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Objectives: To develop and validate an MR radiomics-based nomogram to predict the
presence of MVI in patients with solitary HCC and further evaluate the performance of
predictors for MVI in subgroups (HCC ≤ 3 cm and > 3 cm).

Materials and Methods: Between May 2015 and October 2020, 201 patients with
solitary HCC were analysed. Radiomic features were extracted from precontrast T1WI,
arterial phase, portal venous phase, delayed phase and hepatobiliary phase images in
regions of the intratumoral, peritumoral and their combining areas. The mRMR and
LASSO algorithms were used to select radiomic features related to MVI.
Clinicoradiological factors were selected by using backward stepwise regression with
AIC. A nomogram was developed by incorporating the clinicoradiological factors and
radiomics signature. In addition, the radiomic features and clinicoradiological factors
related to MVI were separately evaluated in the subgroups (HCC ≤ 3 cm and > 3 cm).

Results: Histopathological examinations confirmed MVI in 111 of the 201 patients
(55.22%). The radiomics signature showed a favourable discriminatory ability for MVI in
the training set (AUC, 0.896) and validation set (AUC, 0.788). The nomogram
incorporating peritumoral enhancement, tumour growth type and radiomics signature
showed good discrimination in the training (AUC, 0.932) and validation sets (AUC, 0.917)
and achieved well-fitted calibration curves. Subgroup analysis showed that tumour
growth type was a predictor for MVI in the HCC ≤ 3 cm cohort and peritumoral
enhancement in the HCC > 3 cm cohort; radiomic features related to MVI varied
between the HCC ≤ 3 cm and HCC > 3 cm cohort. The performance of the radiomics
signature improved noticeably in both the HCC ≤ 3 cm (AUC, 0.953) and HCC > 3 cm
cohorts (AUC, 0.993) compared to the original training set.

Conclusions: The preoperative nomogram integrating clinicoradiological risk factors and
the MR radiomics signature showed favourable predictive efficiency for predicting MVI in
patients with solitary HCC. The clinicoradiological factors and radiomic features related to
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MVI varied between subgroups (HCC ≤ 3 cm and > 3 cm). The performance of radiomics
signature for MVI prediction was improved in both the subgroups.
Keywords: hepatocellular carcinoma, microvascular invasion, magnetic resonance imaging, radiomics
analysis, nomogram
INTRODUCTION

Hepatocellular carcinoma (HCC) represents a major public
health problem worldwide. Currently, liver transplantation,
surgical resection and radiofrequency ablation are established
treatments for early-to-intermediate stage HCC, among which
surgical resection remains the mainstay of curative treatment (1,
2). Nevertheless, HCC is refractory to therapeutic interventions,
largely because HCC has a propensity to invade blood vessels and
thus spread intrahepatically and/or extrahepatically via tumour
emboli (1–3). The presence of microvascular invasion is a critical
determinant of early recurrence and poor prognosis based on the
results of multiple retrospective studies (4–6).

Microvascular invasion (MVI) is defined as the presence of
tumour cells within a vascular space lined by endothelium, and
can only be reliably determined on histopathological
examinations of resected surgical specimens (3). Multiple
research teams have revealed that MVI occurs in 15% to 74.4%
of resected specimens and is independently related to early
recurrence and poor overall survival (7–10). It has been
previously suggested that a wider resection margin should be
performed in the presence of MVI, even for a small lesion; in
addition, additional adjuvant therapies after resection might be
preferable (11, 12). Therefore, the knowledge of MVI status at
the time of an HCC diagnosis would be of great help for
physicians to make more informed management decisions and
thus to improve prognostication. Several radiological features
have previously been suggested as predictors for MVI, including
a larger tumour size (13, 14), a nonsmooth tumour margin (5, 13,
15, 16), an absent or incomplete radiological capsule (14, 17, 18),
peritumoral enhancement on contrast-enhanced CT or MRI (13,
15–18), and peritumoral hypointensity on the hepatobiliary
phase (HBP) images (16, 19).

Radiomics is a brand-new imaging analysis technique that
can transform medical images into innumerable quantitative
features (20). Recent studies have confirmed that imaging
features extracted from Gd-EOB-DTPA-enhanced MRI have a
high value in the prediction of MVI in patients with HCC (15,
21). Moreover, the combination of the radiomics signature
derived from Gd-EOB-DTPA enhanced MRI images with
clinicoradiological risk factors could improve the predictive
efficacy for MVI (15). Pathologically, MVI is frequently found
in the small vessels (including the portal vein, the hepatic vein,
and occasionally the hepatic artery, bile duct, and lymphatic
vessels) in the adjacent liver tissues of tumours (22). Taking this
into account, we may assume that the radiomics signature
abstracted from the peritumoral region may reveal a more
direct association with MVI. In the study by Feng et al., the
MVI prediction performance of the radiomics signature
extracted from the intratumoral and peritumoral areas of the
2

HBP images was superior to that extracted from only the
intratumoral area (21). However, they did not estimate the
prediction performance of radiomics features extracted from
other phases, such as the arterial and portal venous phases, on
which certain radiological features (e.g., peritumoral
enhancement and the absence of radiological capsules) have
been shown to be associated with MVI.

