin™ Teflon Air Polymethylpentene Low-density polyethylene Polystyrene Air

RDB+MI-NLTV vs.
PDB

0.000 0.000 0.000 0.000 0.000 0.000 0.000

RDB 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PDB+NLTV 0.000 0.432 0.000 0.000 0.000 0.000 0.000
RDB+NLTV 0.000 0.131 0.000 0.000 0.000 0.000 0.000
PDB+MI-NLTV 0.427 0.249 0.000 0.000 0.005 0.000 0.000
PDB+MI-NLTV vs.
PDB+NLTV

0.000 0.646 0.001 0.000 0.000 0.000 0.000
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The RMSE was calculated to assess the differences in the
reconstructed and benchmark images, whereas the correlation
evaluates the concordance with the benchmark image. For the
RMSE and correlation measurements, a circular measurement
region completely inside the phantom was chosen, as shown in
Figure 2G; the surrounding air region of the phantom was
excluded. The SNU was also calculated by selecting five ROIs
with uniform intensity distribution on the Catphan®503
uniformity module, one being located in the center and four in
peripheral positions symmetrically arranged around the center.
The RDB could yield a lower RMSE, higher correlation, and lower
SNU compared with the PDB. Applying either the NLTV or MI-
NLTV denoiser produced better results regardless of employing
the PDB or RDB for the Catphan®503 phantom for a low-dose
scenario. The correlation values varied widely between PDB and
RDB but were close after the NLTV or MI-NLTV denoisers were
applied. When MI-NLTV was applied to PDB, the recorded
correlation was always better and the recorded RMSE and SNU
were worse than when NLTV was applied, whereas RDB followed
by the MI-NLTV denoiser produced the lowest RMSE, highest
correlation, and lowest SNU. Except for the correlation between
the RDB followed by NLTV vs. the proposed method, there was
statistical significance between the proposed method and five
combinations because all p-values were less than 0.05.

Figure 4 compares the maximum intensity projections (MIPs)
of the low-dose CBCT images reconstructed by the RDB without
denoiser, RDB followed by NLTV, and RDB followed by MI-
NLTV. It consists of projecting the voxel with the highest value
onto a 2D image, traveling the viewing ray in a longitudinal
direction throughout the volume. The MIP image enables it to
determine whether some regions with high contrast are preserved
while reducing the noise. The proposed MI-NLTV method shows
that the regions with remarkable features are well-preserved while
reducing noisy pixels compared with the results obtained using
October 2021 | Volume 11 | Article 751057
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FIGURE 3 | Task-based image quality assessment for PDB, RDB,
PDB+NLTV, RDB+NLTV, PDB+MI-NLTV, and RDB+MI-NLTV. (A) Noise
power spectrum (NPS) for evaluating the noise texture and magnitude.
(B–H) The task-based transfer function (TTF) curves calculated by selecting a
circular ROI around each insert among seven different density targets.
(I) TTF50% values and (J) TTF10% values for assessing the spatial resolution.
(K) The detectability index based on NPS and TTF for estimating the ability to
detect some regions.
TABLE 3 | Quantitative comparisons based on three metrics in the CBCT image
generated by six analytical reconstruction algorithms using low-dose projection
data of the Catphan®503 phantom.

PDB RDB PDB+NLTV RDB+NLTV PDB
+MI-
NLTV

RDB
+MI-
NLTV

Root mean
square error
(RMSE)

145.3 59.3 54.4 53.6 55.9 52.1

Correlation 0.51 0.84 0.87 0.88 0.89 0.89
Spatial non-
uniformity (SNU)

11.45 10.08 10.58 9.97 11.27 9.96
TABLE 4 | Statistical analysis of the three metrics of RDB+MI-NLTV and five
approaches using a paired t-test.

RDB+MI-NLTV vs.

PDB RDB PDB+NLTV RDB+NLTV PDB+MI-
NLTV

p-
value

RMSE 0.000 0.000 0.000 0.000 0.000
Correlation 0.000 0.000 0.000 0.000 0.770
SNU 0.000 0.000 0.000 0.006 0.000

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lee et al. Mutual Information-Based NLTV
only RDB as well as with NLTV incorporated. After incorporating
the proposed MI-NLTV denoiser, the homogeneous region was
smoother, whereas a point feature and line bars showing a high
contrast in the red ROIs were almost preserved.

