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The resistance that Triple-Negative Breast Cancer (TNBC), the most aggressive breast
cancer subtype, develops against radiotherapy is a complex phenomenon involving
several regulators of cell metabolism and gene expression; understanding it is the only
way to overcome it. We focused this review on the contribution of the two leading classes
of regulatory non-coding RNAs, microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs), against ionizing radiation-based therapies. We found that these regulatory
RNAs are mainly associated with DNA damage response, cell death, and cell cycle
regulation, although they regulate other processes like cell signaling and metabolism.
Several regulatory RNAs regulate multiple pathways simultaneously, such as miR-139-5p,
the miR-15 family, and the lncRNA HOTAIR. On the other hand, proteins such as CHK1
and WEE1 are targeted by several regulatory RNAs simultaneously. Interestingly, the
study of miRNA/lncRNA/mRNA regulation axes increases, opening new avenues for
understanding radioresistance. Many of the miRNAs and lncRNAs that we reviewed here
can be used as molecular markers or targeted by upcoming therapeutic options,
undoubtedly contributing to a better prognosis for TNBC patients.

Keywords: breast cancer, triple negative breast-cancer, radioresistance, non-coding RNAs, long non-coding
RNAs, microRNAs
INTRODUCTION

Breast cancer (BC) is the malignant tumor with the highest number of cases diagnosed worldwide
and the most common cause of death in women (1). Although it is a heterogeneous disease, breast
tumors can be classified based on the expression level of hormonal receptors for estrogen (ER),
progesterone (PR), and human epidermal growth factor receptor 2 (HER2) in subtypes depending
on the presence (+) or absence (–) of hormonal receptors, namely Luminal A (ER+, PR+/-, HER2-),
Luminal B (ER+, PR+/-, HER2+), and HER2-enriched (ER -, PR -, HER2+). A fourth subtype that
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lacks the expression of all the mentioned hormonal receptors is
named Triple Negative (ER -, PR -, HER2-) or Basal-like (2).

Triple-Negative Breast Cancer (TNBC) is further classified into
four subtypes; Basal-like 1 (BL1), Basal-like 2 (BL2), Mesenchymal
(M), and Luminal Androgen Receptor positive (LAR), where each
subtype considers cancerous stage, gene pattern expression,
propagation, metastasis, histologic differences and response to
common chemotherapeutic neoadjuvants (3). Among the breast
cancer subtypes, TNBC is the most aggressive, has a poor
prognosis and a high risk of recurrence and metastasis (4–6),
and complicates targeted therapies in patients due to the absence
of hormonal receptors (ER, PR, HER2) (6).

TNBC patients commonly receive systemic treatments such
as chemotherapy or local therapies, including conventional
surgery and radiotherapy either in isolation or in combination
with other types of treatments for increased effectiveness and
prognosis after surgery (6–9).

Radiotherapy has proved efficient for breast cancer patients after
mastectomy, at least in levels I and II, reducing recurrence and
mortality (10). This type of therapy employs ionizing radiation (IR),
e.g., X-rays, gamma rays, a, and b particles, ion carbon or electron,
neutron, and proton beams (11, 12) to improve the diagnosis.

IR affects cells directly and indirectly. The direct effect is
promoting DNA damage like single-strand breaks (SSBs),
double-strand breaks (DSBs), also called clustered DNA
lesions, genomic instability, and inducing apoptosis. On the
other hand, the indirect effect is caused by reactive oxygen
species (ROS) generated from the interconnection between IR
and water, promoting complex DNA lesions that alter cell
homeostasis, modifying proteins and lipids, eventually lead to
cell death (13–15). Nevertheless, the implementation of
radiotherapy is still controversial (16), and its efficacy may be
limited by the presence of tumor cells resistant to ionizing
radiation (17) due to alterations in the pathways and genes
involved in the DNA damage response system (DDR).

The alteration of these elements that generally play an
important role in preserving cell viability through the repairing
genetic material modifies the response of tumor cells to
radiotherapy (18).

Recently, it has been observed that not only the irradiated
cells themselves react by modifying their metabolism, but that
they communicate with neighboring, unirradiated cells through
gap junctions and secreted small molecules in a mechanism
known as ‘radiation-induced bystander effect’ (RIBE). Through
RIBE, bystander cells can rescue irradiated cells, increasing their
survival (19). It has been shown that angiogenesis, invasion,
metastasis, and proliferative signaling maintenance can also be
induced through RIBE, affecting the outcome of IR therapies and
enhancing radioresistance (20).

Several groups have reported mechanisms that lead cells to
resistance to TNBC therapies, such as hypoxia, cell cycle
regulation (21), signaling pathways linked to radiosensitivity
like mTOR (22) and EGFR/PI3K/Akt (23), among others. Here
we want to highlight the role of two classes of non-coding RNAs
(ncRNAs), microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs), in the development of radioresistance.
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MicroRNAs are small, 21-25 nucleotide-long, single-stranded
RNA molecules (24) that negatively regulate mRNA through
binding their 3’ UTR and blocking translation (25, 26). They are
involved in virtually every cellular process: cell cycle control,
differentiation, proliferation, apoptosis, autophagy, and DNA
repair, among others, and thus have a role in cancer, either as
oncogenes –dubbed oncomirs– or tumor suppressors (27).

Several studies show that miRNAs promote resistance to
treatments in other cancer types (28); notably, they can
promote radioresistance or radiosensitivity. For instance, miR-
214 is upregulated in ovarian cancer, leading to PTEN mRNA
degradation and PI3K/Akt activation, thus promoting
radioresistance (29). miR-183-5p promotes radioresistance by
decreasing ATG5 mRNA expression, interacting with
downstream signaling genes from PI3K and Wnt signaling
pathways, and upregulating them in colorectal cancer (30, 31).
Likewise, miR-365 enhances radiosensitivity by inhibiting the
CDC25A expression in non-small cell lung cancer cells,
consequently improving the prognosis after IR treatment (32).