Because the incidence of MVI increases with tumour size, a
larger tumour size has historically been considered a risk factor
for the presence of MVI in patients with HCC (23–26). However,
the usefulness of tumour size alone and the appropriate cut-off
value of tumour size for predicting MVI have been the subjects of
ongoing debates, which may be due to the selection bias of study
designs or surgical candidates. In subgroup analyses (tumours ≤
2 cm, 2–5 cm, and >5 cm), Matteo et al. found that imaging
features, such as nonsmooth tumour margins, peritumoral
enhancement, and the two-trait predictor of venous invasion
(TTPVI), were more useful for smaller tumours, whereas for
larger tumour, size had a greater weight on MVI prediction (13).
Many studies have suggested that HCC may reach an important
turning point in critical transformation when tumours grow to a
size of 3 cm, leading to more invasive behaviour (27, 28). The
study by Sudeep et al. pointed out that radio-genomic venous
invasion (RVI) had less discriminating power for tumours larger
than 3 cm than for tumours smaller than 3 cm (29). These studies
suggested that there might be differences in the predictors for
MVI between HCCs ≤ 3 cm and > 3 cm. However, to the best of
our knowledge, there is no research that has explored and
compared the predictive features, especially the radiomics
features, for MVI in HCCs ≤ 3 cm and >3 cm.

In the present study, we sought to develop and validate a
radiomics nomogram that would combine the radiomics
signature and clinicoradiological risk factors for the preoperative
prediction of MVI in patients with solitary HCC. Furthermore, we
evaluated the predictive performance of the radiomics signature
and clinicoradiological factors for MVI in HCC subgroups divided
by using a tumour size of 3 cm as the cut-off value.
MATERIALS AND METHODS

Patients’ Data
Our Institutional Ethics Review Board approved the current
retrospective analysis of anonymous data and waived patient
informed consent. Between May 2015 and October 2020,
patients who were pathologically diagnosed with primary
HCCs and underwent Gd-EOB-DTPA-enhanced MRI
examinations were consecutively included in this study. The
inclusion criteria were as follows: 1) patients with a single
primary HCC; 2) patients who underwent curative
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yang et al. Hepatocellular Carcinoma Microvascular Invasion Prediction
hepatectomy; 3) patients who received Gd-EOB-DTPA
enhanced MRI scan within 1 month before surgery; and 4)
patients with histologically confirmed HCCs with full
descriptions in the histopathologic reports. The exclusion
criteria were as follows: 1) patients with gross vascular
invasions or extrahepatic metastasis; 2) patients with a history
of any anticancer therapy before surgery; and 3) patients with
inadequate image quality for analysis. Finally, a total of 201 HCC
patients (165 males and 36 females; mean age, 52.40 ± 10.38
years) were enrolled in this study. According to the date of the
MRI scan, the cohort was divided into a training set (n = 148; 125
males and 23 females; from May 2015 to December 2017) and a
validation set (n = 53; 40 males and 13 females; from January
2018 to October 2020) at a ratio of 7: 3. In addition, the primary
cohort was reassigned into two subgroups: the HCCs ≤ 3 cm
cohort (n =94; 76 males and 18 females) and the HCCs > 3 cm
cohort (n =107; 89 males and 18 females).

Demographic and clinical laboratory data were collected from
medical records, including age, sex, serum alpha-fetoprotein
(AFP) levels, serum alanine aminotransferase (ALT) levels,
aspartate aminotransferase (AST) levels, serum albumin (ALB)
levels, total bilirubin (TBIL) levels, g-glutamyl transpeptidase
(GGT) levels, and prothrombin time (PT) levels. The
pathological characterist ics of the specimens from
hepatectomy, particularly for MVI status, were assessed in
consensus by 2 dedicated pathologists. MVI was defined as the
presence of cancer cell nest in the portal vein, hepatic vein, or a
large capsular vessel of the surrounding hepatic tissue lined with
endothelium that was visible only on microscopy (22).

MR Examination
All MRI scans were performed with a 1.5T or 3.0T MR scanner
(Signa HDxt, GE Healthcare) equipped with a quadrature body
coil [training set: 1.5T (n=130), 3.0T (n=19); validation set: 1.5T
(n=25), 3.0T (n=28)]. Regions of interest (ROI) were drawn on
axial LAVA (liver acquisition with volume acceleration) MR
images, including precontrast T1-weighted images (T1WI), and
arterial phase (AP, 20–35 s), portal venous phase (VP, 60–70 s),
delayed phase (DP, 3 min) and hepatobiliary biliary phase (HBP,
20 min) images, after the injection of 0.025 mmol/kg of Gd-EOB-
DTPA (Primovist, Bayer Schering Pharma, Berlin, Germany)
into the cubital vein, followed by a 20 mL saline flush. These
images were obtained by using the following parameters (1.5T/
3.0T): TR = 3.8/2.6 ms, TE = 1.8/1.2 ms, flip angle =15/11°,
thickness = 4.8/5.0 mm, FOV = 40/38 cm, and bandwidth =
62.50/125 kHz. Other images, such as T2-weighted images
(T2WI) and diffusion-weighted images (DWI), were also
obtained, but they were not used for radiomic analyses, for the
thickness of these images was about 6 to 10 mm, which might
affect the quantification of radiomic feature (30, 31).

MR images were reviewed independently by two radiologists,
Y. Yang (reader A) and G.X. Wang (reader B), with 5 and 10
years of experience in abdominal MR imaging interpretation,
respectively. They were blinded to MVI status and other clinical
information. The two radiologists independently assessed the
following morphological features for each tumour: tumour size,
tumour growth type, enhancement pattern, radiologic capsule,
Frontiers in Oncology | www.frontiersin.org 3
peritumoral enhancement, tumour signal intensity on the HBP
image, peritumoral hypointensity on the HBP image, intratumoral
fat, intratumoral necrosis, intratumoral haemorrhage, and
intratumoral vasculature at the arterial phase (13, 16, 17, 19, 32,
33). Any disagreement in imaging feature assessment between the
radiologists was settled by a joint review until a final consensus
was reached.