To support our claim that the MI-NLTV denoiser improves
the image quality, we calculated the mean HU for the two red
boxes in Figure 4 to provide a quantitative comparison of the
Frontiers in Oncology | www.frontiersin.org 9
image quality of MIP. For ROI1 and ROI2, the mean HU and
standard deviation were calculated as 346 ± 365 HU and 91 ± 38
HU for RDB, 312 ± 379 HU and 46 ± 42 HU for RDB+NLTV,
and 291 ± 383 HU and 12 ± 30 HU for RDB+MI-NLTV,
respectively. The mean HU decreased as expected because the
noisy pixels were reduced, whereas the high-contrast pixels
were preserved.
A

B

C

FIGURE 4 | Comparison of maximum intensity projections (MIPs) of the CBCT images generated by applying analytical reconstruction algorithm based on (A) RDB,
(B) RDB followed by NLTV, and (C) RDB followed by MI-NLTV using the Catphan®503 phantom. These images are displayed at the window (width and level)
settings of (1,500, 500) HU.
October 2021 | Volume 11 | Article 751057
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In addi t ion to the Catphan®503 phantom, the
anthropomorphic head-and-neck phantom was reconstructed
based on six combinations. Because the anthropomorphic
phantom is surrounded by the skull, MIP mainly displays
voxels contained within the skull, which are composed of high
intensities. Therefore, instead of the MIP, Figure 5 shows the
minimum intensity projections (MinIPs) of the reconstruction
images along the longitudinal direction. MinIP is the opposite of
MIP and returns the lowest value among the voxels that it
encounters along the ray. MinIP indicates whether the noisy
pixels generated in areas other than the skull corrupt the striking
structures. Adding the proposed MI-NLTV denoiser produced
improved preservation of the details and reduced the noise
markedly, whereas the FBP with PDB was almost completely
obscured by noisy pixels. Although employing MI-NLTV
remarkably reduced the noise, it was not able to completely
restore the detail level of the structures compared with the RDB.
Figure 6 compares the corresponding slices of the low-dose
CBCT images reconstructed by the RDB without denoiser and
the RDB followed by NLTV and MI-NLTV. MI-NLTV denoiser
further reveals improved detail-preserving and noise-reduction
effects compared with the NLTV denoiser.

For the quantitative comparison, the CNR was calculated for
each image of all the reconstructed CBCTs included in the skull. By
selecting an ROI within the soft tissue and an ROI within the skull,
the mean HU value and standard deviation were recorded for the
CNR calculation. Table 5 provides the average values of the CNRs
calculated for each image in the CBCTs obtained based on RDB
followed by no denoiser, NLTV, and MI-NLTV. Statistical testing
was also performed to compare the outcomes of the different
approaches. The RDB+MI-NLTV combination showed a higher
CNR and statistically significant result because the p-value was less
than 0.05 when compared with RDB as well as RDB+NLTV.

To further illustrate the edge information, the spatial
resolution was measured using a resolution gauge in the
Catphan®503 phantom. Figure 7 shows the 1D HU profile
along the orthogonal direction of line bars from 1 through 8
line pairs per cm on the reconstructed images generated by only
RDB and RDB followed by MI-NLTVs, with different bin sizes
(256 × 256, 128 × 128, and 64 × 64). In the cases of 128 × 128 and
256 × 256 bin sizes, it was possible to identify up to six line pairs/
cm due to preservation of major features such as for RDB.
Moreover, when using the 64 × 64 bin size, there was a slight
difference from six line pairs/cm onward compared with the
other bin sizes. To balance the reconstructed image quality with
the computational demands, the bin size of the joint histogram
was set as 128 × 128 pixels to afford more interesting results.

Table 6 compares the computation times when generating low-
dose CBCT images of the Catphan®503 and anthropomorphic
phantoms based on six combinations. Each algorithm was
implemented by utilizing OpenMP for parallelization on an
Intel Xeon CPU system with 48 logical processors on 24
physical cores. Compared with PDB, the calculation time using
RDB was approximately 3.7 times longer for the low-dose CBCT
generation. Approximately 100 s were required for NLTV and 240
s for MI-NLTV. Because MI generates a joint histogram as a
similarity measure between non-local patches, the calculation time
Frontiers in Oncology | www.frontiersin.org 10
was 2.4 times higher than that of the case of a conventional NLTV
using NLM filter. Therefore, the computation time using the
proposed RDB as well as MI-NLTV was approximately 6.1
times and 1.7 times longer compared with PDB and RDB.
Table 7 delineates the computation time of the proposed MI-
NLTV in terms of the joint histogram with different bin sizes. The
calculations of the marginal entropy and joint entropy required for
MI computation are dependent on the bin size of the joint
histogram. The computation time for the MI-NLTV with 128 ×
128 bin sizes was half that of 256 × 256 bin sizes.