Long non-coding (lncRNAs) RNAs are 200+ nucleotide-long
molecules (33), transcribed mainly by RNA pol II (34). There are
recent reports of their involvement in the regulation of gene
expression, metastasis, and invasion of cancer cells (33), miRNA
silencing (35), apoptosis, autophagy, cell cycle regulation, and
DNA repair (17, 36, 37). As the number of described lncRNAs
increases (38), so does the number that regulates the biological
processes mentioned above.

lncRNAs have been described in various cancer types. For
example, NEAT1 is implicated in the DNA repair process by
homologous recombination pathway regulating CHK1, CHK2,
BRCA1, and RPA2 expression in multiple myeloma (39).
FAM83H-AS1 promotes metastasis and proliferation by
interacting and regulating HuR protein stability in ovarian
cancer (40). ANRIL promotes proliferation, cell metastasis and
inhibits apoptosis by suppressing miR-125a expression in
nasopharyngeal carcinoma cells (41). POU3F3 inhibits
autophagy signaling by decreasing SMAD4 in colorectal cancer
and is involved in cell proliferation and migration (42). Finally,
upregulated WTAPP1 promotes invasion and migration in non-
small cell lung cancer by interacting with HAND2-S1 and
decreasing its expression (43).

Most interestingly, these two classes of ncRNAs can interact
with each other, adding to the complexity and importance of
their regulation on mRNAs. Several lncRNAs have regions
complementary to miRNA sequences that compete for their
binding with the target mRNA. This binding sequesters
miRNAs to complementary lncRNAs and prevents them from
binding to their mRNA targets, turning lncRNAs into miRNA
sponges, effective positive mRNA regulators (44, 45).

Interactions of this kind have been reported in diverse
biological processes. lncRNA PCAT1 downregulates miR-128
in cervical cancer, promoting proliferation, migration, invasion
and thus decreasing radiosensitivity (46). LncRNA lnc-RI
competitively binds with miR-4727 regulating Non-Homologous
End Joining (NHEJ) through LIG4 mRNA stabilization, affecting
cell cycle and radiosensitivity in colorectal cancer (47). LncRNA
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TRPM2-AS in gastric cancer serves as a sponge for miR-612,
promoting radioresistance by upregulation of the DNA double-
strand break repair protein FOXM1 (48). Several interactions
like these have been reported in TNBC. For instance, lncRNA
WEE-AS1promotes proliferation by downregulating miR-32-5p
(49), while LINC00173 downregulates miR-490-3p and
promotes a more aggressive phenotype (50). Recently, Yuan
and colleagues identified MAL2 and NEAT1 as key miRNA
regulators in TNBC through an in silico approach (51).

Both miRNAs (52) and lncRNAs (53) have been employed as
radiotherapy response biomarkers; however, more research is
needed to understand their role in radioresistance fully. A
complete grasp of this process and its elements will provide a
knowledge base for increasing radiotherapy’s effectiveness in
breast and other cancer types. This review describes the
different miRNAs, lncRNAs, and their associations that
regulate resistance against ionizing radiation-based therapies
in breast cancer. We found that these ncRNAs are mainly
involved in DNA damage response, but they are also involved
in cell death, cell cycle regulation, and other functional aspects.
In the following sections, we summarize the currently described
ncRNAs involved in the alteration of these processes.
METHODS

We searched the Medline database for journal articles in English,
published from 2001 to 2021, using combinations of the
following keywords: lncRNA, miRNA, breast cancer,
radiotherapy, radioresistance, and radiosensitivity.

We obtained 45 articles reporting the diverse roles of ncRNAs
in radioresistance. We thoroughly read each paper and extracted
data about the type of ncRNAs, targets, and pathways involved in
cell radiosensitivity or radioresistance mechanisms, the type of
cell line used in both in vivo or in vitro assays; subsequently,
we constructed three ncRNA interaction networks using
Cytoscape, available at NDEx. (https://www.ndexbio.org/#/).
These networks correspond to those processes most regulated
by ncRNAs: DNA damage, apoptosis and autophagy, and
cell cycle.
ncRNAs INVOLVED IN DNA DAMAGE

DNA damage response system (DDR) is a complex network
comprising several processes to locate and correct DNA damage
to maintain genomic integrity. This extensive network includes
mechanisms for damage detection, signal transduction, DNA
repair tolerance processes, and cell cycle control. For detailed
descriptions of the proteins that participate in these processes,
please refer to Giglia-Mari et al. (54).

DNA is an intrinsically reactive molecule and is highly
susceptible to damage or chemical alterations due to
endogenous processes and factors, such as replication errors,
spontaneous deamination of bases, oxidative damage by ROS
and formation of abasic sites; or by exogenous agents, for
Frontiers in Oncology | www.frontiersin.org 3
example, DNA breaks by IR, alkylation of bases by chemical
agents, modification of bases by ultraviolet (UV) radiation,
among others (55, 56). The main repair mechanisms for
these damages are nucleotide excision repair (NER), base
excision repair (BER), homologous recombination (HR), non-
homologous end junction (NHEJ), and mismatch repair (MMR).
These processes are extensively explained by Christmann
et al. (57).

DNA double-strand breaks (DSB) are the most predominant
and damaging lesions caused by IR (58). The most common DSB
repair mechanisms are the Homologous Recombination (HR)
and the Non-Homologous End Joining (NHEJ) pathways (59).
The cell cycle phase determines the triggering of one or the other,
but in both cases, they require the intervention of other DDR
proteins (54). In addition to the proteins involved in DDR, many
ncRNAs are essential to the damage response mechanisms
(60–62). Furthermore, these ncRNAs modulate the DDR
elements’ activity after irradiation, promoting radioresistant or
radiosensitive phenotypes (9).

H2AX as an Indicator of Radiosensitivity
Phosphorylation of the histone variant H2AX is an early event in
DDR and, thus, a reliable marker of ongoing DNA repair.
However, H2AX foci decrease upon completion of the DNA
repair process, so extended detection indicates radiosensitivity
(63). The effect of multiple ncRNAs that target DDR proteins can
be assessed through H2AX detection.

