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Extensive interest in cancer immunotherapy is reported according to the clinical
importance of CTLA-4 and (PD-1/PD-L1) [programmed death (PD) and programmed
death-ligand (PD-L1)] in immune checkpoint therapies. AXL is a receptor tyrosine kinase
expressed in different types of cancer and in relation to resistance against various
anticancer therapeutics due to poor clinical prognosis. AXL and its ligand, i.e., growth
arrest-specific 6 (GAS6) proteins, are expressed on many cancer cells, and the GAS6/AXL
pathway is reported to promote cancer cell proliferation, survival, migration, invasion,
angiogenesis, and immune evasion. AXL is an attractive and novel therapeutic target for
impairing tumor progression from immune cell contracts in the tumor microenvironment.
The GAS6/AXL pathway is also of interest immunologically because it targets fewer
antitumor immune responses. In effect, several targeted therapies are selective and
nonselective for AXL, which are in preclinical and clinical development in multiple cancer
types. Therefore, this review focuses on the role of the GAS6/AXL signaling pathway in
triggering the immunosuppressive tumor microenvironment as immune evasion. This
includes regulating its composition and activating T-cell exclusion with the immune-
suppressive activity of regulatory T cells, which is related to one of the hallmarks of cancer
survival. Finally, this article discusses the GAS6/AXL signaling pathway in the context of
several immune responses such as NK cell activation, apoptosis, and tumor-specific
immunity, especially PD-1/PDL-1 signaling.

Keywords: PD-1/PD-L1, Gas6/Axl signaling, immune checkpoint, immune evasion, tumor microenvironment
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THE GAS6/AXL SIGNALING PATHWAY

Like all TYRO3, AXL, and MER (TAM) receptors, AXL is composed of two immunoglobulin-like
domains, two fibronectin III (FN III) domains, a transmembrane domain, and an intracellular
kinase domain (1). GAS6 is a ligand for TAM receptors, with the highest affinity for AXL (2). The
gamma-carboxy glutamic (GLA) regions of GAS6 have four epithelial growth factor (EGF)-like
domains and modules similar to C-terminal sex hormone-binding globulin (SHBG) that are
required to activate TAM receptors. These GLA regions bind to phospholipid phosphatidylserine
(3) tethered to the extracellular surface of apoptotic cells or displayed on the outer parts of
photoreceptors. Phosphatidylserine stabilizes the interaction between TAM and its ligands such as
GAS6 by increasing the binding affinity and slowing the rate of GAS6 dissociation from receptors
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(4). GAS6 activates all three receptors with different affinities
(AXL > TYRO3 >>> MER) based on the ability of each ligand to
activate TAM receptors (5). Upon GAS6–AXL interaction, the
complex dimerizes with another GAS6–AXL complex to form a
2:2 homodimerized complex with no direct AXL/AXL or GAS6/
GAS6 contacts (6). Studies have demonstrated that genetic and
pharmacological inhibition of AXL affects downstream signaling
pathways, which include JAK-STAT (Janus kinase/signal
transducers and activators of transcription), PI3K-AKT
(phosphatidylinositol 3-kinase), AKT (protein kinase B), and
RAS-RAF-MEK-ERK (Rat sarcoma virus-Rapidly Accelerated
Fibrosarcoma-Mitogen-activated protein kinase-Extracellular
signal-regulated kinase) (7, 8).
GAS6 AND AXL EXPRESSION IN THE
TUMOR MICROENVIRONMENT

The tumor microenvironment changes continuously during
cancer progression by regulating oncogenic signals such as
secreted factors and tumor-promoting cells to induce
construction of tumor cells’ own niche (9). While AXL
expression in tumors is readily recognized, it is less well known
that AXL is expressed by various cells found in the tumor
microenvironment, which include several immune cell types
(10), fibroblasts (11), osteoclasts (12), and endothelial cells (13–
15). Furthermore, the unique tumor microenvironmental
conditions may modulate AXL and GAS6 expression in both
tumor and immune cells to promote aggressive and pro-
tumorigenic features. The tumor microenvironment can regulate
AXL expression in various cells, and AXL seems to have a
potential role in tumor development, progression, and metastasis.

