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Objectives: This study aims to evaluate the value of machine learning-based dynamic
contrast-enhanced MRI (DCE-MRI) radiomics nomogram in prediction treatment
response of neoadjuvant chemotherapy (NAC) in patients with osteosarcoma.

Methods: A total of 102 patients with osteosarcoma and who underwent NAC were
enrolled in this study. All patients received a DCE-MRI scan before NAC. The Response
Evaluation Criteria in Solid Tumors was used as the standard to evaluate the NAC
response with complete remission and partial remission in the effective group, stable
disease, and progressive disease in the ineffective group. The following semi-quantitative
parameters of DCE-MRI were calculated: early dynamic enhancement wash-in slope
(Slope), time to peak (TTP), and enhancement rate (R). The acquired data is randomly
divided into 70% for training and 30% for testing. Variance threshold, univariate feature
selection, and least absolute shrinkage and selection operator were used to select the
optimal features. Three classifiers (K-nearest neighbor, KNN; support vector machine,
SVM; and logistic regression, LR) were implemented for model establishment. The
performance of different classifiers and conventional semi-quantitative parameters was
evaluated by confusion matrix and receiver operating characteristic curves. Furthermore,
clinically relevant risk factors including age, tumor size and site, pathological fracture, and
surgical staging were collected to evaluate their predictive values for the efficacy of NAC.
The selected clinical features and imaging features were combined to establish the model
and the nomogram, and then the predictive efficacy was evaluated.

Results: The clinical relevance risk factor analysis demonstrates that only surgical stage
was an independent predictor of NAC. A total of seven radiomic features were selected,
and three machine learning models (KNN, SVM, and LR) were established based on such
features. The prediction accuracy (ACC) of these three models was 0.89, 0.84, and 0.84,
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respectively. The area under the subject curve (AUC) of these three models was 0.86,
0.92, and 0.93, respectively. As for Slope, TTP, and R parameters, the prediction ACC
was 0.91, 0.89, and 0.81, respectively, while the AUC was 0.87, 0.85, and 0.83,
respectively. In both the training and testing sets, the ACC and AUC of the combined
model were higher than those of the radiomics models (ACC = 0.91 and AUC = 0.95),
which indicate an outstanding performance of our proposed model.

Conclusions: The radiomics nomogram demonstrates satisfactory predictive results for
the treatment response of patients with osteosarcoma before NAC. This finding may
provide a new decision basis to improve the treatment plan.
Keywords: osteosarcoma, MRI, radiomics, nomogram, neoadjuvant chemotherapy
1 INTRODUCTION

Osteosarcoma is the most common primary malignant bone
tumor, accounting for approximately 12% of primary bone
tumors and mostly occurring in adolescents with a high degree
of malignancy. However, a natural prognosis of osteosarcoma is
extremely difficult. In the past, the 5-year survival rate of patients
undergoing surgery alone was only 20–30% (1), and its diagnosis,
treatment, and prognosis have been the research focus. With
neoadjuvant chemotherapy (NAC), the 5-year survival rate
improved to 60–80%, and the overall limb salvage rate
increased from 10–20 to 80–90% (2). NAC is the most critical
prognostic factor for osteosarcoma; except for operation, it can
significantly extend the progression-free survival and improve
life quality (3). The response to NAC has a direct influence on
the formulation of the clinical treatment protocols. Therefore,
effective evaluation of the efficacy of NAC is critical (4).

Currently, tumor necrosis rate after chemotherapy, calculated
using postoperative pathological sampling, is used as the “gold
standard” for evaluating NAC response. However, this method
was invasive and involves a complicated operation. Random
sampling or biopsy only examines part of the tumor tissues
obtained, which cannot comprehensively assess the intra-tumor
heterogeneity before operation. Therefore, it cannot be used for
real-time monitoring or application of non-operative patients.
As a non-invasive alternative, medical imaging has shown great
potential in osteosarcoma (OS) diagnosis and in NAC efficacy
evaluation. For the efficacy evaluation of NAC for osteosarcoma,
previous reports mainly focused on routine scanning to
determine tumor volume changes, diffusion-weighted imaging
(DWI) signal characteristics, and MRI dynamic enhancement
mode (5). However, tumor size does not reflect biochemical
information within the tumor. In addition, DWI imaging
presents large artifacts because osteosarcoma is primary to the
bone and often accompanies tumor bone formation. The
dynamic contrast-enhanced MRI (DCE-MRI) parameters are
easily affected by arterial input function, model selection,
individual cardiac output, blood pressure, and other factors.
Such traditional imaging methods are insufficient to predict
how well different patients will respond to NAC. In addition,
due to the limitations of subjective factors such as the experience
and knowledge of clinicians, the efficacy of NAC for
2

osteosarcoma as evaluated by conventional MRI is still
unsatisfactory. So far, no widely accepted clinical and imaging
standards were constructed to evaluate the efficacy of NAC prior
to medication to personalize a medication regimen.