P. Zhang and collaborators (64) found BC cells that
overexpress miR-205 exhibit persistent H2AX foci, indicating
their low capacity to repair damage after IR. The authors suggest
that ZEB1 mediates the effect of miR-205 by partially restoring
repair. They demonstrated that miR-205 inhibition increases the
expression levels of ZEB1 and Ubc13[u1] [u2]. Therefore, miR-
205 radiosensitizes BC cells by inhibiting HR by targeting ZEB1
and Ubc13.

Similarly, Mei and colleagues (65) reported that BC cells
transfected with the miR-15 family of mimics showed persistent
higher levels of gamma-H2AX after irradiation, indicating
unrepaired DNA damage. It is well-known that gamma-H2AX
foci decrease shortly after radiation; these authors suggest that
the miR-15 family be involved in inhibiting DNA repair, thus
acting as radiosensitizers.

Masoudi-Khoram et al. (66) used gamma-H2AX and RAD51
as markers to evaluate DNA damage by IR in two BC-derived cell
lines. They found that RAD51 expression increased post-
radiation while gamma-H2AX expression reached a peak 4
hours after irradiation and then rapidly decreased. They
identified miR-16-5p as a possible important mediator of
radiation response and suggested that miR-16-5p could
promote radiosensitive breast cancer cells to IR.

In a study with diverse cancer-derived cell lines, Koo and
colleagues demonstrated that miR-200c overexpression in the
breast cancer cell line, MDA-MB-468 provoked an increase of
gamma-H2AX foci and prolonged focus formations after
irradiation. This effect was associated with a discernible
downregulation of p-DNA-PKcs involved in NHEJ repair (67).
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Lin et al. (68) found that overexpression of miR-200c
enhanced IR-induced DNA strand breaks in BC cell culture.
They found a correlation between increased miR-200c
expression and the presence of H2AX foci. Years later, Wang
et al. (69) discovered that lncRNA LINC02582 is a downstream
target of miR-200c. LINC02582 interacts with USP7 to
deubiquitinate and stabilize CHK1, a critical effector in response
to DNA damage that facilitates DNA repair, promoting
radioresistance (70). However, their results demonstrated that
miR-200c expression reduced the CHK1 protein level since it
targets LINC02582. They suggest the miR-200c/LINC02582/
USP7/CHK1 signaling axis as a potential target to improve
breast cancer response to radiation therapy.

In another study with diverse cancer cell types, including BC
cells, Lee et al. (71) described miR-7 as a radiosensitizer. Its
overexpression causes downregulation of EGFR, AKT, ERK, and
STAT3. They inhibited miR-7, which led to positive regulation of
EGFR and its downstream effectors to validate these results.
Besides, they reported that ectopic overexpression of the miR-7
caused marked prolongation of radiation-induced gamma-
H2AX foci formation. The authors associated this
phenomenon with a decrease in DNA-PKcs phosphorylation
with an activated EGFR-associated signaling pathway.

Zhang et al. (72) found a positive correlation between the
expression of LINP1, Ku80, and DNA-PKcs after IR and
identified that the lncRNA LINP1 binds Ku80 and DNA-PKcs,
promoting radioresistance. They hinted that DSB repair is
enhanced by LINP1 across the NHEJ pathway due LINP1 to
providing a scaffold for Ku80 and DNA-Pkcs. The authors
confirmed this by measuring DNA damage through gamma-
H2AX. When LINP1 was removed, gamma-H2AX foci were
more persistent. Besides, they discovered that activation of
EGFR upregulates LINP1 transcription through activation of
the RAS-MEK-ERK pathway; in this manner, cells with EGFR
activation improve DNA repair through the LINP1/Ku80/DNA
PKcs axis. Also, they identified a negative feedback mechanism
where p53 and miR-29 are involved. P53 regulates the expression
of miR-29 directly, and, in turn, this negatively regulates
LIPN1; this is an uncommon miRNA-lncRNA interaction
since lncRNAs sponge miRNAs in most of the currently
described instances.

ncRNAs That Target HR Proteins
RAD51, catalyzes the strand transfer between a broken sequence
and its homolog to re-synthesize the damaged region (73).
Gasparini et al. (74), demonstrated that miR-155 effectively
reduces HR repair by targeting RAD51 directly; thus, miR-155
contributes to increased sensitivity to IR. These findings were
established both in vivo and in vitro. They found that miR-155
overexpression is associated with lower RAD51 expression;
besides, they found a higher survival rate in a TNBC patient
cohort due to the anti-correlation between miR-155
overexpression and its target RAD51.

Another study (75) demonstrated that miR-302a
downregulation confers radioresistance and that restoration of
its expression sensitizes breast cancer cells to radiotherapy since
miR-302a targets RAD52, an essential participant in HR repair,
Frontiers in Oncology | www.frontiersin.org 4
and AKT1 (76). Chai et al. (77) show that miR-185 was
downregulated in radioresistant BC cells and that there is an
inverse correlation with the expression of AKT1 and RAD52.
Besides, induced overexpression of miR-185 decreases the
expression of AKT1, RAD52, and Bcl-2.

In another work that involved alteration of HR participants,
Troschel and collaborators (78) reported that miR-142-3p can
sensitize breast cancer cells to radiotherapy by downregulating
BRCA1 and BRCA2, two proteins that mediate DSB repair by
HR. BRCA1 and BRCA2 play a role as mediators of
recombination, promote ssDNA resection, and are believed to
be required for subnuclear assembly of RAD51 (79).

Another workgroup found that miR-671-5p was inversely
correlated with FOXM1. Through HCR assay, the authors
measured the DNA repair capability in breast cancer cell lines.
In cells with miR-671-5p inhibited after IR, the HCR activity was
significant compared to the control, and FOXM1 expression also
increased. Their western blot results showed that miR-671-5p
suppressed the expression of genes downstream from FOXM1
involved in the DNA repair pathway; these are RAD51 and
BRIP1, the latter contributes to the DNA repair function of
BRCA1 (80). Thus, their results hint that miR-671-5p
radiosensitizes breast cancer cells by targeting the FOXM1
target, affecting downstream genes involved in DNA repair (81).

ncRNAs That Target Other DDR Proteins
The lncRNA HOTAIR has recently emerged as a multifunctional
regulator. Quian et al. (82) demonstrated that HOTAIR could
induce resistance to radiotherapy in breast cancer cells. They
found that the Ku70 and Ku80 proteins, DNA-PKs, and ATM
were upregulated due to HOTAIR overexpression, thus
promoting repair and reducing IR sensitivity. In response to
DSB, Ku70 and Ku80 associate with broken end chains and then
recruit DNA-PKcs to the damage sites, i.e., Ku proteins act as a
scaffold for other proteıńs that participate in the NHEJ pathway
(83, 84).