AXL in Host Cells
In endothelial cells, AXL expression is involved in vascularization;
i.e., when it is inhibited in tumor-bearing mice, it leads to the
inhibition of tumor-induced angiogenesis (16–19). The interactions
between the tumor and host immune cells in the tumor
microenvironment can induce the expression of AXL and GAS6
to promote a cancerous microenvironment. Tumor cells may
induce the expression of AXL and GAS6 in monocytic myeloid-
derived suppressor cells (M-MDSCs) and polymorphonuclear
myeloid-derived suppressor cells (PMN-MDSCs) (20). Moreover,
generally, AXL is expressed on bone marrow-derived cells (21–24),
dendritic cells (DCs) (25, 26), macrophages (27, 28), monocytes
(23), natural killer (NK) cells (29), and platelets (30).

GAS6 in Host Cells
GAS6 is expressed by luminal progenitor and basal cells around
the ductal lining of mammary tissue (31). In the bone
microenvironment, GAS6 is secreted by osteoblasts, which are
involved in bone formation (32, 33). It was demonstrated that
osteoblast-derived GAS6 induces AXL expression in tumor cells
(34), which suggests that paracrine GAS6/AXL signaling promotes
survival, inhibits apoptosis, and mediates homing of tumor cells to
the bone. In the tumor microenvironment, cancer-associated
Frontiers in Oncology | www.frontiersin.org 2
fibroblasts (CAFs) and CD45-expressing tumor-infiltrating
leukocytes (TILs) express GAS6 (35–38), and CD45+ cells from
the bone marrow or peripheral blood express significantly less
GAS6 than TILs (38). Besides, macrophages and dendritic cells
express high levels of GAS6 (37, 38), which can be further
promoted by various cytokines (36). Especially in macrophages,
in vitro studies suggested that tumor cells or tumor cell-
conditioned media induce GAS6 expression and secretion (37,
39). Stromal cell-derived GAS6 was also shown to promote tumor
cell migration, invasion, survival, and proliferation (36, 37).
Potential downstream effectors of GAS6/AXL signaling through
macrophage-derived GAS6 include pAKT and pSTAT3 (37).
AXL-MEDIATED TUMOR-SPECIFIC
IMMUNE RESPONSE

AXL Changes Tumor Immune
Microenvironment Components
During the past decades, modulating immune responses has
been considered a tremendous potential therapeutics to treat
cancer. Each patient’s tumor immune microenvironment
(TIME) seems to be related to this treatment responsiveness. It
is becoming clear that both intrinsic and extrinsic factors
modulate the composition of the TIME. Specifically, several
immune cells in TIME have been reported to support tumor
cells’ survival through immune-suppressive functions (40, 41).
Furthermore, cancer cells alter the expression of cell surface
molecules to avoid detection by residential immune cells.

Several studies have revealed that GAS6/AXL signaling plays
a vital role in promoting the immune-suppressive tumor
microenvironment. Firstly, this signaling alters the expression
level of several factors, including major histocompatibility
complex I (MHC-I) and programmed death ligand-1 (PD-L1)
in neoplastic cells (42). However, detailed changes are different
depending on cell types and research conditions. Lung
adenocarcinoma cell lines (PC9 and H1975) subjected to AXL
inhibition by either bemcentinib or BGB324 significantly
decreased PD-L1 (42). Pharmacologic AXL inhibition using a
selective AXL inhibitor (R428 or SGI-7079) in tumor cells of
C57BL/6 mice significantly increased the expression of PD-1 and
MHC-I molecules (43). TAM knockout mice had increased
MHC-I expression of myeloid cells. In the MCF10A cells,
overexpression of TAMs did not increase PD-L1 expression,
but in the PD-L1–expressing MDA-MB-231 cells, treating GAS6
liposomes increased PD-L1 expression and induced AXL
phosphorylation (42). Hence, further studies are warranted to
understand the detailed mechanism.

