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Cancer cell-derived extracellular vesicles (CEVs), a novel type of therapeutic agent in
cancer treatment, can be prepared from the autocrine secretion of various cancer cells,
the direct extraction of cancer cells and the combination of cancer cell-derived
membranes with advanced materials. With various bioactive molecules, exosomes are
produced by cells for intercellular communication. Although cancer cell-derived exosomes
are known to inhibit tumor apoptosis and promote the progression of cancer, researchers
have developed various innovative strategies to prepare anti-tumor vesicles from cancer
cells. With current strategies for anti-tumor vesicles, four different kinds of CEVs are
classified including irradiated CEVs, advanced materials combined CEVs,
chemotherapeutic drugs loaded CEVs and genetically engineered CEVs. In this way,
CEVs can not only be the carriers for anti-tumor drugs to the target tumor area but also act
as immune-active agents. Problems raised in the strategies mainly concerned with the
preparation, efficacy and application. In this review, we classified and summarized the
current strategies for utilizing the anti-tumor potential of CEVs. Additionally, the challenges
and the prospects of this novel agent have been discussed.
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INTRODUCTION

Extracellular vesicles (EVs) are phospholipid bilayer membrane-coated vesicles that are generated
by cells for intercellular communication (1, 2). EVs can be classified into exosomes, microvesicles
and apoptotic bodies (3, 4). The exosomes biogenesis was showed in Figure 1. The classification of
EVs is mainly based on their biogenesis. Ranging from 100 nm to 5 mm, apoptotic bodies were
generated and secreted by the cells undergoing apoptosis with outward blebbing of the plasma
membrane (5, 6). With a diameter from 50 nm to 1 mm, microvesicles generated by budding from
cellular membranes after activation, shear, or physical stress (7). Exosomes are defined as the
vesicles with a size of 30-150 nm, and are released from cells undergoing fusion of an endocytic
compartment multivesicular body with the plasma membrane (8). EVs are inherently loaded with
cargoes, including various bioactive molecules, such as nucleic acids, proteins, and lipids for cell-to-
cell signaling (9). Therefore, the short/long distant exchange of bioactive factors in cells is
closely associated with the transfer of EVs in health and disease. Regarding the EVs derived from
cancer cells, EVs are naturally the key players in tumor progression, tumor metastasis,
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immunosuppression, and drug resistance (10–15). The presence
of pernicious products in vesicles limits, to a great extent, the
exploration of the therapeutic value in Cancer cell-derived
extracellular vesicles (CEVs) but still fail to cover the latent
anti-tumor capacity of vesicles.

In the past decade, there has been extensive research done on
CEVs, which has facilitated their use in the development of novel
therapeutic agents for cancer therapy. Several in vitro, in vivo,
and clinical trials have been conducted using CEVs-based
strategies to obtain CEVs with effective anti-tumor activity.
One of the primary advantages of CEVs includes their high
targetability to the tumor. Additionally, they are known to
preferentially target their homologous tumor cells (16–20). The
specific accumulation of CEVs in the tumor area implies that
CEVs could be used for drug delivery for potential targeted
therapy. Thus, recent studies investigated the effects of drug-
loaded CEVs and found excellent effectiveness against cancer
(21–26). Additionally, oncolytic viruses can also be packed into
CEVs to protect them from neutralizing antibodies in the serum,
allowing them to function as oncolytic agents (27). The parent
cancer cells, which secrete CEVs, heavily determine the
constituents, determining the essential quality of CEVs. Studies
have revealed genetically engineered cancer cells, which generate
genetically engineered CEVs, resulting in efficient anti-tumor
immunity and improved anti-tumor efficacy (28–33).
Additionally, cancer cells were also irradiated to prepare CEVs
Frontiers in Oncology | www.frontiersin.org 2
to enhance the safety and anti-tumor efficacy of CEVs. With a
potential role in exosome-mediated bystander effects (34), these
irradiated CEVs could inhibit the progression of the tumor
(25, 35).