Surprisingly, it was reported that miR-139-5p modulated
resistance to radiation in breast cancer by affecting multiple
genes involved in DDR. Five of its six confirmatory targets have
roles in diverse DDR pathways essential for post-radiation
damage repair. These pathways include microhomology-
mediated end-junction (MMJE) with POLQ and XRCC5, BER
in which miR-139-5 targets POLQ, NHEJ with XRCC5, HR for
RAD54L. Additionally, it regulates DNA topology during repair
targeting TOP2A and TOP1 and seems to have a ROS defense
role by targeting MAT2AT (85).

The above findings are summarized in Figure 1, which shows
the main elements involved in DDR and the ncRNAs that
reportedly regulate them. We found it interesting that only one
report involved ATM, one of the primary DNA-damage sensors;
ATM responded to HOTAIR overexpression, as did the Ku
proteins. There are, however, reports of several ncRNAs that
target virtually every downstream pathway—notably, miR139-5p
targets proteins that participate in HR, NER, and NHEJ. miR-
200c is also multifunctional in DDR; it targets CHK1 through
LINC02582 and the DNA PKcs involved in NHEJ. This repair
pathway is also targeted by the LINP1 lncRNA, itself regulated by
November 2021 | Volume 11 | Article 752270
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P53 through miR-29; conversely, our search only yielded reports
of HR being regulated by miRNAs, such as miR-155 and miR-
142. All these ncRNAs are potential radioresistance markers and
attractive targets towards induced radiosensitivity.
ncRNAs INVOLVED IN APOPTOSIS AND
AUTOPHAGY

Dysregulation of cell death plays a key role during
carcinogenesis. Multiple alterations occur within apoptotic
pathways leading to an overall reduction of apoptosis in tumor
cells and the rise of apoptosis-resistant phenotypes (86, 87).

Apoptosis
Apoptosis is the most common form of controlled cell death, in
which the cell gradually collapses and ultimately dies. It can be
triggered by the intrinsic pathway, initiated by either the absence
or excess of growth factors, hormones, and cytokines, or by the
extrinsic pathway, set off by interaction between death ligands
and death receptors such as those from the Tumour Necrosis
Factor (TNF) family. For further detail on apoptosis and its
effectors, please refer to Cao & Tait (88).

Several ncRNAs regulate the apoptotic response to IR in BC.
Yu and colleagues (89) observed an association between miR-144
overexpression and cell survival after irradiation. Subsequent
Frontiers in Oncology | www.frontiersin.org 5
experiments revealed that miR-144 overexpression increased
Bcl2 levels and inhibited the pro-apoptotic protein Bax and
caspase activity; meanwhile, PTEN and pAkt showed aberrant
expression levels, suggesting that miR-144 regulate the radiation-
induced apoptotic response by targeting the PTEN/Akt
signaling pathway.

Overexpression of the multifunctional lncRNA HOTAIR was
also observed in BC cells following irradiation; high expression of
this lncRNA has been associated with radioresistance
acquisition, even though the exact role of HOTAIR in this
process remains unclear. In-vitro experiments showed
alterations in the proliferative and apoptotic cells ratio, altered
Akt expression, and downregulation of the pro-apoptotic Bad
protein. These findings suggest that HOTAIR induces
radioresistance by inhibiting apoptosis via the PI3K/Akt-Bad
signaling pathway (90). A more recent study suggests another
possible mechanism for HOTAIR-induced radioresistance.
Knockdown of HOTAIR resulted in an increase of radiation-
induced apoptosis, DNA damage, cell cycle arrest, and an
upregulation of miR-218. Since miR-218 upregulation
promoted cell apoptosis, this data suggests that the HOTAIR-
miR-218 axis plays a critical role in radiation-induced
apoptosis (36).

Other authors found an upregulation of the lncRNACCAT1 in
radioresistant BC tissues where miR-148b was found to be
downregulated. The interaction between CCAT1 and miR-148b
was confirmed through luciferase reporter assay. Downregulation
FIGURE 1 | Reported ncRNAs that regulate DNA damage response and their targets. Green arrowheads represent positive regulation and red bars, negative
regulation.
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of CCAT1 increased radiosensitivity through inhibiting
proliferation and promoting apoptosis, implying that the
CCAT1-miR148b interaction regulates the acquisition of
radioresistance in BC cells (91).

On the other hand, ncRNAs have also been found to sensitize
BC cells to radiotherapy by inducing apoptosis. Zhu and
colleagues (92) observed that the upregulation of miR-195
enhanced radiosensitivity in BC cells via increasing radiation-
induced apoptosis by downregulation of Bcl2. More recently,
Chai and colleagues (77) reported downregulation of miR-185 in
radioresistant BC cells; conversely, overexpressed miR-185
radiosensitized BC cells. miR-185 overexpression led to Bcl2
downregulation, thus identifying Bcl2 as a downstream target of
miR-185. Further experiments showed that Bcl2 silencing
radiosensitized BC cells, confirming the role of the miR-185-
Bcl2 axis in radioresistance.

In another study, miR-122-3p overexpression was found to
sensitize BC cells to ionizing radiation. It was also found that
miR-122-3p overexpression induced apoptosis after irradiation
while suppressing migration and invasion. Additionally, the
aberrant expression levels of PTEN/PI3K/AKT and EMT
pathways proteins suggest that miR-122-3p might control
radiation-induced apoptosis by regulating the PTEN/PI3K/
AKT pathway (93).