Next, the GAS6/AXL signaling pathway is involved in the
recruitment of both myeloid and lymphoid lineage cells, which
are involved in innate and adaptive immune responses, respectively
(40). It promotes the secretion of immunosuppressive cytokines,
including CCL3-5, G-CSF, and TGFb (44, 45), that are involved in
the infiltration of several immune cells [macrophages and myeloid-
derived suppressor cells (MDSCs)], whichmake it possible to escape
immune surveillance (42) (Figure 1). Myeloid-derived suppressor
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cells have a certain role regarding angiogenesis, cell invasion,
metastasis, and suppression of CD8+ T cells (46, 47), and the
number of these cells is reduced along with AXL knockdown (48).
Lymphoid lineage cells including T cells, B-cells, and NK cells are
increased when pharmacologic and genetic inhibitions of AXL are
treated to cancer cells (42) (Figure 2). However, detailed parts are
still to be further demonstrated because the number of tumor-
infiltrating CD8+ T-cells is increased after AXL inhibition (49),
while the other research showed that AXL inhibition does not affect
the number of them (21, 46, 50).

AXL Contributes to T-Cell Exclusion
In addition to regulating TIME components, AXL also regulates
T cell activity at different points. Usually, this helps control the
excessive inflammatory response to protect normal cells;
however, tumor cells take advantage of this protective
mechanism by eliminating the T cell immune response toward
cancer cells (51). In the study, not only the number of CD4+ and
CD8+ T cells significantly increased, but also the gene expression
associated with type 1 T-cell recruitment and functionality
enhanced when AXL is inhibited in R428-treated tumor-
bearing mice (43). Mainly, AXL receptor tyrosine kinase plays
a particular role in T cell exclusion. AXL increases tumor cell
Frontiers in Oncology | www.frontiersin.org 3
invasion and metastasis by promoting T cell exclusion, acting as
an inducer of tumor cell plasticity (52, 53). Genetic deletion of
AXL resulted in up to 20-fold enhanced T-cell infiltration and
sensitization of tumor cells to radiotherapy and checkpoint
immunotherapy of a transgenic mouse model (50).

Relationship Between AXL and
Programmed Death 1
One of the immune checkpoints that are related to T cells is
programmed death 1 (PD-1) and its ligand programmed cell
death ligand 1 (PD-L1) (54). PD-L1 is expressed in several tumor
cell types, and the interaction between PD-L1 and its receptor
activates signaling pathways to prevent T-cell activation (55).
Specifically, the expression of PD-L1 can serve as a dynamic
mechanism for escaping host immune responses (56). For
instance, neoplastic cells expressing PD-L1 have been reported
to avoid cell death and continue to proliferate in the tumor
microenvironment (42).