Figure 8 shows low-dose CBCT images generated from real
patient data with pelvic bone metastases. Because the patient
projections were acquired under a short scan mode, a short scan
weighting in all projections was added to avoid discontinuous
artifacts due to redundant scans at certain angles by modifying the
Parker’s weighting used in fan-beam CT reconstructions (44).
Compared to the phantom study, the low signal-to-noise level
resulted in an overall increase in noise in the reconstructed image
and inferior feature details due to the use of a small number of
projection data and lower resolution projection data. However,
the relative superiority of the proposed MI-NLTV denoiser was
also the same in clinical data. PDB was poor at delineating the
pelvic bone metastatic lesion due to increased noise, as shown in
the red ROI. This lesion appeared as a noisy but faint
transparency with the RDB. It was more visible on NLTV as
poorly defined, having low intensity with some noise. Meanwhile,
the proposed MI-NLTV denoiser could better recognize
metastatic bone lesions with fewer noisy pixels than NLTV. It
was confirmed that the proposed method can significantly reduce
noise pixels and preserve the detailed structure well in patient
data. As such, image processing approaches for noise removal and
contrast enhancement are of great interest. Noise and low
contrast have a direct impact on the delineation of various
tumor regions, including enhancing and non-enhancing
tumors, necrosis, and edema. They not only affect the ROI
extraction, but also interfere with operation in various post-
processing tasks such as registration, segmentation, and
classification. Therefore, if the quality of low-dose CBCT
images is improved through the proposed algorithm, more
precise monitoring of the tumor target and movement of the
organs at risk (OARs) is possible during IGRT for cancer patients,
thereby improving the target accuracy and reducing the dose to
the OARs adjacent to the tumor. Furthermore, recalculating the
dose distribution for the tumor target and adjacent OARs using
the obtained low-dose CBCT may establish a new clinical
guideline. This is expected to result in a lower complication rate
and improved overall survival rates for radiotherapy outcomes.
DISCUSSION

This study has aimed to address the feasibility of obtaining low-
dose CBCT images using a combination of RDB and MI-NLTV
denoiser. The results of this study demonstrate the enhanced
performance of the proposed approach compared with the results
of the five combinations (PDB, RDB, PDB+NLTV, RDB+NLTV,
and PDB+MI-NLTV) for low-dose CBCT. The evaluation utilized
October 2021 | Volume 11 | Article 751057
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FIGURE 5 | Comparison of minimum intensity projections (MinIPs) of CBCT images generated by applying the analytical reconstruction algorithm based on (A) PDB,
(B) RDB, (C) PDB followed by NLTV, (D) RDB followed by NLTV, (E) PDB followed by MI-NLTV, and (F) RDB followed by MI-NLTV using the anthropomorphic
head-and-neck phantom. (G) Benchmark image. These images are displayed at the window settings of (width = 750, level = 0) HU.
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is based on a comparison through the image quality phantom
analysis. It is demonstrated that in the actual measurement data
with the Catphan®503 and anthropomorphic head-and-neck
phantoms, combining the RDB enables the MI-NLTV
denoising-based analytical reconstruction algorithm to be
further enhanced. Thereby, a higher CBCT image quality with a
lower mAs acquisition protocol is obtained in terms of visual
inspection, CNR, RMSE, correlation, SNU, and detectability index.
In addition, when using the MI-NLTV denoiser, the spatial
resolution was slightly further reduced, but over-smoothing and
Frontiers in Oncology | www.frontiersin.org 12
loss of important features did not occur. Conversely, some noisy
pixels remained when the conventional NLTV was employed. In
particular, reducing the number of projections by increasing the
gantry rotation speed to reduce the patient radiation dose is
challenging to implement in the currently available commercial
CBCT scanners, whereas the other method proposed in our work,
involving lowering the mAs level, can be easily applied in existing
commercial scanners.

The proposed MI-NLTV denoiser in the reconstruction
process involves a distinct contrast compared with the
TABLE 5 | CNR comparisons in the CBCT image generated by three RDB-based reconstruction algorithms using low-dose projection data of the anthropomorphic
phantom.