Autophagy
Autophagy is a set of adaptations usually aimed at avoiding cell
death by sequestering and recycling a portion of the cytoplasm
and organelles. Still, it can be triggered to remove damaged or
senescent organelles to maintain energy balance or as a result of
nutrient deprivation, ultimately leading to cell death.
Descriptions of the involved proteins and their functions can
be found in reviews such as those by Doherty & Baehrecke (94),
Kim & Lee (95), and Maiuri et al. (96). Autophagy plays a dual
role during carcinogenesis, leading to cell death or promoting
cell survival via inhibiting apoptosis (97).

Several workgroups have demonstrated that ncRNAs play a
role in the regulation of autophagy in BC after irradiation. Yi and
colleagues (98) observed that the overexpression of miR-199a-5p
in MCF7 cells inhibited radiation-induced autophagy. Inhibition
of Beclin1 and DRAM1 due to miR-199a-5p was also observed,
identifying them as downstream targets and suggesting a
potential mechanism for radiation-induced autophagy.
However, experiments in the MDA-MB-231 cell line showed
that miR-199a-5p overexpression upregulated Beclin1 and
DRAM1, promoting radiation-induced autophagy. Further
experiments showed that miR-199a-5p regulates cell cycle
arrest after IR; additionally, it altered the radiation response of
BC after IR. This evidence confirms a role for miR-199a-5p in
radiation-induced autophagy through a still undetermined
underlying molecular mechanism.

In the same way, miR-200c sensitized BC cells to IR. miR-
200c overexpression inhibited radiation-induced autophagy in
BC cells; moreover, UBQLN1, a protein associated with
promoting autophagosome formation, was identified as a
downstream target of miR-200c. This finding suggested that
Frontiers in Oncology | www.frontiersin.org 6
miR-200c enhances radiosensitivity in BC cells by suppressing
radiation-induced autophagy through the regulation of
UBQLN1 (99).

Luo and colleagues (100) found that the overexpression of
miR-129-5p sensitized BC cells to IR, while autophagy acted as a
protective response. Subsequently, miR-129-5p was found to
inhibit autophagy during the early stages of autophagosome
formation, promoting apoptosis. HMGB1 was identified as a
potential downstream target for miR-129-5p using online
databases. HMGB1 knockdown reduced cell survival and
radiation-induced autophagy, suggesting that miR-129-5p may
radiosensitize BC cells by inhibiting radiation-induced
autophagy via directly targeting HMGB1.

Unsurprisingly, we found reports of several lncRNAs that
induce radioresistance by blocking apoptosis and others that
perform the opposite function, all of them represented in
Figure 2. So far, the evidence appoints Bcl2 as the hub of this
regulation; it is upregulated indirectly by miR144 and
downregulated by miR-185 and miR-195. Meanwhile, the
HOTAIR-miR-218, CCAT1-miR148b, and PCAT6-miR-185-5p
axes block apoptosis through mechanisms still under study.
Conflicting reports on the role of miR-199-5p show how much
more there is to know about the role of ncRNAs in the delicate
balance between apoptosis and autophagy in tumor development.
ncRNAs INVOLVED IN CELL CYCLE

The equilibrium between cell proliferation and death is tightly
controlled by the cell cycle, a complex regulatory network that
progresses through alternating cell growth, subcellular
component synthesis, and cell division phases. Cell cycle
progression is regulated primarily by a family of proteins called
cyclins that bind and activate their effector counterparts, cyclin-
dependent kinases, or CDKs. In an undisturbed cell, timely
cyclin expression activates the necessary CDKs, which, in turn,
phosphorylate multiple targets that control phase-specific
processes. Cyclin D is expressed from early G1 and activates
CDK6, both cyclin E in late G1-S and cyclin A in early S-G2
phase activate CDK2, and cyclin B activates CDK1 in G2-M. For
additional details on these and other cell cycle regulators and
their alterations in cancer, please refer to Foster (101).

Cell cycle checkpoints are, essentially, fail-safe mechanisms
that prevent cell cycle progression in response to stimuli such as
cell overgrowth, suboptimal chromosome segregation during
mitosis, and, notably, DNA damage (102). The ATM/ATR–
p53 signaling pathway, part of the DDR, induces G1 or G2
arrest, allowing for DNA repair prior to replication or preventing
the cell from undergoing mitosis with a set of altered
chromosomes, respectively. However, these mechanisms are
dysregulated in cancer cells and let cells with accumulating
mutations proliferate (103). In this way, several ncRNAs are
upregulated in BC and BC-derived cell lines, associated with a
radioresistant phenotype both in patients and cell cultures,
suggesting active participation of ncRNAs in the modulation of
the response to radiotherapy.
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G1/S Checkpoint
Zhang and collaborators (104) found that LINC00963 expression
led to the upregulation of the cell cycle regulatory proteins cyclin
D1 and CDK6, leading to higher p27 levels and cell cycle
progression. Furthermore, elevated LINC00963 expression was
significantly associated with tumor size and metastasis. These
authors searched for potential miRNA targets and found that
LINC00963 sponged miR-324-3p and upregulated ACK1, which
belongs to a family of non-receptor-tyrosine-kinases and
functions as a driver of tumor progression.

Liu and colleagues (17) found a strong association between
cell survival in vitro and increased LINC00511 expression,
besides its significant over-expression in BC patients.
Subsequent in-vitro experiments correlated its expression with
radioresistance and a higher cell proliferation rate. These authors
performed a bioinformatic search for miRNA targets and found
that LINC00511 sponges miR-185 upregulating STXBP4. This
protein has been proven to promote cell cycle progression
through TP63 activation (105).

On the other hand, some ncRNAs were recently shown to
increase radiosensitivity. For instance, the multifunctional
lncRNA HOTAIR increased its expression in BC cells upon
radiation exposure. Experimental HOTAIR knockdown
increased DNA damage and led to cell cycle arrest. It was also
observed that HOTAIR exerted its radiosensitizing effect through
the downregulation of miR-218, although the corresponding
upregulated target is still to be elucidated (36).
Frontiers in Oncology | www.frontiersin.org 7
G2/M and Spindle Checkpoints
Mei and colleagues found that miR-15a, 15b, and 16 influence
radiosensitivity of MCF7 and MDA-MB-231 breast cancer cells,
observable through the enhanced duration of H2AX foci and
release of the G2 arrest induced by radiation. They demonstrated
the interaction between these miRNAs and the cell cycle
regulator WEE1 and CHK1 mRNAs through luciferase assays,
but they did not find the dramatic reduction they expected at the
protein level, hinting at a more complex mechanism (65). In a
differential miRNA expression study, miR-16-5p was
upregulated in correlation with radiosensitivity in the
radiosensitive T47D and the radioresistant MDA-MB-231cell
lines. Through bioinformatic analyses, these authors predicted its
interaction with targets such as WEE1, Chk1, and CDC27 (66).
miR-16-5p had been previously observed to inhibit proliferation
in prostate (106) and breast (107) cancers by targeting AKT.