Several studies have indicated that EVs from cancer can
promote tumorigenesis and metastasis; thus, the EVs derived
from immune cells, such as dendritic cells, natural killer cells,
and CAR-T cells, have been used for cancer therapy (36–40). The
in-depth analysis of CEVs, as well as the exploration of
therapeutic EVs of immune cells, have provided indications for
the role of CEVs in cancer therapy. In this review, we provide a
comprehensive overview of the current strategies, challenges, and
prospects for the use of CEVs in cancer treatment.
IRRADIATED CANCER CELLS-DERIVED
EXTRACELLULAR VESICLES

Previous studies have shown that radiotherapy, one of the
primary treatments in cancer therapy, can cause a radiation-
induced bystander effect (RIBE), which is a unique reaction
triggered by irradiated cells or tissues, leading to the induction of
apoptosis in unexposed cells (41–45). Similar to RIBE, the
ionizing radiation-exposed cancer cell vaccines were tested,
and their efficacy was confirmed in clinical trials (46–48).
Researchers showed that the underlying mechanism of
FIGURE 1 | The biogenesis of exosomes.
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irradiated tumor cell vaccine in cancer therapy involved the
activation of dendritic cells and T cells (49–51). Hence, radiation
exposure was used in the preparation of CEVs. Figure 2
illustrates the mechanism involved in the preparation of
irradiated CEVs.

In a recent study on irradiated CEVs, the researchers
irradiated the cancer cells with a single dose of 20 Gy by 6-MV
X-rays to generate EVs (35). The results showed the irradiated
CEVs could induce the ferroptosis of cancer cells. Additionally,
the treatment with irradiated CEVs in the mouse model induced
the transformation of M2 tumor-associated macrophages into
M1 tumor-associated macrophages. For CEVs loaded with
chemotherapeutic agents, the process of irradiation was able to
improve the efficacy in the cancer treatment (51). Another study
showed that compared with the PBS group, CEVs of A549 lung
cancer promoted the progression of cancer and malignant
pleural effusion, while the irradiated CEVs group showed no
significant change in the cancer progression (25). Additionally,
the irradiated and drug-loaded CEVs of A549 lung cancer
inhibited the progression of cancer and malignant pleural
effusion in the clinical tests (25, 52).

Although the anti-tumor efficacy of irradiated CEVs was
triggered by the promotion of tumor antigen (53), the detailed
mechanism of the RIBE is unclear and the presentation of tumor
antigen may associate with the therapeutic Dexosomes (one kind
of exosomes secreted form Dendritic cells) (54). Further studies
are required to explore the underlying mechanism of irradiated
CEVs against cancer.
ADVANCED MATERIALS COMBINED
CANCER CELLS-DERIVED
EXTRACELLULAR VESICLES

There has been an extensive increase in the use of advanced
materials as biomimetic carriers in the field of cancer therapy.
Nanoparticles serve as stable carriers to protect antigens from
rapid clearance and degradation in the serum, achieving a
Frontiers in Oncology | www.frontiersin.org 3
stronger immune response (55–57). In a study, PLGA
microspheres were coated with CEVs, and the results showed
an increase in phagocytosis in macrophages and dendritic cells
(58). Consequently, treatment with coated CEVs caused an
enhanced cytokine release in antigen-presenting cells. Figure 3
illustrates the mechanism involved in the coating of CEVs with
advanced materials.

When therapeutic materials, such as photothermal materials
and cytotoxic agents, are combined, CEVs serve as carriers to
accumulate in tumor cells leading to cytotoxicity. The pristine
zinc oxide nanocrystals enclosed with CEVs could be engulfed by
cancer cells, exhibiting toxicity (59). Also, photothermal therapy
was designed to combine with CEVs, based on its direct cytotoxic
effect and ability to increase the susceptibility of cancer cells to
chemotherapy. CEVs were loaded with photothermal Bi2Se3 and
chemotherapeutic doxorubicin hydrochloride (21). With good
biosafety and feasibility, the CEVs could disperse well in the
tumor area, exhibiting photothermal effect.

Most studies on CEVs for advanced materials combined with
biomimetic EVs were performed using membranes of cancer
cells. The design of cancer cell membrane-coated nanoparticles is
based on the homologous target for targeted drug delivery (18,
60–63). The membrane is extracted from cancer cells mostly via
freeze-thawing and centrifugation. The photothermal materials
loaded-nanoparticles with cancer cell membrane were assembled
by the co-extrusion of their mixture to generate the biomimetic
CEVs (18, 63). The membrane from hybrid cells of cancer and
dendritic cells were extracted and combined with photothermal
nanoparticles against cancer to enhance the antigen-presenting
function of biomimetic EVs, resulting in a promising anti-tumor
effect (16).
CHEMOTHERAPEUTIC DRUGS LOADED
CANCER CELLS-DERIVED VESICLES