RDB RDB+NLTV RDB+MI-NLTV

CNR (mean ± standard deviation) 14.7 ± 3.9 16.7 ± 4.3 19.1 ± 5.5
p-value RDB+MI-NLTV vs. 0.000 0.000 –
October 2021 | Volume 11
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FIGURE 6 | Comparison between the same views of CBCT images generated by applying the analytical reconstruction algorithm based on (A) RDB, (B) RDB
followed by NLTV, and (C) RDB followed by MI-NLTV using the anthropomorphic head-and-neck phantom. (D) Benchmark image. These CBCT images are
displayed at the window settings of (width = 1,400, level = 200) HU.
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FIGURE 7 | Comparison between the same views of the reconstruction image generated by (A) RDB only and RDB followed by MI-NLTV applying (B) joint
histogram bin size of 256 × 256, (C) 128 × 128, (D) 64 × 64, and (E) line profile at the red square using the Catphan®503 phantom. These images are displayed at
the window settings of (width = 1,500, level = 876) HU.
TABLE 6 | Computation time (s) when generating CBCTs of the Catphan®503 and anthropomorphic phantoms based on six combinations.

PDB RDB PDB+NLTV RDB+NLTV PDB+MI-NLTV RDB+MI-NLTV

Catphan®503 96.5 354.1 196.8 452.8 335.4 586.4
Anthropomorphic 98.7 348.0 196.1 448.3 332.8 589.5
Frontiers in Oncology | www.f
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conventional NLTV approaches using the weight of an NLM
filter to account for the difference in intensity between the pixel
pairs. The NLM filter degrades the performance in low-dose
CBCT images generated with low mAs because the local patch
used to determine the pixel weights contains noisy-damaged
pixels that reduce the similarity between the corresponding
patches. On the contrary, the MI can facilitate overcoming this
shortcoming by utilizing a statistical measure for the robust
similarity calculation between the corresponding non-local
patches and the reference patch. It is almost invariant to the
change in noisy pixels, making the NLTVmore stable and robust
than the NLM filter.
Frontiers in Oncology | www.frontiersin.org 14
Because the acquisition of CBCT scans utilizes a large-area
detector, deterioration in CBCT image quality due to beam
scattering is inevitable. However, although this study included
improvement in low-dose CBCT image quality via the proposed
method, measurement-based scatter correction such as an anti-
scatter grid (45) or beam blocker (19, 46) was not applied to the
acquired CBCT projection data. Considering that scatter
correction methods can be used to acquire CBCT projection
data, further reductions in the SNU of low-dose CBCT image
quality can be expected.

There is no consensus on the guidelines for noise reduction in
CBCT images. However, in radiotherapy, CBCT, taken before or
TABLE 7 | Computation time (s) when applying MI-NLTVs with different bin sizes on low-dose CBCTs of the Catphan®503 and anthropomorphic phantoms.

MI-NLTV (BIN64×64) MI-NLTV (BIN128×128) MI-NLTV (BIN256×256)

Catphan®503 171.1 232.4 584.2
Anthropomorphic 173.0 241.5 585.8
October 2021 | Vo
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FIGURE 8 | Comparison between the same views of CBCT images generated by applying the analytical reconstruction algorithm based on (A) PDB, (B) RDB,
(C) RDB followed by NLTV, and (D) RDB followed by MI-NLTV using a patient data with the pelvic bone metastatic lesion. These CBCT images are displayed at the
window settings of (width = 2,400, level = 400) HU.
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during patient treatment, is used to monitor interfraction or
intrafraction differences in positional settings and anatomical
changes (3). Based on the bone anatomy or soft tissue at the
treatment site, rigid body image registration of CBCT and Plan-
CT is performed to obtain an appropriate transformation vector
to correct motion variations. Recently, it has also been used for
deformable image registration between CBCT and Plan-CT for
adaptive radiotherapy. The accuracy of this image registration is
affected by the difference in image quality of the CBCT used. A
prior study reported that higher image quality reduced the
uncertainty of soft tissue image registration during IGRT (47).
As such, high-quality CBCT images can improve the accuracy of
image registration, thereby reducing the target margin during
treatment planning. Therefore, reducing the noise level in the
low-dose CBCT images provides the best visualization of bone
and soft tissue structures, which reduces the uncertainty of image
registration during IGRT. In clinical practice, an image
processing technique with improved performance such as an
MI-NLTV denoising algorithm to remove noise while
maintaining the edge structure is needed.

The proposed MI-NLTV denoiser showed better quantitative
and qualitative tendencies when combined with RDB instead of
PDB. Because this method was applied in the image domain,
applying a backprojector that can reduce the noticeable noise
level in CBCT image generation appears to produce more stable
weight values in MI-based statistical calculations. Instead of
RDB, the proposed MI-NLTV can also be combined with
other more sophisticated backprojector methods such as
distance-driven methods (48) or separable footprints (49).
When the MI-NLTV denoiser was applied to CBCT images
generated from PDB, obtaining a robust weight value was
difficult in the MI-based statistical calculation because the
noise level of PDB was relatively high. If projection images
could be acquired using slightly higher mAs to bring the NPS
peak down to the RDB level, the MI-NLTV denoiser is expected
to work well with PDB. Although the proposed MI-NLTV
denoiser method was applied to a 2D inter-patched image, the
method can be technically extended to 3D blocks (50). This
would increase the computational cost because of the larger
search area in the weight computations.