This PD-L1 immune checkpoint strongly interacts with AXL as
AXL inhibition affects the PD-L1 pathway and activates the
antitumor effect (43). When AXL is suppressed, the level of PD-
L1 is decreased in lung adenocarcinoma and human triple-
negative breast cancer cell lines (57, 58). However, tumor-
FIGURE 1 | The mechanisms of TAM (in particular AXL) regulation of immune evasion. (A) Modulation of the tumor-immune microenvironment: promotes secretion
of various immunosuppressive chemokine. After AXL inhibition, cytokines are decreased (CXCL9, CXCL10, CXCL11), increased (CCL-2, CCL-3, CCL-4, CCL5,
CXCL1, CXCL2, CXCL5), or there could be no difference (CXCL12). These changes lead to regulation in the recruitment of specific immune cells (monocytes,
macrophages, CD8+ T cells, NK cells). (B) Promoting T cell exclusion. AXL expression is significantly correlated with the expression of genes encoding CXC
chemokine receptor 6 (CXCR6) and PD-L1 which prevent T cell activation. Tumors treated with the combination of pharmacological inhibition of AXL and anti-PD-1
presented an increased number of CD8 T cells. (C) Enhancing the immune suppressive activity of regulatory T cells (Tregs). Tumor-specific Tregs can suppress
antitumor immune responses against a broad range of tumor antigens, even after being activated by just one tumor-associated antigen. GAS6 induces CD4+ CD25+
Tregs to express CTLA-4 and Foxp3 especially with AXL. These activated Tregs increase the consumption of IL-2 or suppression of IL-2 production to block the
activity of T lymphocytes. (D) TAM signaling is involved in the overall stage of NK cell differentiation. Especially, the GAS6/AXL pathway promotes FLT3 ligand-
induced human NK cell development and cooperative interaction between the GAS6/AXL pathway and IL-15 signaling promotes NK cell differentiation. In the
absence of AXL, IL-15 failed to activate several downstream signaling pathways, including PI3K, AKT, and ERK1/2. (E) Suppress innate immune response. TAM
signaling and type I IFN receptors inhibit the inflammatory response in macrophages and dendritic cells (DCs) by expressing the genes encoding the cytokine
suppressors SOCS1 and SOCS3. In case of DCs, they serve as “presentation platforms” for GAS6 which triggers STAT1-dependent cascade with type I IFN. TAM
also activates phagocytosis of DCs and macrophages to clear apoptotic cell corpses which could induce immune responses. (F) Inhibit apoptosis. The GAS6/AXL
pathway is important in limiting apoptosis which involves activating survival signaling mediated by AKT, CREB, BCL-XL, and Survivin. It also suppresses
phosphorylation of BAD that initiates apoptosis and activate ERK1/2 signaling.
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infiltrating CD8+ T and CD4+ T cells subjected to AXL inhibition
showed a noticeable induction of PD-1 on their surface. This
relationship seems to be a systemic long-term memory immune
response to tumor antigens (43). Furthermore, combining
pharmacological inhibition of AXL with anti-PD-1 in a
preclinical model of breast cancer reduces the primary tumor
andmetastatic burden, which is not shown when only one of them
is treated. Tumors treated with the combination of these two
therapeutic agents presented an increased number of CD8 T cells,
with more activation of the NK cells (59). Moreover, other studies
have linked AXL/PI3k signaling with increased expression of PD-
L1 by tumor cells, and AXL inhibition potentiates PD-1 blockade
in ID8 graft models (43, 60). This interaction is also demonstrated
in lung adenocarcinoma, which showed that AXL expression
significantly correlated with the expression of genes encoding
PD-L1 and CXC chemokine receptor 6 (CXCR6) (57). Therefore,
AXL receptor kinase is highly related to the PD-L1 immune
checkpoint, contributing to immune evasion.

This relationship between AXL and PD-L1 may involve several
immune cells for reactions. The analysis of TAM expression within
the activated lymphoid compartment revealed thatMERTK, but not
AXL or TYRO3, is expressed on activated B lymphocytes and CD4+
and CD8+ T cells (61). Therefore, after apoptotic cells display PD-
L1, other immune cells such as dendritic cells or macrophages sense
Frontiers in Oncology | www.frontiersin.org 4
PD-L1 involving AXL (4), and this signaling could be transferred to
T-cells to take action toward immune evasion.
REGULATORY T CELLS’ IMMUNE
EVASION WITH AXL

Modulation of Immune Evasion With the
Immune-Suppressive Activity of
Regulatory T Cells
Regulatory T cells (Tregs) mediate immune evasion, which is
considered a major mechanism of escaping immune surveillance
(62). Especially, tumor-derived Tregs have a relatively more effective
suppressive activity than naturally occurring Tregs (63, 64). These
Tregs are guided to the tumor microenvironment by tumor cell-
mediated chemokine production (65, 66). After that, Tregs suppress
many physical and pathological immune responses, which are
crucial in sustaining self-tolerance and immune homeostasis (67).

Contribution of Treg to Immune
Suppression Through Antigen
Naturally occurring Tregs are produced in the thymus and
occupy 5%–10% of the total CD4 + T cells in the peripheral
FIGURE 2 | The role of the GAS6/AXL pathway between cancer and immune system. Gas6 promotes Axl expression in cancer cells, and the Gas6/Axl signaling
affects tumor cell migration, invasion, survival, and proliferation. After forming the homodimerized complex, the Gas6/Axl signaling affects several downstream
effectors including pAkt and pStat3 that lead to several changes in the tumor microenvironment and immune system. 1) Modulate the expression of MHC-1 and PD-
L1. 2) Regulate the secretion of chemokines that are involved in recruiting several immune cells including monocytes, macrophages, and CD8+ T-cells. 3) Promote
NK cell development through IL-15 signaling. As interruption of the GAS6/AXL pathway resulted in a reduction of FLT3 phosphorylation, this pathway may induce
differentiation of NK cells by positively regulating FLT3 activation. 4) Inhibit apoptosis and activate phagocytosis involving several other pathways including activating
the Akt and PI3K pathways. 5) Increase the immune-suppressive effect of Tregs. GAS6-induced CTLA-4 and Foxp3 expression are abrogated by blocking AXL.
October 2021 | Volume 11 | Article 756225
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blood, and induced Tregs derive from naive T cells under certain
conditions (68). The functional importance of Tregs in a tumor-
bearing host is shown in murine models of melanoma in which
depleting Tregs temporarily induce an immune response against
tumors and improve tumor clearance (69).