Tumour Segmentation and Radiomic
Features Extraction
The workflow is shown in Figure 1. First, all MR images were
resampled to a voxel size of 1×1×1 mm3 by linear interpolation to
standardize the voxel spacing. Regions of the entire intratumoral
area (ROI-merge) were drawn semiautomatically with reference
to the boundary of the tumour on the HBP image. To capture
features from the peritumoral area of 1 cm (ROI-external), where
there is more potential for microvascular invasion, a 1-cm-wide
area was obtained with a dilation algorithm. The combined
intratumoral and peritumoral area (ROI-plus) was generated
synchronously. Of note, the nonhepatic regions of the ROI were
subtracted semiautomatically or manually slice-by-slice, as
appropriate. In addition, the voxel intensity values were
discretized by using a fixed bin width of 5. A wavelet filter,
which decomposed the original image into 8 decompositions,
was implemented to extract high-dimensional features from
different frequency scales. A total of 851 radiomic features,
including first-order features, shape features, texture features,
and wavelet-transformed features, were extracted from each
three-dimensional ROI. Tumour segmentation and feature
extraction were performed by reader A and reviewed by reader
B. These stepswere implemented by usingAK software (Artificial-
Intelligence Kits; version 3.3.0; GE Healthcare).

Radiomic Features Selection and
Signature Construction
We randomly selected 20 patients and repeated the same
procedure one month later. The intraclass correlation
coefficient (ICC) was calculated to determine the stability of
the features. Features with ICCs lower than 0.80 were excluded,
and the remaining features were used for subsequent evaluation.
All the patients were divided into the training set and validation
set according to the date of the MRI scan at a ratio of 7:3. In
addition, all the patients were reassigned into HCC ≤ 3 cm and
HCC > 3 cm cohorts. The abnormal values were replaced by the
media and all the features were standardized before selection.
Then, the minimum redundancy maximum relevance (mRMR),
least absolute shrinkage and selection operator (LASSO)
algorithm and stepwise logistic regression analysis with Akaike
information criterion (AIC) were used to select MVI-related
features. Receiver operating characteristic (ROC) curves were
drawn to display their performance for MVI prediction. The area
under the curve (AUC) and corresponding 95% confidence
interval (CI) were obtained from ROC curves, as well as the
sensitivity, specificity and accuracy. Multiple comparisons of
ROC curves in the training set were performed by the Delong
test with Bonferroni-adjusted p values, and independently
validated in the validation set.
October 2021 | Volume 11 | Article 756216
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Model Construction and Evaluation
Univariate and multivariate regression analyses with odds ratios
(ORs) were performed to determine the MVI risk factors. The
clinicoradiological model was formulated based on the results of
multivariate regression. The radiomics signature and significant
clinicoradiological risk factors were used to construct the
combined model using multivariable logistic regression
analysis in the training set. In view of the multivariable logistic
regression, the collinearity diagnosis was performed using the
variance inflation factor (VIF). The performances of the
clinicoradiological model, radiomics model and the combined
model in predicting MVI were tested using ROC analysis; the
AUC with the corresponding 95% CI, sensitivity, specificity, and
accuracy were calculated. We also established a nomogram for
the combined prediction model to provide a more direct way for
clinicians to assess the possibility of MVI. A calibration curve, a
graphic representation of the relationship between the actual
MVI and the predicted MVI probabilities, was plotted to assess
the calibration of the nomogram. In addition, decision curve
analysis (DCA) was also conducted to estimate the clinical utility
of the nomogram by quantifying the net benefits for a range of
high risk thresholds in the combined training and validation
set (34).

Statistical Analysis
The statistical software R (version 4.0.2) and Python (version
3.5.6) were used to perform the statistical analysis. Categorical
variables are presented as whole numbers and proportions,
and continuous variables are presented as medians with
Frontiers in Oncology | www.frontiersin.org 4
interquartile ranges. Clinicoradiological variables associated
with MVI were assessed based on clinical importance and
predictors identified in previously published articles (13–15,
17, 21, 32). The significant differences of the variables were
analysed in the training and validation sets (MVI-presence group
and MVI-absence group), as well as in the subgroups (HCC ≤ 3
cm and HCC > 3 cm), by using the chi-square test or the Fisher
exact test for the categorical variables and the Mann-Whitney U
test for the continuous variables. The associations of relevant
clinicoradiological variables with MVI were assessed using
binary logistic regression models. Backward stepwise selection
with the Akaike information criterion (AIC) was used to identify
variables for the multivariable logistic regression models. The
packages in R that were used in this study were as follows: the
“glmnet” package to perform the LASSO logistic regression
model analysis, the “car” package to calculate the VIFs, the
“epiDisplay” package to plot the ROC curves, the “rms”
package to construct the nomogram and plot the calibration
curves, and the “rmda” to perform DCA. A two-sided p < 0.05
was regarded as statistically significant.
RESULTS