CEVs possess the properties of homologous tumor targeting and
favorable compatibility for drugs. Figure 4 illustrates the
FIGURE 2 | The current strategies for the preparation and anti-tumor effect of irradiated cancer cells-derived extracellular vesicles.
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mechanism involved in the loading of chemotherapeutic drugs into
CEVs. The drug-loaded CEVs are mostly prepared by the co-
incubation of drugs with cancer cells, resulting in the
phagocytosis of drugs. As the EVs are processed and generated,
CEVs are released and packed with chemotherapeutic drugs in the
supernatant of cancer cells (21–23, 25, 51, 64). In other studies, the
drug-loaded CEVs were mainly prepared in two steps: the first step
involved the isolation of CEVs, and the second step involved drug
loading (19, 26, 65–67). The first step of isolation was conducted
mainly via the traditional ultracentrifugation. In a study of
doxorubicin-loaded cell-derived nanovesicles for the generation of
CEVs(66),U937 lymphomacellswere sequentially extruded through
filters using 10 and 8 mm filter membranes, followed by purification
using Sephadex G50 size-exclusion column. After collecting CEVs,
the second step of drug loading was performed via the direct
incubation of CEVs with chemotherapeutic agents at 37°C (26, 66)
or 22°C (67). However, compared with incubation at room
temperature, a better efficiency of drug loading and release was
observed at 37°C (66). Additionally, the co-extrusion of the mixture
of chemotherapeutic drugs and CEVs also exhibited efficient drug
loading andanti-cancer activity (19).The sonicationof themixtureof
catalase and EVs of macrophages showed the highest loading
efficiency and good releasing efficiency, among other methods of
direct incubation, freeze-thawing, and co-extrusion (68).

Additionally, oncolytic virotherapy was also used in
combination with CEVs against cancer. Oncolytic adenovirus
Frontiers in Oncology | www.frontiersin.org 4
infected- A549 lung cancer cells could release EVs containing
bioactive adenovirus particles (27). The CEVs can protect
adenovirus from the clearance in the serum, resulting in
improved anti-cancer efficacy. Although viruses combined with
CEVs could exhibit therapeutic efficiency, upregulated levels of
CLTA-4 and PD-1 were detected after the administration
of the virus for the cancer therapy (69–71), and the PD-L1
of cancer EVs also promoted tumorigenesis (72). Thus, further
studies are required to design combined therapy, including
immunotherapeutic drugs with EVs, by constructing CEVs with
immune checkpoint inhibitors.

In clinical experiments, chemotherapeutic drugs-loaded CEVs
achieved promising outcomes in lung cancer patients with
malignant pleural effusion (MPE). Cisplatin-loaded CEVs were
prepared from the supernatant of the mixture of A549 cells and
Cisplatin (52). The injections of cisplatin-loaded CEVs were
administered intrathoracically four times, and the results
exhibited a 95% reduction in tumor cells in the MPE. In
another clinical study with methotrexate-loaded CEVs (25),
autologous tumor cells were prepared from patients’ MPE and
incubated with chemotherapeutic methotrexate after ultraviolet
irradiation. The methotrexate-loaded CEVs were collected by
ultracentrifugation. Autologous CEVs were administered
intrapleurally six times. This therapy could effectively stimulate
CD4+ T cells and showed a good safety profile of CEVs, exhibiting\
promising reduction in tumor cells and CD163+ macrophages.
FIGURE 3 | The current strategies for the preparation and anti-tumor effect of advanced materials combined cancer cells-derived extracellular vesicles.
November 2021 | Volume 11 | Article 758884
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GENETICALLY ENGINEERED CANCER
CELLS-DERIVED EXTRACELLULAR
VESICLES

CEVs are the final products generated and prepared from cancer
cells. Therefore, the construction of a genetically modified CEVs
requires a genetically engineered cancer cell line. Thus, various
design strategies were designed by transfecting therapeutic genes
into cancer cells to alter the inherent characteristics of CEVs for
cancer therapy (28–31, 33). Figure 5 illustrates the design
strategies for genetically engineered CEVs.

ThemiRNA content of the exosomes is also known to promote
the progression of cancer (73), such as miRNA-15b (74) and
miRNA-21 (75), while exosomal miRNA-22 (76), miRNA-142
(77), and miRNA-155 (31, 78) have been shown to exert
therapeutic effects against cancer. A study showed that after
transfecting DNA vectors expressing miRNA-155 and miRNA-
125b2 into pancreatic cancer cells, the altered CEVs had
upregulated miRNA levels, as detected by the ExoQuick-TC
Frontiers in Oncology | www.frontiersin.org 5
exosome precipitation solution (31). The results showed that the
genetically engineered CEVs promoted the reprogramming of
macrophages to the M1 phenotype. Additionally, miRNA-21 is
known to enhance chemotherapy resistance; thus, a combination
of silencing such miRNA and CEVs showed improved
chemotherapy sensitivity. Also, treatment with anti-miRNA-21-
loaded CEVs and doxorubicin arrested the growth of cancer
cells (30).