The generation and maintenance of Tregs to regulate
autoimmunity require target antigens and T-cell receptor
activation (70). Natural and induced Tregs independently
contribute to tumor-specific tolerance. In the case of naturally
occurring Tregs, an extensive unrestricted ab repertoire specific
for a broad range of self-antigens, including tumor-associated
antigens, is required which implies that the cells exercise their
effect in an antigen-non-specific manner (71). One study on mice
showed that induction of antigen-specific Tregs from naive cells in
the tumor microenvironment does not seem to be intrinsically
related to naturally occurring Tregs (72). These induced Tregs
seemed to profoundly inhibit T-cell responses against tumors in
an antigen-non-specific manner after being activated by a specific
antigen (67). This implies that tumor-specific Tregs can suppress
both medically induced and naturally occurring antitumor immune
responses against a broad range of tumor antigens, even after being
activated by just one tumor-associated antigen (62).

Controlling the Effect of Tregs by GAS6,
Especially With the AXL Receptor
The suppressive effect of Tregs is increased by GAS6mainly through
the AXL receptor (5). Comparing how much the GAS6-induced
CTLA-4 and Foxp3 expression in CD4+ CD25+ Tregs is abrogated,
blocking the AXL receptor was more effective than blocking TYRO3
and MER. In addition, GAS6 has a stronger binding affinity to AXL
than TYRO3 and MER (2, 73). Therefore, GAS6 has a direct role in
the functions of Tregs, which enhances the suppressive activity
mostly with the AXL receptor. These interactions gain credence
through IL-2, apotentTcell growth factor.WhenCD4+CD25-Tcells
pretreated with GAS6 protein are cocultured with CD4+CD25
+Tregs, the proliferative activity of T cells was significantly
decreased with consistent suppression of IL-2. Also, the elevated
expressionofCTLA-4 andFoxp3 inTregs afterGas6 stimulationwas
abrogated after Axl knockdown by siRNA, and this group also
showed an IL-2 level increase. These results indicate that Gas6
enhances suppression of CD4+T cells by increasing Tregs’ ability to
consume IL-2 or suppress IL-2 production (74).
THE ROLE OF TAM IN NK CELL
ACTIVATION FOCUSING ON AXL
AND IL-15

The innate immune system is usually known to recognize
pathogens directly, but it also senses and destroys cells infected
with pathogens. This arm of the innate response is mainly
conducted by NK cells (75). Hematopoietic stem cells (HSCs)
from bone marrow differentiate into common lymphoid
progenitors and develop into NK cells, followed by maturation
into NK cells (76, 77). Several studies have shown that NK cells
are related to tumor progression in several ways, including
Frontiers in Oncology | www.frontiersin.org 5
immune evasion. Pre-metastatic niches are promoted by
suppressing NK cell functions under hypoxia (78).

TAM Controls Natural-Killer-Cell
Activation, Especially at the
Differentiation Stage
TAM signaling plays a pivotal role in regulating the activity of NK
cells (79). When NK cells are activated, they kill their targets by
secreting the CD95 ligand and TNF-related apoptosis-inducing
ligand (80–84), but NK cells from TAM-deficient mice have
inferior cytotoxic activity (4). Mice lacking TAM possessed NK
cells that have a defective function in both IFN-g production and
cytotoxicity. This activity impairment is proportional to how
effectively TAM genes are inactivated as all three TAM receptors
are expressed by immatureNKcells in thebonemarrow (79, 85). The
number of NK cells generated from human CD34+ HPCs reduced
after blocking GAS6 binding to AXL by AXL-Fc or warfarin (86).