More recently, with the advent of “radiomics”, there has been
a growing focus on the discovery and usage of quantitative
radiomics features of MRI images. Radiomics builds a relevant
statistical model from a large number of high-dimensional
extractable features from medical imaging data (possibly
combined with clinical or genomic data) to assist in diagnosis,
prognosis, and therapy monitoring. Machine learning is an
important step in radiomics that involves building data-based
computational models and methods to improve the accuracy,
performance, or predictive power of the model. As a result,
machine learning strategies have a strong prognostic and
predictive performance, as well as excellent stability, which is
required for radiomic-based analysis. In recent years, radiomics-
based machine learning has been utilized in the diagnosis and
prognostic assessment of liver, prostate, lung, and breast cancers
(6, 7).

In particular, the radiomics characteristics of primary tumors
have been proved to be closely related to how tumor responds to
chemotherapy, and it has been reported that the radiological
characteristics of primary colorectal cancer can successfully
predict the efficacy of NAC (8), but the evaluation of NAC for
osteosarcoma has rarely been reported.

In this study, machine learning-based radiomics nomogram
was applied to identify poor histologic response to chemotherapy
patients, which helps avoid ineffective multi-cycle chemotherapy
in patients who do not respond well to chemotherapy. The aim is
to provide guidance to clinicians with different therapeutic
schemes, such as surgical tumor removal suggestion and
chemotherapy regimen modification, to reduce the risk of
disease progression and metastasis.
2 MATERIALS AND METHODS

2.1 Patients and Dataset
This study was retrospective and has been approved by the
institutional review board of our hospital, with informed consent
November 2021 | Volume 11 | Article 758921
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of the patient being waived. A retrospective analysis of patients
with osteosarcoma, as confirmed by surgery and pathology,
between January 2016 and May 2020 was performed. The
patient inclusion criteria were as follows: (1) osteosarcoma
confirmed by histopathology, (2) MRI scans performed at two
timepoints (within 1 week before the NAC implementation and
at the end of the two cycles of NAC), and (3) more than two
cycles of NAC treatment were performed in the local hospital.
The exclusion criteria were as follows: (1) patients who did not
undergo multiple-sequence MRI before or after NAC,
(2) patients undergoing direct surgery without NAC, (3)
patients who failed to complete the two cycles of NAC or
discontinued the treatment, and (4) patients that were unable
to provide complete MRI data. The specific diagnosis and
treatment process of all patients were conducted under the
consensus of experts of Clinical Diagnosis and Treatment of
Typical Osteosarcoma (9). The specific NAC drugs are
adriamycin (ADM)—60 mg/m2, cisplatin (DDP)—100 mg/m2,
methotrexate (MTX)—10–12 g/m2, and ifosfamide (IFO)—10 g/
m2. A chemotherapy cycle includes four rounds: the first ADM
(D1–D3) and DDP (D4), the second MTX (D1), the third MTX
(D1), and the fourth IFO (D1–D5). The disease development of
patients should be observed after each round, and the effect of
NAC is genera l ly eva luated af ter the end of one
chemotherapy cycle.

A total of 172 patients with osteosarcoma who underwent
NAC and surgical treatment were collected, and 35 patients with
imperfect MRI and pathological data were excluded. Twenty
patients had direct surgery but had not undergone NAC
treatment; 15 patients failed to complete two cycles of
chemotherapy or terminated chemotherapy. As a result, a total
of 102 patients were included in the study (Figure 1). Two
radiologists with 10 years of experience in musculoskeletal MRI
diagnosis evaluated the tumor tissue independently (comparing
images at the end of the first week of NAC and the MRI
examination before NAC). The main evaluation focus was the
comprehensive judgment of the changes in the size and shape of
the lesion as well as the signal changes in each sequence before
and after NAC. The efficacy of osteosarcoma treatment after two
NAC cycles was evaluated according to RECIST (10), where
complete remission (CR) was defined as no residual tumor,
partial remission (PR) is defined as whether the longest
diameter of the tumor is less than 70% of the original size, and
progressive disease (PD) was defined if the total diameter of the
target lesion increases by ≥20% or if new lesions appear. If the
tumor change does not reach PR or PD state, it is defined as
stable disease (SD). According to the abovementioned evaluation
criteria, the patients were divided into (1) effective group
(including CR and PR) and (2) ineffective group (including PD
and SD). Intra-class correlation coefficient (ICC) was used to
evaluate the consistency of the evaluation results between the
two physicians.
2.2 Clinical and Pathological Data
Clinical information was collected from the medical record data,
including age, tumor size, tumor site, pathological fracture, and
Frontiers in Oncology | www.frontiersin.org 3
surgical stage. Surgical staging was performed according to the
surgical staging criteria for osteosarcoma (11).