Clinicoradiological Characteristics and
MVI Prediction Factors
Among the 201 patients with solitary HCC, MVI was diagnosed
in the resected tissue of 111 patients (55.22%). The high
prevalence of MVI observed in the present analysis might be
FIGURE 1 | A flowchart showing the radiomics analysis for MVI prediction. The clinicoradiological characteristics (especially the status of MVI) were identified first.
ROI segmentation was performed on axial LAVA MR images, and then radiomic features were extracted, including shape features, first-order features, textural
features, and wavelet transformed features. Next, features with high stability (ICC > 0.8) were included and further selected via mRMR, LASSO and stepwise
regression analysis with AIC. The MVI prediction model was constructed by incorporating the radiomics signature and clinicoradiological risk factors. A nomogram
was adopted to present the model and evaluated with calibration curve and decision curve analysis.
October 2021 | Volume 11 | Article 756216
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the consequence of a more careful histological examination of
surgical specimens. Although this prevalence seems to be high, it
was reported to be highly variable in different series (10, 11). The
clinicoradiological characteristics of patients in the training and
validation sets are summarized in Table 1. There was no
significant difference between the two sets regarding MVI
status (p = 0.293). The tumour size of HCC with MVI was
significantly larger than that of HCC without MVI in both sets
(p < 0.05). HCC patients with and without MVI demonstrated
significantly different imaging features. Tumour growth type,
peritumoral enhancement and peritumoral hypointensity on
HBP images were significantly associated with MVI in patients
with solitary HCC (p < 0.001). Tumour size, serum AFP levels,
tumour capsules, intratumoral vasculature and necrosis were
also related to the presence of MVI (p < 0.05). Backward stepwise
selection using the AIC in multivariate logistic regression
analysis modelling confirmed that peritumoral enhancement
and tumour growth type had the strongest associations with
the presence of MVI in the training set (Table 2), and these two
factors were used for the clinicoradiological model construction.

Radiomic Features Selection and
Performance for MVI Prediction
The radiomic features selection using LASSO binary logistic
regression analysis in the training set is shown in
Supplemental Figure 1. The finally selected features of the
ROI in a single phase are displayed in Supplemental Table 1.
We established radiomic models based on the ROI of a single
phase separately, and their corresponding AUCs and 95%
confidence intervals (CIs), sensitivity and specificity are shown
in Supplemental Table 2 and Figure 2. For the vast majority of
the ROI and phases, the performance of the ROI in AP and VP
were superior to other phases, and the ROI-merge showed a
superior performance compared with other ROI of their phases.
Of note, features extracted from the ROI-external showed a
stable performance in all phases. To integrate the relevant
features in both intratumoral and peritumoral areas to improve
the characterization of MVI in HCC patients, the optimal ROI in
each phase was selected to build the radiomics model. A formula
was generated using a linear combination of selected features
that were weighted by their respective logistic regression
coefficients, and then used to calculate the radiomics score (a
risk score reflecting the probability of MVI) for each selected
ROI. The final radiomics score was calculated for each patient via
a linear combination of radiomics scores of selected ROIs
weighted by their respective coefficients.

Herein, the ROI with optimal performance in each phase (i.e.,
ROI-merge in AP, DP, VP, and ROI-external in HBP, T1WI)
were selected and incorporated into the formula to calculate the
radiomics score. The radiomics score calculation formula is
presented in Supplemental Formula 1. Patients in the MVI-
presence group generally displayed a higher radiomics score
[median (interquartile range)] than the patients in the MVI-
absence group in the training set [1.750 (0.665 – 3.109) vs. -1.430
(-3.275 – 0.094), p <0.001] and in the validation set [0.447
(-1.991 – 1.372) vs.-0.837 (-2.098 – 0.340), p < 0.001].
Frontiers in Oncology | www.frontiersin.org 5
Model Comparison and Nomogram
Construction and Evaluation
A combined model that incorporated clinicoradiological
predictors (peritumoral enhancement and tumour growth
type) and the radiomics signature was constructed. Collinearity
tests showed that the VIFs ranged from 1.07 to 1.15, indicating
the absence of collinearity problems. The ROC curves
and discriminative performance of the clinicoradiological
model, radiomics model, and combined model in the training
set and validation set are shown in Figures 2A, B. The
clinicoradiological model showed good predictive efficacy, and
its AUC (95% CI), specificity, sensitivity and accuracy in
predicting MVI were 0.778 (95% CI, 0.700 – 0.857), 63.5%,
87.1% and 77.0%, respectively, in the training set, and 0.843 (95%
CI, 0.733 – 0.953), 77.8%, 84.6% and 73.6%, respectively, in the
validation set. The radiomics signature showed favourable
predictive performance, with an AUC of 0.896 (95% CI,
0.846 – 0.946) in the training set and 0.788 (95% CI, 0.666 –
0.910) in the validation set, and the specificity, sensitivity and
accuracy were 81.0%, 82.4% and 81.8% in the training set and
55.6%, 96.2% and 66% in the validation set, respectively. The
combined model showed an improved predictive performance,
with AUC, specificity, sensitivity and accuracy of 0.932 (95% CI,
0.893 – 0.970), 92.1%, 80.0% and 85.1%, respectively, in the
training set and 0.917 (95% CI, 0.841 – 0.994), 85.2%, 88.5% and
84.9%, respectively, in the validation set. The combined model
outperformed the other two models, showing a significantly
higher AUC than the clinicoradiological model and the
radiomics model in the training set (p < 0.001, p = 0.041,
respectively) and in the validation set (p = 0.035, p =
0.041, respectively).

A nomogram was established based on the combined model
to individually estimate the probability of MVI in patients with
solitary HCC (Figure 3A). The calibration curve of the
nomogram showed good agreement between the predicted and
actual MVI status in the training set (Figure 3B) and validation
set (Figure 3C) (Hosmer–Lemeshow test, p = 0.412 and 0.631,
respectively). The decision curve proved that using this
nomogram to predict MVI adds more net benefit than either
the treat-all or the treat-none scheme (Figure 4).

Subgroup Analysis
The incidence of MVI was higher in the HCC > 3 cm cohort than
in the HCC ≤ 3 cm cohort (68.22% vs. 40.43%, p < 0.001), which
was consistent with previous studies (13). The detailed
clinicoradiological characteristics of patients in the two cohorts
are shown in Supplemental Table 3. As part of this study, the
performance of clinicoradiological factors in predicting MVI was
separately evaluated in the HCC ≤ 3 cm and HCC > 3 cm
cohorts. Backward stepwise selection using the AIC in binary
logistic regression modelling identified that tumour growth type
was an independent risk factor for MVI in the HCC ≤ 3 cm
cohort (Supplemental Table 4), while peritumoral enhancement
for MVI in the HCC >3 cm cohort (Supplemental Table 5). The
AUC (95% CI) of the clinicoradiological risk factors in predicting
MVI was 0.828 (95% CI, 0.744 – 0.913) in the HCC ≤ 3 cm
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TABLE 1 | Patient characteristics in the training and validation sets.