After proving that TAM regulates NK cell activity, the specific
stage that TAM is mainly involved in is considered. When
immature cells are grown with NIH3T3 fibroblasts expressing
GAS6, stromal cells can restore their ability to drive NK-cell
maturation in vitro. Furthermore, the mice showed normal
perforin and granzyme B levels even when NK cells lack all three
TAM receptors (4). However, these cells do not secrete IFNg, which
is produced predominantly by NK cells and exhibit a 10-fold lower
killing ability against target cells than wild-type NK cells after
stimulation. This means that these cells do not fully demonstrate
the expression of activation and inhibition receptors expressed by
cytotoxic NK cells (4). Thus, TAM signaling is involved in the
terminal stage of NK cell differentiation.

Importance of Interleukin-15 and AXL in
NK Cell Activation
Interleukin-15 (IL-15) is another critical factor for NK cell
development, which contributes to the differentiation, survival,
and function of NK cells (87). When the mice are deficient in
Interleukin-2 (IL-2) and IL-15 receptor, which is required only
for the actions of IL-2 and IL-15 rather than other growth
factors, NK cells are deficient. However, a normal level of NK
cells is observed in mice deficient in IL-2 or IL-2Ra, the private
receptor used by IL-2, suggesting that IL-15 is an essential factor
in the differentiation of NK cells from uncommitted progenitors
(88). Furthermore, the upregulation of NK cell activity was
markedly reduced by the addition of monoclonal antibodies to
IL-15, but not by antibodies to other cytokines such as IFN-a,
IFN-g, TNF-a, TGF-b, and IL-2 (89). This evidence supports the
suggestion that IL-15 is essential in the activation of NK cells.

Several studies have shown that the IL-15 and GAS6/AXL
pathways partially overlap intracellular signaling molecules (90).
In the absence of AXL, IL-15 failed to activate several downstream
signaling pathways, including PI3K, AKT, and ERK1/2 (91).

Enhancing the Role of AXL and IL-15
Through FMS-Like Tyrosine Kinase 3
The link between IL-15 and AXL could be extended to FMS-like
tyrosine kinase 3 (FLT3), one of the receptor tyrosine kinases (RTK).
October 2021 | Volume 11 | Article 756225
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Micewith genetic disruption at the FLT3 locus presented a reduction
of the numbers of B-lymphoid progenitors, dendritic cells, and NK
cells (92). The FLT3 ligand can enhanceNK cell differentiation in the
presence of IL-15 (93). To activate the FLT3 and its ligand (FL)
pathway, the phosphorylation of FLT3 is essential, which follows the
binding of its ligand FL (94, 95). Interruption of the GAS6/AXL
pathway resulted in a marked reduction of FLT3 phosphorylation
even in the presence of FL. This implies that the GAS6/AXL
pathway promotes FL-induced human NK cell development by
positively regulating FLT3 activation (96) (Figure 1). As FLT3
can induce differentiation of NK cells with IL-15 and the
interaction between AXL and FLT3 is demonstrated, AXL and
IL-15 could be highly related to each other in various immune cell
activation steps.
REGULATION OF INNATE IMMUNE
CELLS BY AXL

In addition to its role in NK cell activation, TAMhas another role in
regulating the innate immune response. TAM signaling is generally
activated by Toll-like receptor (TLR) and type I interferon signaling,
which is part of the innate inflammatory response in dendritic cells
(DCs) and macrophages (5). The AXL receptor was found to be
upregulated when DCs are cultured with type I IFNs (10, 26, 97).
Additionally, the co-expression of TAM and type I IFN receptors in
macrophages and dendritic cells (DCs) inhibits the inflammatory
response of the innate immune system through induction of the
genes encoding the cytokine suppressors SOCS1 and SOCS3. More
specifically, the binding of the apoptotic cells to DCs is
immunosuppressive and serves as “presentation platforms” for
GAS6. This triggers a STAT1-dependent cascade with type I IFN,
and this signaling also induces SOCS1 and SOCS3 expressions,
which inhibit downstream signaling pathways of TLRs and cytokine
receptors (5). Thus, the innate immune mechanism is proceeded
and dependent on TAM receptors.
REGULATION OF IMMUNE EVASION BY
AXL THROUGH APOPTOSIS AND
PHAGOCYTOSIS

Several pieces of research have shown the relationship between
AXL and apoptosis. Apoptosis produces materials that can
induce an immune response, which should be prevented for
tumor immune evasion.