Low CDC27, a component of the anaphase-promoting
complex, is a radioresistance marker in TBNC (108).
According to a study in MDA-MB-231 cells, this affects the
corresponding miR-27a overexpression, which targets CDC27
and increases cell proliferation even under ionizing
radiation (109).

According to these reports, ncRNAs mainly regulate the
spindle checkpoint, as it is strongly controlled by the miR-15
family and the closely related miR-16; meanwhile, LINC00963
regulates the G1/S checkpoint, as seen in Figure 3. Interestingly,
we found no reports of ncRNAs that influence the S or G2
FIGURE 2 | Reported ncRNAs that regulate apoptosis, autophagy, and their targets. Green arrowheads represent positive regulation and red bars, negative
regulation.
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phases, which leaves ample room for research in this area, given
the importance of cell cycle control in cancer. In this regard, the
mechanisms employed by HOTAIR and LINC5011 to control
cell proliferation are still to be determined.
OTHER ncRNA TARGETS

Besides those reviewed in the preceding sections, our search
yielded reports on ncRNAs that induce either radioresistance or
radiosensitivity by regulating processes such as cell signaling,
metabolism, and inflammation, although these were not as
abundant. We briefly summarize them in this section and
Table 1, hoping to encourage further research in these aspects.

Cell Signaling
STAT3 is a transcription factor that regulates gene expression in
response to several stimuli such as growth factors and interleukins.
In breast cancer, it regulates several target oncogenes and
participates in cancer progression, metastasis, apoptosis, and
resistance to therapies (125), and it is targeted by ncRNAs
modifying the response to radiotherapy in breast cancer.

miR-124 was negatively regulated in HER2-positive breast
cancer cells; this miRNA directly targets STAT3, which regulates
HER2 expression. So, miR-124 overexpression caused STAT3
downregulation and enhanced radiotherapy response by
Frontiers in Oncology | www.frontiersin.org 8
increasing cell death. The weak miR-124 expression could
enhance STAT3 expression and promote radioresistance in
HER2-positive breast cancer (116). Similarly, Yang and
coworkers (110) observed that miR-634 was significantly
decreased in breast cancer cell lines upon radiation. A miR-634
transfection assay showed an increase in apoptosis and a drastic
decrease in cell survival capacity. They demonstrated that miR-
634 suppresses breast cancer cells by targeting STAT3, increasing
radiotherapy sensitivity.

The EGFR pathway is also associated with breast cancer
progression since it regulates multiple tumorigenic processes
(126). Fabris et al. (111) observed IR-induced miR-223
expression following BC mass removal. Further experiments
revealed that miR-223 directly targets EGF, suggesting it may
affect the activation of the EGFR pathway. Additionally, miR-223
overexpression was found to antagonize the pro-tumorigenic
signals induced by wound fluids via negative regulation of EGF.

Overexpression of miR-122 was observed in therapy-induced
radioresistant BC cells; additionally, it sensitized BC cells to IR.
Contrastingly, miR-122 knockdown resulted in the acquisition of
radioresistance in BC cells. Several proteins involved in diverse
pathways such as the transcription factor ZNF611, the
TNF pathway elements TNFRS21 and RIPK1, and the Ras-
MAPK pathway mediators DUSP8 and HRAS were identified as
miR-122 potential targets. These findings suggest that miR-122
may play a multifunctional role in acquiring radioresistance (117).
FIGURE 3 | Reported ncRNAs that regulate cell cycle and their targets. Green arrowheads represent positive regulation and red bars, negative regulation.
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The JNK signaling pathway promoted cell survival in cancer
by interacting with multiple pathways (127). Metheetrairut and
colleagues (112) found that miR-125b sensitized BC cells to IR.
miR-125b was also found to promote radiation-induced
senescence in BC cells. Furthermore, c-JUN regulation by miR-
125b was found to be involved in radiosensitivity in BC cells;
additionally, members of the MAPK signaling pathway were
targeted by miR-125b, suggesting that regulation of the MAPK-
c-JUN axis by miR-125b might modulate radiosensitivity in
BC cells.

Alterations in the p53 pathway play a key role during
carcinogenesis (128). Kato and colleagues (118) observed
radiation-induced expression of miR-34 mediated by p53 in
BC cells. Furthermore, various BC cell lines showed differential
miR-34 expression, and cell lines with low miR-34 levels were
radiosensitive. Further experimentation revealed that miR-34
might prevent cells from radiation-induced cell death.

FOXM1 is a transcription factor necessary for many
biological processes as cell proliferation, cell cycle progression,
and cell differentiation. It is a master regulator of DNA damage
response, and it is also associated with EMT phenotype in cancer;
likewise, it promotes metastasis and tumor progression (129,
130). Tan et al. (81) demonstrated that miR-671-5p radio- and
chemosensitize breast cancer cells by targeting FOXM1. They
worked with 21T cells and found that miR-671-5p was decreased
during breast cancer progression, contrary to FOXM1. In
addition, they found that miR-671-5poverexpression reduces
FOXM1 expression and affects the downstream genes involved
in EMT (TGF-b and VEGF) and DNA repair during BC
progression. This way, miR-671-5p inhibits cell proliferation
and invasion and sensitizes breast cancer cells to IR.
Frontiers in Oncology | www.frontiersin.org 9
Cell Metabolism
Cholesterol regulation has proven to be involved in cancer
progression (131). Wolfe and colleagues (119) found that miR-
33a expression regulates HDL-induced radioresistance through
targeting ABCA1. miR-33a expression was found to be lower in
irradiated BC cells than in non-irradiated BC cells. Additionally,
the expression of the ABCA1 protein was inversely correlated
with that of miR-33a. Furthermore, knockdown of miR-33a in
BC cell lines with higher miR-33a expression levels resulted in
radiosensitization, whereas miR-33a mimic transfection in BC
cell lines with low miR-33a expression led to the inhibition of
HDL-induced radiosensitization via regulation of ABCA1. miR-
33a was also associated with an adverse outcome in BC patients.