This study on low-dose CBCT reconstruction involves a few
practical considerations that are discussed here. First, considering
the time consumed during the proposed reconstruction approach,
the time consumed by the RDB and MI-NLTV denoiser in the
experiments is measured. The computation time of the PDB is
affected by the reconstructed volume size because it estimates the
projection pixel for each voxel in the reconstructed volume.
Moreover, the RDB is affected by the number of projections
and the size as well as the reconstruction volume size because it
uses each pixel of the projection as the starting point of the ray
and calculates the intersection length between the ray path and
each voxel in the reconstructed volume. The MI-NLTV denoiser
increases the computational cost owing to the generation of a
joint histogram as a similarity measure between non-local patches
when computing the weight function compared with the NLTV
denoiser. These algorithms were implemented using OpenMP-
based parallelization. The RDB process was parallelized in terms
Frontiers in Oncology | www.frontiersin.org 15
of multiple rays, and the MI-NLTV was mainly parallelized in
multiple voxels. It should be noted that there is still a considerable
potential for further accelerating the algorithm. A scalable
approach would be to improve the computational ability using
a GPU (14) or FPGA (51). Second, the parameter values
pertaining to the number of iterations, search area, patch size,
and spatially encoded factor were set to be equal for ensuring a
fair comparison between MI-NLTV and NLTV. These
parameters were empirically determined to balance the image
quality with the computational load; however, the best
performance of either algorithm is not ensured. Nonetheless, we
found that the results are not highly sensitive to these parameters.
The findings here are not far from optimal. Third, in the deep
learning approaches, there are many data augmentation strategies
to add more training data based on image processing techniques.
The proposed MI-NLTV denoiser can be considered as an
advanced augmentation technique for building better statistical
models. Fourth, MI-NLTV-based analytical reconstruction
algorithm can be used to generate an initial guess image or an
image fidelity term for iterative reconstruction. In general, when
using an iterative reconstruction algorithm, it has been observed
that the better the initial guess image, the faster the convergence
and the higher the contrast of the CBCT images produced.
CONCLUSION

The incorporation of MI has proven to be almost invariant to the
change in the noisy pixels while maintaining the original
advantages with similar properties of the conventional NLTV
denoiser, making the NLTV more stable and robust than the
conventional NLM filter. These differences indicate a preference
for the MI in NLTV for low-dose CBCT imaging. Moreover,
achieving clinically acceptable CBCT image quality despite low-
mAs projection acquisition can reduce the burden on common
online CBCT imaging, such as correcting setup errors and
monitoring patient movements, thus making the use of IGRT
widely available. The proposed approach can improve patient
safety throughout the course of radiotherapy.
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APPENDIX A

For n 1 to all images do
r 1, rred 0.8, e 3, a 2, W 10
For j 1 to all voxels do

Calculate D(Vj) using Eq. (9)
Create intensity CDF histogram using Vj

End For
t Intensity at 90% of intensity CDF
R(V) 0
For j 1 to all voxels do

wj 0
For k a to a do

Find the largest number in Vj+k and call it ′Amax′
End For
For i j – W to j + W do

S 0
For k a to a do

Find the largest number in Vi+k and call it ′Bmax′
End For
For k a to a do

A (Vj+k/Amax) × B in Size
B (Vi+k/Bmax) × B in Size
Voting at Bin of (A,B) of the joint histogram

End For
End For
Calculate wj using Eq. (7)
Calculate D(Vj) using Eq. (9)
R(Vj) wjD(Vj)
R(V) R(V) + R(Vj)

End For
For t to 20 do

For j 1 to all voxels do

l
ffiffiffiffiffiffiffiffiffiffiffi
o
j
V2
j

r

l l × r
∂Vj ∇R(Vj) calculated by Eq. (12)

j∇ R(V)j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oj( ∂Vj)

2 
q

as in Eq :  (13)
End For
For j 1 to all voxels do

V 0
j Vj + l ∂Vj=j∇ R(V)j

End For
While R(V 0

j )> R(V) do
r r × rred
l l × r
For j 1 to all voxels do

V 0
j Vj +

l ∂Vj

j∇R(V)j
End For

End While
Update V 0

j  to Vj

End For
End For
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