Inhibition of Apoptosis by GAS6
With AXL Kinase
Apoptosis of vascular smooth muscle cells (VSMCs) has been
identified in the physiological remodeling of the vasculature. Cell
death with cell proliferation, migration, and matrix turnover may
induce changes in vascular architecture during development and
diseases such as atherosclerosis (98). This apoptosis of VSMCs is
coupled with GAS6 binding to the AXL receptor, and GAS6
Frontiers in Oncology | www.frontiersin.org 6
inhibits apoptosis in cultured VSMCs through AXL
phosphorylation (99). GAS6 and AXL are increased after
vascular injury, and these molecules play an essential role in
neointima formation by suppressing apoptosis (100). Besides, it is
speculated that the GAS6/AXL pathway is vital to limiting VSMC
apoptosis by activating AKT and PI3K along with several other
pathways, including phosphorylation of BAD (BCL2-associated
agonist of cell death) and activation of ERK1/2 (101–103).

Non-small cell lung cancer (NSCLC), a prevalent and
devastating disease, shows overexpression and activation of MER
and AXL. MER or AXL knockdown also improved in vitro NSCLC
sensitivity to chemotherapeutic agents by promoting apoptosis.
Also, AXL inhibition induces apoptosis by abating survival
signaling mediated by AKT, CREB, BCL-XL, and survivin (104).

Removal of Apoptosis Remains by
Activating Phagocytosis
Furthermore, some cancers develop specific mechanisms to clear
apoptotic cells to regulate immune responses. Defects in the
clearance of apoptotic cells can induce an immune response.
Macrophages and DCs must remove many apoptotic cells
corpses, but this form of homeostatic phagocytosis is impaired
in TAM-deficient mice (24, 105, 106). This immunosuppressive
effect of DCs is exerted through TAM signaling, and this immune
response may be reinforced, especially in cancer cells as they
overexpress AXL. Hence, TAM contributes to immune evasion
by activating phagocytosis to remove these remains.

However, there is a possibility that TAM signaling induced by
apoptotic cells is autocrine which means macrophages and DCs
themselves produce GAS6, not from the apoptotic cells. In this
case, phosphatidylserine is the primary stimulant that stabilized
the interaction between TAM and its ligands (4). Thus, further
research is needed to understand the exact mechanism.
CLINICAL TRIAL SUPPRESSING AXL

Targeting AXL for cancer treatment is under the spotlight, and
several clinical studies involving the use of anti-AXL have been
conducted. The first clinical trial treating an anti-AXL-specific small
molecule inhibitor called BGB324 was performed in 2013. BGB324
blocks auto-phosphorylation of AXL on the COOH-terminal
multiple docking sites Tyr821 with the subsequent activation of
AKT and SFK phosphorylation (107). After entering phase I clinical
trials in 2013, it is currently under phase II study to assess the safety of
BGB324 when given in up to 77 patients advanced adenocarcinoma
of the lung previously treatedwith pembrolizumab (108). Since then,
several newly synthesized inhibitors specific for AXL receptors are
being tested at a clinical stage.

Many small-molecule inhibitors in the clinical stage do not solely
target AXL. Some inhibitors work as AXL pathway modulators that
target factors suchasMET,TYRO3, andFLT3alongwithAXLandare
used with several immune checkpoints inhibitors (ICIs), including
nivolumab, pembrolizumab, durvalumab, and avelumab (109).

Small molecules are being developed mainly, and other
therapeutic agents such as a monoclonal antibody or nucleotide
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aptamer are also in preclinical progress. The YW327.6S2 phage-
derived monoclonal antibody binds to human AXL with high
affinity, which blocks the GAS6 binding to the receptor and
downregulates receptor expression (110). Aptamers are short
structured single-stranded RNAs or DNAs that bind to a specific
target molecule. They are promising alternatives with great
potentials because of their low cost, lower toxicity, and higher
affinity (111, 112). A selective RNA-based aptamer, GL21.T, binds
the extracellular domain of AXL at high affinity and inhibits its
catalytic activity. This includes ERK and AKT phosphorylation and
inhibited in vivo lung tumor formation in mouse xenografts
(111) (Table 1).
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TABLE 1 | AXL inhibitor under development.