The Lin28/Let-7 axis, primarily active during embryonic
development, regulates multiple genes involved in several
tumorigenic processes (132). It may also be involved in the
regulation of radioresistance in BC. Cell lines expressing higher
levels of the Lin28 protein showed increased survival compared
to those expressing lower levels of Lin28. Meanwhile, Lin28
knockdown showed an increase in radiosensitivity. Lin28 was
also associated with the regulation of apoptosis; on the other
hand, Let7 was confirmed to be directly regulated by Lin28, thus
suggesting possible mechanisms for acquiring radioresistance via
Lin28 (113).

Sirt1 is a histone deacetylase that acts as a regulator in
multiple physiological processes such as cell growth, apoptosis,
DNA damage and, tumor development; in addition, it promotes
tumorigenesis and is upregulated in breast cancer (133–135).
Zhang and collaborators (114) reported that Sirt1 is a direct
target of miR-22, and their expression is antagonistic, so miR-22
improves radiosensitivity to breast cancer cells by targeting Sirt1.
TABLE 1 | Reported ncRNAs that regulate cell signaling, cell metabolism, and inflammation.

ncRNA Target Pathway Reference

ncRNA promoting radiosensitivity
miR-634 STAT3 JAK-STAT signaling pathway Yang et al. (110)
miR-223 EGFR EGFR signaling pathway Fabris et al. (111)
miR-7 EGFR, Akt EGFR signaling pathway, PI3K-AKT

signaling pathway
Lee et al. (71)

miR-125b c-JUN JNK signaling pathway Metheerairut et al.
(112)

miR-671-5p FOXM1 Cellular senescence Tan et al. (81)
Let-7 – Embryonic development Wang et al. (113)
miR-22 Sirt1 AMPK signaling pathway Zhang et al. (114)
miR-770-5p PBK (PDZ-binding kinase) – Lee et al. (115)
ncRNA promoting radiorensistance
miR-124 STAT3 JAK-STAT signaling pathway Fu et al. (116)
miR-122 ZNF611, ZNF304, RIPK1, HRAS,

Dusp8, TNFRSF21
TNF signaling pathway, RAS-MAPK
signaling pathway

Pérez-Añorve
et al. (117)

miR-34 p53 p53 signaling pathway Kato et al. (118)
miR-33a ABCA1/ABCG1 Lipid metabolism Wolfe et al. (119)
HOTAIR miR-449b-5p, HSPA1A JNK signaling pathway Zhang et al. (120)
miR-210, miR-10b, miR-182, miR-142, miR-221, miR-21,
miR-93, miR-15b

– – Grinan-Lison et al.
(52)

miR-620 HPGD/PGE2 Metabolism of prostaglandins Huang et al. (121)
PCAT6 miR-185-5p, TPD52 Membrane traffic Shi et al. (122)
NEAT1 NOQ1 Oxidative stress Lin et al. (123)
miR-668 IkB-alfa NF-Kappa B signaling pathway Luo et al. (124)
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While miR-22 expression was downregulated in breast cancer
cells after IR, Sirt1 was upregulated. However, they found that
overexpression of miR-22 regulated Sirt1 expression negatively,
blocking its function, such as suppressing tumorigenesis and
enhancing the radiosensitivity of breast cancer.

Lee and colleagues (115) discovered that miR-770-5p
radiosensitizes breast cancer cells by targeting PDZ-binding
kinase (PBK). PBK is a serine-threonine kinase that has been
reported to be upregulated in rapidly proliferating cells, as well as
in a variety of tumors, furthermore, it was shown to promote
transformation and has metastatic properties (136–138). In this
study, miR-770-5p was shown to be upregulated by IR response
and to be inversely correlated with PBK expression both in vitro
and in vivo. Despite the oncogenic potential of PBK, the authors
report that miR-770-5p can directly target PBK in radiation
response, confers radiosensitivity to breast cancer.

In addition to the HOTAIR roles described in the previous
sections, Zhang et al. (120) identified that it confers
radioresistance to breast cancer cells through the HOTAIR/
miR-449-5p/HSPA1A axis. HSPA1A is a chaperone
overexpressed in a large variety of tumor lines, including breast
cancer (139), and its expression exhibited a positive correlation
with that of HOTAIR in irradiated breast cancer cells. Also,
HOTAIR acts as a sponge for miR-449-5p, preventing it from
exerting its role as a negative HSPA1 regulator, allowing the
development of a radioresistant phenotype.

Cancer stem cells (CSCs) play a key role during tumor
development (140). Griñán‐Lisón and colleagues (52) identified
several miRNAs that may modulate some CSCs properties, such
as proliferation, metastasis, and response to IR. miR-142, miR-
15b, miR-210, miR-21, miR-221, miR-10b, miR-182, and miR-
93, involved in multiple pathways, showed aberrant expression
in various BC cell lines and patients. Their results showed that IR
affected BC cell lines differentially, decreasing stemness
properties in MCF7 and SKBR3 cells and increasing them in
the TNBC cell line MDA-MB-231, along with miR-10b, miR-
210, and miR-221 expression. Similarly, miR-10b was
overexpressed in patients positive for Ki67 that received IR,
while miR-210 and miR-221 were detected in the only TNBC
patient with recurrence in the study.

In the same way, the lncRNA PCAT6 was found to be
upregulated in TNBC tissues. Subsequent experiments showed
that PCAT6 knockdown promoted radiosensitivity in BC cells by
inhibiting cell survival and promoting apoptosis. miR-185-5p
was later identified as a potential target for PCAT6 and shown to
be negatively regulated by it. Also, miR-185-5p was found to
target TPD52 directly. Knockdown of both PCAT6 and TPD52
resulted in an increased radiosensitivity in TNBC cells,
indicating PCAT6 plays a role in radioresistance via regulating
the miR-185-5p-TPD52 axis (122).