Variables Training set Validation set

MVI absence n = 63 MVI presence n = 85 P value MVI absence n = 27 MVI presence n = 26 P value

Age (year) 50.00 (45.00, 57.00) 52.00 (47.00, 61.00) 0.191 52.00 (46.00, 54.00) 51.00 (46.00, 61.50) 0.650
Sex 0.923 0.810
Female 10 (15.87%) 13 (15.29%) 7 (25.93%) 6 (23.08%)
Male 53 (84.13%) 72 (84.71%) 20 (74.07%) 20 (76.92%)

AFP level (ng/ml) 0.021 0.785
<20 31 (49.21%) 25 (29.41%) 14 (51.85%) 11 (42.31%)
20–400 17 (26.98%) 23 (27.06%) 7 (25.93%) 8 (30.77%)
>400 15 (23.81%) 37 (43.53%) 6 (22.22%) 7 (26.92%)

ALT level (U/L) 0.264 0.922
<40 32 (50.79%) 51 (60.00%) 18 (66.67%) 17 (65.38%)
>40 31 (49.21%) 34 (40.00%) 9 (33.33%) 9 (34.62%)

AST level (U/L) 0.588 0.132
<35 35 (55.56%) 51 (60.00%) 18 (66.67%) 12 (46.15%)
>35 28 (44.44%) 34 (40.00%) 9 (33.33%) 14 (53.85%)

ALB level (g/L) 0.234 1.000
>40 53 (84.13%) 77 (90.59%) 22 (81.48%) 21 (80.77%)
<40 10 (15.87%) 8 (9.41%) 5 (18.52%) 5 (19.23%)

T-BIL level (mmol/l) 0.103 0.340
<20 43 (68.25%) 68 (80.00%) 18 (66.67%) 14 (53.85%)
>20 20 (31.75%) 17 (20.00%) 9 (33.33%) 12 (46.15%)

ALP level (U/L) 0.864 0.351
<135 55 (87.30%) 75 (88.24%) 26 (96.30%) 23 (88.46%)
>135 8 (12.70%) 10 (11.76%) 1 (3.70%) 3 (11.54%)

GGT level (U/L) 0.621 0.498
<45 27 (42.86%) 33 (38.82%) 16 (59.26%) 13 (50.00%)
>45 36 (57.14%) 52 (61.18%) 11 (40.74%) 13 (50.00%)

PT (s) 1.000 1.000
<14 62 (98.41%) 83 (97.65%) 26 (96.30%) 25 (96.15%)
>14 1 (1.59%) 2 (2.35%) 1 (3.70%) 1 (3.85%)

MR features
Tumour size (cm) 29.00 (20.00,52.00) 45.00 (28.50,62.50) 0.003 23.00 (19.00,28.00) 29.00 (22.25.55.75) 0.017
Tumour growth type <0.001 <0.001
Smooth regular nodule growth 7 (11.11%) 1 (1.11%) 3 (11.11%) 2 (7.69%)
Focal extranodular growth 15 (23.81%) 8 (9.41%) 13 (48.15%) 1 (3.85%)
Multinodular confluent growth 29 (46.03%) 26 (30.59%) 8 (29.63%) 10 (38.46%)
Infiltrative growth 12 (19.05%) 50 (58.82%) 3 (11.11%) 13 (50.00%)

Tumour capsule 0.011 0.625
Absent 19 (30.16%) 32 (37.65%) 11 (40.74%) 13 (50.00%)
Incomplete 25 (39.68%) 44 (51.76%) 10 (37.04%) 10 (38.46%)
Complete 19 (30.16%) 9 (10.59%) 6 (22.22%) 3 (11.54%)

Enhancement pattern 0.803 1.000
Untypical 8 (12.7%) 12 (14.12%) 3 (11.11%) 3 (11.54%)
Typical 55 (87.3%) 73 (85.88%) 24 (88.89%) 23 (88.46%)

Peritumoral enhancement <0.001 0.019
Absent 41 (65.08%) 18 (21.18%) 20 (74.07%) 11 (42.31%)
Present 22 (34.92%) 67 (78.82%) 7 (25.93%) 15 (57.69%)

HBP signal intensity 0.090 0.250
Other 12 (19.05%) 8 (9.41%) 2 (7.41%) 5 (19.23%)
Hypointensity 51 (80.95%) 77 (90.59%) 25 (92.59%) 21 (80.77%)

Peritumoral hypointensity on HBP <0.001 0.300
Absent 47 (74.60%) 32 (37.65%) 22 (81.48%) 18 (69.23%)
Present 16 (25.40%) 53 (62.35%) 5 (18.52%) 8 (30.77%)

Intratumoral vasculature 0.013 0.003
Absent 44 (69.84%) 42 (49.41%) 22 (81.48%) 11 (42.31%)
Present 19 (30.16%) 43 (50.59%) 5 (18.52%) 15 (57.69%)

Intratumoral fat 0.225 0.691
Absent 45 (71.43%) 68 (80.00%) 21 (77.78%) 19 (73.08%)
Present 18 (28.57%) 17 (20.00%) 6 (22.22%) 7 (26.92%)

Intratumoral necrosis 0.004 0.026
Absent 44 (69.84%) 39 (45.88%) 23 (85.19%) 15 (57.69%)
Present 19 (30.16%) 46 (54.12%) 4 (14.81%) 11 (42.31%)

(Continued)
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cohort and 0.749 (95% CI, 0.643 – 0.855) in the HCC >
3 cm cohort.