Also, CEVs are known to naturally possess the proteins that
present in the corresponding cancer cells , such as
immunosuppressive PD-L1 (72) and prostate-specific antigen
(PSA) (79). In a study, B16BL6 cells were transfected with the
plasmid expressing streptavidin and lactadherin, followed by
ultracentrifugation to isolate the CEVs to endow them with
increased capacity of tumor antigen presentation (33). In
another study, the engineered EVs derived from Expi293 cells
expressing anti-CD3 and anti-HER2 antibodies exhibited a potent
anti-tumor effect for targeted immunotherapy. Additionally, the
therapeutic proteins in CEVs could be overexpressed via
FIGURE 4 | The current strategies for the preparation and anti-tumor effect of chemotherapeutic drugs loaded cancer cells-derived extracellular vesicles.
FIGURE 5 | The current strategies for the preparation and anti-tumor effect of genetically engineered cancer cells-derived extracellular vesicles.
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transfection to boost the therapeutic efficacy of inherent proteins
in CEVs. An efficient induction of anti-tumor immunity was
observed after treatment with CEVs that overexpressed Rab27a
(28), which is known to serve as an important regulator of
exosomes (80) and antigen presenters (81). It is noteworthy that
the genetically engineered CEVs which had experienced
irradiation could serve as a much more effective medicine
against cancer (82).
CHALLENGES AND FUTURE OF CANCER
CELLS-DERIVED EXTRACELLULAR
VESICLES

Strategy for Preparation
Although gradient ultracentrifugation provides excellent purity
for the preparation of CEVs, sequential ultracentrifugation is
more commonly used as it is more convenient and provides a
larger volume. The polymer precipitation technique is easy to
perform and efficient; however, it has a complicated clean-up
process. Additionally, novel strategies, such as microfluidics-
based techniques and immunoaffinity capture, are also suitable
for the isolation of CEVs; however, they are expensive.

Thus, new techniques are required for the innovative generation
of self-designed CEVs for further analysis of the anti-tumor
potential of CEVs. A sequential extrusion strategy was used
for the artificial synthesis of CEVs. CEVs were prepared after
extrusion through 10 and 8 mm membrane filters (66).
Additionally, the process of freeze-thawing of cancer cells and
co-extrusion with cancer cells and nanoparticles were used to
generate CEVs with the cancer cell membrane and advanced
nanoparticles (18, 63).

Strategy for Efficacy
Before CEVs reach the tumor area, the number of intact EVs
determine the therapeutic efficacy of CEVs. The efficacy of CEVs
is largely dependent on the stable construction and good
targetability after preparation and preservation.

Since the EVs derived from cancer cells can be important
promotors of tumor progression, tumor metastasis,
immunosuppression, and drug resistance (10–14, 83), irradiation is
used for the preparation of therapeutic CEVs to reduce vicious
side effects (25, 35, 49, 51, 53, 84). Cancer cells are prone to
apoptosis after irradiation, which positively influences the
construction of cancer cells membrane and the membrane
of CEVs, leading to a damaged stability of CEVs. Besides,
the resistance against radiotherapy maybe induced via the
communication of irradiated exosomes (85). Additionally, the pH
of the reserve solution plays a controversial role in the preservation
of CEVs (86, 87), although EVs retain their quality for 16 days at
-80°C (88). Studies showed the core-shell structure to construct
biomimetic EVs (60, 61) and the hydrogel encapsulated exosomes
(89) can result in enhanced stability.

Although the cargo carried by the EVs play a vital role in
exerting a suitable therapeutic effect, their efficacy is also
Frontiers in Oncology | www.frontiersin.org 6
determined by their targetability and the effective functioning
in the tumor. For the efficacious transport of CEVs to the
tumor, the targetability of CEVs could be enhanced via
the modification of tumor-targeted-aptamers (62) and
peptides (84) on EVs. Along with specific accumulation, the
absorption and the anti-tumor activity in the tumor area are
also crucial, especially for drug-loaded CEVs. After homologous
tumor targeting, the pH-sensitive fusogenic peptides-modified
CEVs exerted a membrane-lytic activity in the tumor
microenvironment to enhance the effective delivery and release
of the cargoes (33).