Compound Target Phase of development Sponsor

< Small-molecule inhibitors > (113)
ASP2215
(Gilteritinib)

AXL, FLT3, ALK Phase 3 (acute myeloid leukemia) Astellas Pharma.

BGB324
(R428)

AXL (selective) Phase 2 (triple-negative breast cancer, lung cancer metastatic) Rigel PharmaceuticalsBerGenBIO

BMS-777607
(ASLAN002)

AXL, RON, MET,
TYRO3, MER, FLT3

Phase 2 (advanced solid tumors) Aslan Pharma. and Inventive Health Clinical

DP3975 AXL Preclinical Deciphera Biotech
GSK1363089/
XL880
(Foretinib)

AXL, MET, VEGFR2,
RON

Phase 2 (breast cancer/carcinoma, renal cell etc.) GlaxoSmithKline

LDC1267 MET, AXL, TYRO3 Preclinical Lead Discovery Centre
LY2801653
(Merestinib)

MET, MSTIR, DDRI,
TIEI, MER, TYRO3,
AXL

Phase 2 (carcinoma, non-small-cell lung/active, not recruiting) Eli Lilly and Co.

MGCD 265 MET, AXL, VEGFR2 Phase 2 (non-small cell lung cancer)Phase 2 (carcinoma, non-small-cell
lung/active, not recruiting)

Mirati Inc.

MGCD516
(Sitravatinib)

MET, AXL, RET, TRK,
DDR2

Phase 3 (non-small cell lung cancer, advanced or metastatic solid
malignancies)

Mirati Inc.

MP-470
(Amuvatinib)

KIT, PDGFR1, FLT3,
RET, AXL

Phase 1 (solid tumors)Phase 2 (small cell lung carcinoma) Astex Pharma.

NPS-1034 AXL, DDR1, FLT3,
KIT, MEK, MET,
ROS1, TIE1

Preclinical NeoPharma

PF-02341066
(Crizotinib)

ALK, MET, RON, AXL Approved for non-small-cell lung cancerPhase 2 (solid tumors) Pfizer, NCI, EORTC etc.

SGI-7079 MET, MER, YES,
RET, FLT3, AXL

Preclinical Astex Pharma

SKI-606
(Bosutinibm)

BCR-ABL, ABL, SRC,
YES, MEK, AXL, BMX

Phase 3 (chronic myeloid leukemia/recruiting)Phase 2 (breast neoplasms) Pfizer

SU11248
(Sunitinib)

KIT, FLT3, PDGFR,
VEGFR2, AXL

Approved for renal cell carcinoma, imatinib-resistant gastrointestinal stromal
tumor, and metastatic pancreatic neuroendocrine tumorsPhase 3 (different
solid tumors)

Pfizer/Further clinical sponsors include NCI,
Baylor Breast Care Center, M.D. Anderson
Cancer Center, etc.

TP-0903 JAK2, ALK, ABL,
AXL, MER

Phase 2 (acute myeloid leukemia) Huntsman Cancer Institute/Tolero
Pharmaceuticals

UNC2025 MER, FLT3, AXL,
TYRO3

Preclinical University of North Carolina

XL184
(Cabozantinib)

VEGFR2, MET, MEK,
KIT, RET, AXL

Approved (medullary thyroid cancer)Phase 2, 3 for different solid tumors Exelixis

< Receptor monoclonal antibody >
YW327.6S2 AXL Preclinical (non-small cell lung cancer) (111)
D9 AXL Preclinical (pancreatic cancer) (114)
E8 AXL Preclinical (pancreatic cancer) (114)

< Nucleotide aptamer >
GL21.T(RNA
apatamer)

AXL Preclinical (non-small cell lung cancer) (111)

DNA AXL-
Apatamar

AXL Preclinical (ovarian cancer) (17)
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