Subsequently, the predictive performance of radiomic
features for MVI was separately evaluated in the two
subgroups. The selected radiomic features for MVI prediction
Frontiers in Oncology | www.frontiersin.org 7
in the HCC ≤ 3 cm and HCC > 3 cm cohorts are separately listed
in Supplemental Tables 6 and 7. There were more radiomic
features that were associated with the presence of MVI in the
HCC > 3 cm cohort than in the HCC ≤ 3 cm cohort. The
performance of the ROI in each phase in the two subgroups is
TABLE 1 | Continued

Variables Training set Validation set

MVI absence n = 63 MVI presence n = 85 P value MVI absence n = 27 MVI presence n = 26 P value

Intratumoral haemorrhage 0.082 0.351
Absent 51 (80.95%) 58 (68.24%) 26 (96.30%) 23 (88.46%)
Present 12 (19.05%) 27 (31.76%) 1 (3.70%) 3 (11.54%)
October
 2021 | Volume 11 | Article
MVI, microvascular invasion; AFP, a-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransaminase; ALB, albumin; T-BIL, total bilirubin; ALP, alkaline phosphatase; GGT,
g-glutamyltransferase; PT, prothrombin time.
TABLE 2 | Logistic regression analysis showing the association of variables with MVI presence in the training set.

Variables Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value

Age (year) 1.03 (0.99–1.06) 0.116
Sex, Female vs. Male 0.96 (0.39–2.40) 0.923
AFP level (ng/ml)
<20 [Reference]
20–400 1.68 (0.74–3.85) 0.216
>400 3.06 (1.40–6.93) 0.006

ALT level (IU/L),<40 vs.>40 0.69 (0.36–1.33) 0.256
AST level (IU/L),<35 vs.>35 0.83 (0.43–1.61) 0.588
ALB level (g/L),>40 vs.<40 0.55 (0.20–1.49) 0.239
T-BIL level (mmol/l),<20 vs.>20 0.54 (0.25–1.14) 0.105
ALP level (U/L),<135 vs.>135 0.92 (0.34–2.54) 0.864
GGT level (U/L),<45 vs.>45 1.18 (0.61–2.30) 0.621
PT (s),<14 vs.>14 1.49 (0.14–32.57) 0.745
MR features
Tumour size (cm) 1.02 (1.01–1.04) 0.005
Tumour growth type
Smooth regular nodule growth [Reference] [Reference]
Focal extranodular growth 3.73 (0.52–76.26) 0.254 4.15 (0.53–89.11) 0.235
Multinodular confluent growth 6.28 (1.02–121.45) 0.096 4.82 (0.71–97.25) 0.168
Infiltrative growth 29.17 (4.60–573.18) 0.003 15.73 (2.21–322.58) 0.017

Capsule
Complete [Reference]
Incomplete 3.72 (1.50–9.81) 0.006
Absent 3.56 (1.37–9.78) 0.011

Enhancement pattern, 0.88 (0.33–2.29) 0.803
Untypical vs. Typical

Peritumoral enhancement, 6.94 (3.39–14.78) <0.001 4.38 (1.98–9.95) 0.003
Absent vs. Present

HBP signal intensity, 2.26 (0.88–6.15) 0.096
Hypointensity vs. Other

Peritumoral hypointensity on HBP, 4.87 (2.42–10.20) <0.001
Absent vs. Present

Intratumoral vasculature, 2.37 (1.21–4.78) 0.014
Absent vs. Present

Intratumoral fat, 0.63 (0.29–1.34) 0.227
Absent vs. Present

Intratumoral necrosis, 2.73 (1.39–5.51) 0.004
Absent vs. Present

Intratumoral haemorrhage, 1.98 (0.93–4.43) 0.085
Absent vs. Present
MVI, microvascular invasion; OR, odds ratio; AFP, a-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransaminase; ALB, albumin; T-BIL, total bilirubin; ALP, alkaline
phosphatase; GGT, g-glutamyltransferase; PT, prothrombin time.
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A B

FIGURE 2 | Comparison of receiver operating characteristic (ROC) curves in predicting MVI presence. ROC curves of the clinicoradiological model, radiomics model
and the combined model in the (A) training and (B) validation sets.
A

B C

FIGURE 3 | (A) Nomogram for the prediction of MVI presence in patients with solitary HCC. The nomogram was established based on the MR radiomics signature
and 2 independent clinicopathological risk factors: peritumoral enhancement and tumour growth type (type 1: smooth regular nodule growth; type 2: focal
extranodular growth; type 3: multinodular confluent growth; and type 4: infiltrative growth). Plots (B, C) present the calibration curve of the nomogram in the training
and validation sets, respectively. The 45° gray line represents the ideal prediction, and the purple line represents the predictive performance of the nomogram. The
purple line has a closer fit to the gray line, which indicates that the predicted MVI probability has good agreement with the actual presence of MVI.
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presented in Supplemental Table 8 and Figure 3. In the HCC ≤
3 cm cohort, the performance of the ROI was relatively stable in
precontrast T1WI and HBP, while ROI-merge in the AP, DP, and
ROI-external in the VP outperformed other ROI in their phases.
Compared with the original training set, the performances of the
ROI in precontrast T1WI and HBP were improved, while the
performance of most ROI in the AP, VP and DP was decreased
in the HCC ≤ 3 cm cohort. Likewise, the optimal ROI of each
phase were selected to build a radiomics model. The combination
of optimal ROI in each phase (i.e., ROI-merge in AP and DP,
ROI-external in HBP, and ROI-plus in VP and T1WI) achieved
an AUC of 0.953 (95% CI, 0.913 – 0.992) in the HCC ≤ 3 cm
cohort, and the sensitivity, specificity and accuracy were 91.1%,
92.1% and 90.4%, respectively. In the HCC > 3 cm cohort, all the
ROI showed good performance (AUC > 0.7), and all showed
improvement when compared with the original training set. The
combination of the optimal ROI in each phase (i.e., ROI-merge
in the AP, DP and HBP, and ROI-plus in the VP and T1WI)
obtained an AUC of 0.993 (95% CI, 0.982 – 1.000), and the
sensitivity, specificity and accuracy were 94.1%, 98.6% and
97.2%, respectively, in the HCC > 3 cm cohort. The ROC
curves of the clinicoradiological model and radiomics model
are shown in Figure 5. The radiomics models were superior to
the clinicoradiological models in the HCC ≤ 3 cm and > 3 cm
cohorts (p = 0.006, p < 0.001, respectively).
DISCUSSION