Lin and colleagues (123) found that NQO1 expression and
activity were higher in radioresistant BC-derived cells,
modulated by the cancer stem cell-derived NEAT1 lncRNA
instead of the more traditional JNK signaling. This finding
suggested that the regulation of NEAT1 in NQO1 expression
was potentially mediated by suppressing NQO1-targeting
Frontiers in Oncology | www.frontiersin.org 10
miRNAs because the mRNA level was not changed in the
radioresistant MDA-MB-231 cells. Still, their results suggested
that NEAT might regulate the protein stability of NOQ1 in 231-
RR cells through a yet undescribed mechanism. At the time of
writing, this is the only report of a lncRNA associated with
radioresistance exerting its function through a pathway other
than gene up-regulation through miRNA sponging.

Inflammation
Inflammation has also been related to cancer progression (141),
and Huang and collaborators (121) found that ncRNAs can also
regulate it. Mainly, miR-620 regulates 15-hydroxyprostaglandin
dehydrogenase (15-PGDH/HPGD) negatively, which induces
radioresistance driven by prostaglandin E2 (PGE2) accumulation,
as 15-PGDH normally antagonizes COX-2 by degrading it.

Multiple inflammatory effects during carcinogenesis are
mediated by the activation of the NF-kB pathway (142). M.
Luo and colleagues (124) observed that increased expression
levels of miR-668 in BC cells led to the acquisition of
radioresistance while its knockdown sensitized resistant BC
cells to IR. miR-668 inhibited lkBa, activating the NF-kB
pathway and increasing intranuclear p65, which, in turn,
enhances NF-kB binding activity. Thus, miR-668 might
regulate radioresistance in BC cells by activating the NF-
kB pathway.
CONCLUDING REMARKS

Breast cancer is the most common malignancy in women and
one of the leading causes of cancer death worldwide. Fortunately,
radiotherapy is an effective treatment that provides local
tumor control, increases survival, and reduces mortality.
However, the acquisition of radioresistant phenotypes can
compromise the success of therapy. In this review, we summarize
the ncRNAs that participate in conferring radioresistance to
breast cancer.

Recently, ncRNAs have emerged as important regulators of
multiple cellular processes, and resistance to cancer treatment is
no exception; we found reports of ncRNAs involved mainly in
the regulation of the DDR mechanisms, followed by cell death,
cell cycle, and other processes where the role of ncRNAs is
studied in the same depth. A significant number of these works
concerned miRNAs, although the proportion of reports on
lncRNAs is likely to grow in the upcoming years since
lncRNAs have a lower research age. In addition, we observed a
growing trend in the number of reports of the response to IR
through lncRNA-miRNA-target axes. While it is probable that
most of the ncRNAs that regulate radioresistance follow this
model, there are other mechanisms of action to explore.

We found of particular interest that several of the reported
ncRNAs exhibit a multi-modulator capacity, targeting genes
involved in various pathways. Some of them even perform dual
roles inducing either radiosensitivity or radioresistance in
different contexts. For example, miR-139-5p modulates five
different targets involved in four different DDR pathways and,
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additionally, can regulate DNA topology during the repair
process. miR-185 regulates AKT and BCL-2, involved in the
regulation of apoptosis, and RAD52, involved in HR. The miR-
15 family, comprising the closely related miR-15a, miR-15b, and
miR-16, is also multifunctional; it targets CHK1, promoting the
formation of the gH2AX foci, while also regulating the cell cycle
by targeting WEE1. miR-200c targets multiple proteins involved
in the DDR and is also involved in autophagy by regulating the
UBQLN1 protein; additionally, it may participate in other major
pathways such as the PI3K-AKT and the EGFR. As for lncRNAs,
HOTAIR regulates proteins involved in NHEJ, and its
overexpression promotes radiation-induced apoptosis, possibly
by targeting the PTEN-AKT pathway and miR-218, suggesting it
may be a hub where the regulation of DDR, apoptosis, and cell
cycle converge.

Accumulating evidence highlights the importance of the
interaction between miRNAs and lncRNA. We found reports
of miRNA/lncRNA/mRNA axes with a role in BC radioresistance,
such as miR-200c/LINC02582/CHK1 and HOTAIR/miR-449-
5p/HSPA1A. Our findings point to an increase in this kind
of report since mRNA targets are yet to be identified. For
instance, miR-185 was identified as a downstream target of the
lncRNA LINC00511, promoting cell cycle progression and
modulating DDR by regulating unidentified mRNAs. We also
found reports with solid association data between a given
ncRNA and radioresistance, such as HOTAIR, NEAT1, and
miR-199a-5p, whose targets and interactions are still to
be determined.

On the other hand, the regulation exerted by multiple
ncRNAs converges in some protein targets, evincing the
importance of their roles in the acquisition of radioresistance.
CHK1 was directly regulated by lncRNA LINC02582, miR-16-
5p, and the miR-15 family, andWEE1 was found to be controlled
by the miR-15 family and miR-16-5p. Similarly, gH2AX foci
formation was induced by several ncRNAs, including miR-155,
LINP1, miR-200c, miR-7, miR-16-5p, the miR-15 family, and
miR-205.

Many of the ncRNAs mentioned in this review are molecular
marker candidates and promising therapeutic targets. Strategies
Frontiers in Oncology | www.frontiersin.org 11
aimed at downregulating ncRNAs that confer radioresistance or
re-establishing the expression of those that elicit radiosensitivity
are evident possibilities for adjuvant therapies that improve the
outcome of radiotherapy alone. However, to get to that point, we
need to fully characterize the mechanisms these ncRNAs employ.
We anticipate more profound studies on ncRNA function for the
upcoming years, as more research groups aim to validate the
soaring results that bioinformatic analyses yield through the use
of in vivo and in vitro models. Overall, the study of ncRNAs has
great potential in the development of adjuvant and targeted
therapies in the quest for higher survival rates and better
prognosis not only for BC patients but for all cancer patients.
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