Strategy for Application
CD47, on EVs in cancer patients, carries a “don’t eat me” signal
(90); thus, CEVs might overexpress CD47 in their parent
cancer cells (91–93) to escape the phagocytosis and rapid
clearance of macrophages in the serum. Thus, several studies
intravenously administered CEVs (19, 21, 23, 26, 51). However,
numerous phospholipid bilayer membrane-coated CEVs
were also degraded and accumulated in the lung and liver
(19, 21). Therefore, an intrapleural administration was adopted
to treat lung cancer patients with MPE to avoid unnecessary
clearance (25, 52).

In the bright side, the newest researches showed the CEVs
were able to be used for the trace of the early stage of
neoplastic transformation (94) as well as the intracranial tumor
may also can apply the CEVs because they can penetrate the blood-
brain barrier (BBB) and have an extraordinarily high brain
delivery efficiency (95).

In the clinical experiments, the drug resistance of tumor-
repopulating cells can be reversed after the application of CEVs
(52). Besides, the autologous chemotherapeutic drugs-loaded
CEVs can increase release of IL-2 and IFN-g and reduce of
CD163+ macrophages in malignant pleural effusion (25).
Nevertheless, the side effect of transient decrease in the
absolute numbers of lymphoid cells could be observed.

However, the low production of CEVs remains a challenge for
clinical application. Compared with the CEVs from MPE, the
autologous tumor cell-derived extracellular vesicles are not always
available in patients with solid tumors for the preparation of CEVs.
There is an urgent need for the development of an innovative
strategy for the large-scale production of CEVs.
CONCLUSIONS

Despite the predetermined notions regarding the role of CEVs
based on their contents, the therapeutic role of phospholipid
bilayer membrane-coated EVs prepared from cancer cells was
explored. The CEVs have shown excellent potential as anti-cancer
agents. The strategies employ diverse generation, application,
and therapeutic mechanisms. The main strategies for CEVs
generation have been summarized in four categories, including
irradiated CEVs, advanced materials-combined CEVs,
chemotherapeutic drug-loaded CEVs, and genetically engineered
CEVs (Table 1). Along with the increasing challenges and
November 2021 | Volume 11 | Article 758884
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TABLE 1 | The summative evaluation for the preparation, therapeutic mechanism and challenges of cancer cells-derived extracellular vesicles.

Classification Source of CEVs Preparation of specific CEVs Anti-tumor Effects Model Challenges

Key strategies Purification strategies

Irradiated CEVs Spontaneous
release from LLC
(35)
MCF-7, A549 (25,
52)
CT26,EG7 (49),
HCT116 (50)

Ultraviolet (UVB, 300J m-2)
irradiation for l hour (25, 52)
20Gy by 6-MV x-rays(600 MU/
min) (35)
50 or 75 Gy X-ray irradiation
(49)
Irradiated with 2x2 Gy or 2x5
Gy (51)

Sequential utracentrifugation
(25, 35) (at least 100,000 g
for 60 min)
Filtration With 0.22m filter
combined sequential
utracentrifugation (51)
Sequential centrifugation (52)
(up to 14,000 g for 60 min)

The induced Ferroptosis
of cancer cells (35)
Activation of dendritic
cells and T cells (49–51)
The reduced resistance
of cisplatin (31)
Polarizes
microenvironmental M2
tumor-associated
macrophages (M2-
TAMs)to M1-TAMs (35,
51)

Mouse model
of malignant
pleural effusion
(25, 35)
Mice model
bearing
subcutaneous
tumor (49–51)
Clinical
experiment in
patients with
lung cancer
(52)

Preparation:
Limited Volume
of CEV
Expensive and
complecated
protocol of
collection
Storage:
Unstable
construction
and targetability
during
preparation and
preservation

Advanced
materials
combined CEVs

Membranes from
the lysis of cancer
cells(A5S9,B16-
F10) (58)
KBcells (59), MCF-
7 (18),MDA-MB-
435 (63) and hybrid
cells of 4Tl with
dendritic cells (16)

CEVs coated with anionic
PLGA microspheres via click
chemistry (58)
The mixture of ZnO and CEVs
was filtered with 0.2mm filter
followed by centrifugation at
5000 g for 5 min (59)
Co-extrusion of the mixture of
photothermal materials loaded-
nanoparticles and membrane
to generate biomimetic CEVs
(16, 18, 63)