The preoperative evaluation of MVI status may facilitate HCC
patient management and improve survival (5). In the present
study, we assessed the performance of clinicoradiological factors
and radiomic features in the prediction of MVI. Our results
Frontiers in Oncology | www.frontiersin.org 9
demonstrated that clinicoradiological features, peritumoral
enhancement and tumour growth type were independent risk
factors for MVI; the MR radiomics signature, converted into a
quantitative Rad-score, could be an independent predictor for
MVI. We established and validated an MR radiomics-based
nomogram for the preoperative prediction of MVI in patients
with solitary HCC. Encouragingly, we further identified that the
performance of clinicoradiological factors and the radiomics
signature for MVI prediction varied between the HCC ≤ 3 cm
and > 3 cm subgroups; the predictive performance of the
radiomics signature was comparatively improved in both
subgroups compared to the original training set.

Radiomics based on medical image data is a promising
application in oncology. The accurate delineation of ROI is of
primary importance for radiomics analysis. In the present study,
the entire volumetric tumour contours were obtained using
semiautomatic segmentation algorithms, with reference to the
tumour boundary on HBP images. As MVI generally occurs in
the peritumoral region within a 1 cm distance from tumour
boundaries (8), we evaluated the performance of radiomic
features extracted from both intratumoral and peritumoral
areas (1 cm). Although previous studies have also established
combined intratumoral and peritumoral radiomics models to
predict MVI in HCC patients, the automatically extracted
peritumoral areas might include extrahepatic tissues, which
would result in a loss of accuracy of the models (17, 18, 21,
35). In our study, extrahepatic areas were excluded. The
radiomics signature performed favourably as supported by an
AUC of 0.896 in the training set. Our results showed that the
different ROI (i.e., intratumoral and peritumoral areas) of phases
(i.e., the precontrast T1WI, AP, VP, DP and HBP) can capture
complementary information, thus achieving increased
performance when combined.
FIGURE 4 | Decision curve analysis for the nomogram in predicting the presence of MVI. The net benefit was plotted versus the high-risk threshold. The purple line
represents the nomogram. The gray and black lines represent the hypothesis that all patients and no patients had MVI presence, respectively.
October 2021 | Volume 11 | Article 756216
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Being partly consistent with previous studies, the features
incorporated into the radiomics model also included first order
features, shape-based features, and texture features (15, 18, 21, 35).
For instance, the shape-based features, original shape sphericity
and maximum 3D diameter, which represent spherical
disproportion and the largest size of the tumour, were found to
be significantly related to the presence ofMVI in our study. These
features were similar to the well-known independent risk features
of a larger tumour diameter and nonsmooth margins (irregular
growth type) for MVI (14–17). The levels of gray-level
cooccurrence matric (GLCM) features are useful for quantifying
the heterogeneity of tumours. In our study, thewavelet transform-
based GLCM features, inverse variance, extracting from
peritumoral areas, showed a strong negative correlation with
MVI. Inverse variance is a parameter that reflects the degree of
texture regularity; the smaller the value is, the higher the
irregularity. This suggested that the presence of MVI in
peritumoral areas could result in higher irregularity. Inverse
variance has been proven to be useful for the discrimination
between hepatic metastasis and HCC (36). In addition, the
wavelet transform-based neighbouring gray-tone difference
matrix (NGDTDM) feature, coarseness, was also found to be
negatively correlated withMVI. Coarseness measures the average
difference between the centre voxel and its neighbourhood, and
indicates the level of the spatial change rate of intensity. Thehigher
the value, the lower the spatial change rate, and the more uniform
the local texture. This indicated that the presence of MVI would
lead tomore uneven local texture. Coarseness has been found to be
clinically useful to distinguish between normal and abnormal
tissue in patients with head-and-neck cancer (37). Other features
have also been found to be of value and have shown promise in
predicting the presence of MVI, such as the wavelet transform-
based GLSZM feature (e.g., small area low gray level emphasis,
SALGLE) and GLDM feature (e.g., dependence nonuniformity
normalized, DNN). Based on the above explanation and analysis,
Frontiers in Oncology | www.frontiersin.org 10
our results indicated that HCC with MVI may be more likely to
present as larger sizes and show irregular growth type, higher
irregularity of texture, higher spatial change rate, and less uniform
of local texture.

The radiomics signature based on MRI has shown promise in
predicting the presence of MVI, while clinicoradiological factors
may be useful for improving the predictive performance of the
model. Peritumoral enhancement (13, 15–17, 38, 39) and
infiltrative growth type (13, 32) have been corroborated as
independent predictors for MVI, which corresponded to our
results. The association of peritumoral enhancement with MVI
could be explained by perfusion changes following MVI. Several
studies have affirmed that peritumoral enhancement could be
compensatory arterial hyperperfusion for reduced portal flow,
which might be induced by minute portal branch occlusions
resulting from microscopic tumour thrombi around the tumour
(40, 41). Previously, “focal extranodular extension”, “focal
infiltrative margin” and “multinodular confluence” tumour
growth types have been reported as important predictors for MVI
and showed a higher risk for MVI than a tumour with a “smooth
margin and capsule” (33). In our study, infiltrative growth type was
one of the independent predictors forMVI, with a strong tendency
toward statistical significance (OR = 15.73). The infiltrative growth
type has been reported to be associated with themetalloproteinases
elaborated by HCC, which may facilitate tumour cells to infiltrate
into and through the tumour capsule into the surrounding
parenchyma (42), thus increasing the risk of vascular invasion. In
addition, the loss of the normal expression of E-cadherin, a
suppressor of cancer cell invasion, has also been reported to be
associated with the infiltrative growth type (43).

Increasing research has shown that when HCC grows to a size
of 3 cm, it might reach an important turning point for critical
transformation with a resultant change to a more aggressive
behaviour due to the changes in DNA stem lines and biological
characteristics (27, 28). Sudeep et al. also pointed out that the
A B

FIGURE 5 | Comparison of receiver operating characteristic (ROC) curves in predicting MVI presence in the subgroups. ROC curves of the clinicoradiological model
and radiomics model in the (A) HCC ≤ 3 cm and (B) HCC > 3 cm cohorts.
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performance of MVI predictor, radio-genomic venous invasion
(RVI), varied between tumours≤ 3 cmand>3 cm (29). Thus, in our
study, the performance of clinicoradiological factors and radiomic
features for MVI prediction were further separately evaluated in
HCC ≤ 3 cm and >3 cm cohorts. Of note, the multivariate logistic
regression analysis revealed that the tumour growth type was an
independent risk factor for MVI in the HCC ≤ 3 cm cohort, while
peritumoral enhancement was an independent risk factor for MVI
in theHCC>3cmcohort. Furthermore, comparedwith theoriginal
training set, the performance of all ROI in HBP and precontrast
T1WI improved in theHCC≤ 3 cmcohort but decreased inmost of
theROIs in theAP,VPandDP,while theperformanceof theROI in
all phases improved obviously in the HCC > 3 cm cohort. The
performance of the ROI in the AP, VP and DP outperformed the
ROI inHBPandprecontrastT1WI in theHCC>3cmcohort.These
findings suggested that the performance of the clinicoradiological
factors and radiomic features for MVI prediction varied between
the HCC ≤ 3 cm and HCC > 3 cm cohorts. Likewise, after the
combination of the optimal ROI in each phase, the performance of
the radiomics signature in MVI prediction obviously improved in
both subgroups, with increases of 0.057, 10.1%, 9.7% and 8.6% in
AUC, sensitivity, specificity and accuracy, respectively, in the HCC
≤ 3 cm cohort and 0.097, 13.1%,16.2% and 13.5%, respectively, in
the HCC > 3 cm cohort. The improvement of prediction
performance in the subgroups was most likely the result of a
decrease in confounding variables between the HCC ≤ 3 cm and
> 3 cm cohorts. Thus, wemight safely draw the conclusion that it is
necessary to group HCC by using a tumour size (3 cm) and then
analyse them separately to improve the performance of MVI
prediction. Unfortunately, the small number of cases prevented
us from performing an internal validation analysis on the HCC ≤ 3
cmand>3cmcohorts.Thisfinding ispromisingbutpremature and
should be further validated in a large independent internal and
external cohort of patients.

There are some underlying limitations in our study. First, the
retrospective design of the present single-centre study, together
with the selection bias of solitaryHCC treated by surgical resection,
may result in an incomplete representation of all HCC radiological
features and the radiomics signature. The model was validated
internally but lacked external validation. Second, the ROI were
semiautomatically drawn. This could be a limiting factor because
interobserver variability is known to affect results (44).However, by
using the tumour boundary on HBP images as a reference for ROI
segmentation, high interobserver reproducibility couldbe achieved.
Third, the training and validation cohorts were grouped according
toMRIexamination time,whichmay cause someproblems if image
acquisition or surgical indications change over time. However,
according to the TRIPOD statement, temporal validation is
superior to random splitting (45). In our study, the radiomics
model performed slightly less well in the validation set, which may
be partly attributed to the differences in MR scanning instruments
and parameters between the training and validation sets. Although
the performance of the radiomic features extracted from the 1.5T
scanner outperformed those extracted from the 3.0T scanner, there
was no significant difference between them (p = 0.0695) in the
present study, which needs further exploration. Finally, in the
Frontiers in Oncology | www.frontiersin.org 11
subgroup analysis, validation was not performed due to the small
number of cases.
CONCLUSION

In conclusion, our results indicated that the performance of MVI
prediction in patients with solitary HCC could be improved by
combining the MR radiomics signature of the optimal ROI in
multiple phases. Patients with high Rad-scores may experience a
higher risk of MVI. A nomogram combining the MR radiomics
signature and clinicopathological risk factors may serve as an
effective tool to guide the individualized management and
tailored follow-up of patients with solitary HCC, although this
would require further external validation prior to widespread
application in clinical practice. Moreover, the performance of
clinicoradiological factors and the radiomics signature for MVI
prediction varied between the subgroups (HCC ≤ 3 cm and HCC
> 3 cm), and the performance of the radiomics signature in MVI
prediction was improved in both subgroups, which needs further
internal and external validation.
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