Removal of unreacted
particles and chemicals via
8000 rpm for 10 min (58)
Repeated coincubation,
filteration and centrifugation
with ZnO (59)
Repeated the process of co-
extrusion through a filter with
220 or 400 nm
polycarbonate membrane
(16, 18, 63)

Increased phagocytosis
of macrophages and
dendritic cells (58)
Direct killing effect of
ZnO (59)
Tumor-targeted CEVs
combined photothermal
effect
on tumor area (16, 18,
63)
Increased recruitment
and activation of T cells
(16)

In vitro
experiment
(58, 59)
Mice model
bearing
subcutaneous
tumoR (16,
18, 63)

Administration:
The clearance
of CEVs in
serum for
intravenous
administration
The loss of
CEVs in organs
for intravenous
administration

Chemotherapeutic
drugs loaded
CEVs

Spontaneous
release from drug-
engulfed cancer
cells (21–23, 25,
51)
Spontaneous
release from wild
cancer cells (19,
65–67)

The engulfing process of drugs
is conducted via the incubation
of cancers cells with drugs so
as to release drug-loaded
CEVs (21–23, 25, 51)
Co-extrusion of the mixture of
CEVs and drugs was
performed after the
centifugation and incubation of
the mixture at 4oC (19)
The CEVs and drugs were
incubated in saponin at
37oC (65) the Freeze-thaw
cycles was performed after the
stirring process of CEVs and
drugs (62)
The CEVs were incubated with
drugs at 22oC or 37oC in the
solution of drugs (67)

The drugs-loaded CEVs
containing supernatants
were received a and
repeated and sequential
utracentrifugation (21–23,
25, 51)
The excess drugs was
removed by filtering through
an Amicon Ultra-15 100 kDa
filter (19)
The extral drugs and saponin
were remove with Nanosep
device (65)
The mixtures of drugs-CEVs
were filter through protein
concentrators(MicroSep
Centrifugal Devices 10k) at
2,000x g for 10 min (62)
Repeated utracentrifugation
(67) (up to 170,000 g for 120
min)

The direct killing effect
via tumor-targeted CEVs
combined
chemotherapeutic drugs
(19, 21–23, 25, 51, 65–
67)
Increased brogation of
tumor-repopulating cells
(18)
The increased reactive
oxygen species (ROS)
and neutrophil
extracellular trap (NET)
in tumor area (18)
The increaed release of
IL-2 and IFN-Ɣ and
reduce of CDI67+
macrophagesin
malignant pleual effusion
(25)

In vitro
txptriment
(65–67)
Mice model
bearing
subcutaneous
or internal
tumor (19, 21–
23, 51)
Mice model
bearing
malignant
pleural effusion
(25)
Clinicalt
experiment in
patients with
malignant
pleural effusion
(25)

Side Effects:
Natural CEVs
are promotors
to tumor
progression,
tumor
metastasis
Exogenous
CEVs can be
allergen for
recipient
Transient
decrease in the
absolute
numbers of
lymphoid cells

Genetically
Engineered CEVs

Spontaneous
release from A549
(28)
4Tl cells (30)
Panc-l (31)
BL6BL6 cells (33)

Rab3la overexpression vector
was transfected into A549 (28)
The plasmid vectors expressing
anti-miR-21 is directly
transfected to 4T1 cells (30)
Panc-l was transfected with
plasmid DNA complexed with
Lipofectamine® 3000 (31)
Aplasmid vector encoding a
streptavidin-lactadherin fusion
protein was transfected with
BL6BL6 cells (33)

Sequentially repeated
ultracentrifugation (28, 30,
33) (up to 250,000g/
100,000g for 120 min)
Precipitation Solution (31)

Induced maturation of
dendritic cells and
promoted prolification of
CD4+ T cell (28)
Attenuated resistance of
doxorubicin(DOX) (30)
The promotion of
reprogramming of
macrophages to the M1
phenotype (31)
Enhanced tumor antigen
presentation capacity by
MHC
class 1 molecules (33)

In vitro
experiment
(31, 33)
Mice model
bearing
subcutaneous
tumor (28, 30)

Application:
Limited
homologous
CEVs in clinical
The efficacy of
CEVs differs
FROM
TUMORS
Limited
standard for the
dose of CEVs
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advantages of CEVs for cancer therapy, the exploration of
CEVs is becoming more and more necessary. This review
also discussed and categorized the future perspectives and the
top three challenges for the preparation, efficacy, and application
of CEVs.
Frontiers in Oncology | www.frontiersin.org 8
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