2.3 MRI Examination and Image Analysis
All MRI scans were acquired at a local hospital on a Siemens
Skyra 3.0 T MR scanner with (1) axial fat-suppressed T2WI:
TR = 4,200 ms, TE = 100 ms, FOV = 260 mm × 350 mm, flip
angle = 15°, slice thickness = 4.0 mm; (2) axial T1WI: TR = 500
ms, TE = 20 ms, FOV = 260 mm × 350 mm, flip angle = 15°, slice
thickness = 4.0 mm; and (3) coronal fat-suppressed T2WI: TR =
4,200 ms, TE = 10 ms, FOV = 360 mm × 380 mm, flip angle =
15°, slice thickness = 4.0mm. Joint coil or body coil was selected
based on the range and location of the tumor.

2.3.1 DCE-MRI
First of all, a fat-suppressed T1WI (TR = 3.9 ms, TE = 1.3 ms, flip
angle = 15°, FOV = 340 mm × 340 mm, slice thickness = 3.0 mm)
scan was acquired before injecting the contrast agent. Then, 0.1
mmol/kg of body weight of the gadolinium-based agent
(Magnevist; Bayer Healthcare, Berlin, Germany) was injected
using a Medrad high-pressure syringe (rate = 2 ml/s), followed by
injecting 20 ml normal saline into the tube. DCE images were
acquired as six post-injection scans during the intravenous
injection of Magnevist. The dynamic scanning time was
approximately 360 s, with a temporal resolution of 3s.

2.3.2 Conventional Semi-quantitative Parameters of
DCE-MRI
The scanned images are fed into the post-processing workstation
and processed through GE AW Volume Share 4.0. Regions of
FIGURE 1 | Flow chart showing the inclusion and exclusion criteria of this
retrospective study.
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interests (ROIs) were manually delineated after having been
discussed by two senior-level radiologists in musculoskeletal
MRI diagnosis. The area of the ROI was about 10–20 mm2.
The ROI was obtained from the layer with the best enhancement,
avoiding necrotic tissue and blood vessels. Time–intensity curve
(TIC) was automatically generated by the software. A gradual
increase in the signal of solid tissue, without a well-defined
shoulder, was defined as “curve type I”. A moderate initial rise
in the signal, followed by a plateau, was defined as “curve type
II”. An initial rise rapidly to a peak in the signal, followed by a
decline, was defined as “curve type III”. Conventional semi-
quantitative parameters of enhancement wash-in slope (Slope),
time to peak (TTP), and enhancement rate (R) were obtained by
calculating the TIC curve.

2.4 Radiomics Analysis
DCE-MRI sequence was used for radiomics analysis. The
radiomics analysis method includes the following steps: image
collection and lesion segmentation, feature extraction, feature
selection, model construction, and prediction evaluation of the
models (Figure 2).

2.4.1 Image Normalization
To minimize MRI intensity variations, the image was normalized
by centering at the mean with standard deviation using the
following formula:

f (x) =
s(x − mx)

sx

where x indicates the original intensity, f(x) indicates the
normalized intensity, mx refers to the mean value of the image
intensity, sx indicates the standard deviation of the image
intensity, and s represents optional scaling, set to 1 by default.
Normalization is based on the intensity of the entire image
instead of just within the segmentation region.
Frontiers in Oncology | www.frontiersin.org 4
2.4.2 Image Segmentation
The volume of interest (VOI) was accurately delineated on the
strongest enhanced phase using ITK-SNAP (version 3.8.0; http://
www.itksnap.org). All the lesions (VOI) were manually
delineated by one radiologist. The radiologist has 6 years of
experience in musculoskeletal imaging diagnosis and was
blinded to the clinical information of the patient. All
delineations are then reviewed by a senior radiologist, and
discrepancies are corrected based on tumor borders. The VOI
should cover the entire lesion area, including the bone of the
lesion, with its surrounding soft tissue mass, as well as the cystic
necrosis area inside the lesion. The edema area and blood vessels
around the lesion should be excluded. In this study, 102 VOIs
delineated on scans from 102 patients were used for subject
analysis (Figure 3).

2.4.3 Radiomic Feature Extraction
A total of 1,409 quantitative imaging features were extracted
from MR images with the Radcloud platform (http://radcloud.
cn/). These features were divided into four groups. Group 1
(first-order statistics) consists of 18 descriptors that
quantitatively describe the distribution of voxel intensities
within the MR image through commonly used basic metrics.
Group 2 (shape- and size-based features) contains 14 three-
dimensional features that reflect the shape and size of the region.
Group 3 (second-order texture features) contains 75 texture
features that quantify region heterogeneity differences,
calculated from gray-level run length and gray-level co-
occurrence texture matrices. Group 4 (higher-order filter
features) contains 1,302 first-order statistics and texture
features after applying Laplacian, logarithmic, exponential, and
wavelet filters on the image.

2.4.4 Feature Qualification
The dataset was randomly separated into 70% for training and
30% for testing. To ensure the reproducibility of the extracted
FIGURE 2 | Flow chart of radiomics analysis and model construction. DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; VOI, volume of interest.
November 2021 | Volume 11 | Article 758921
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radiomics features, a feature consistency test of inter- and intra-
raters was adopted. The evaluation was performed by randomly
selecting 30 patients from the study and re-mapping the VOI
using the same delineation protocol by the same radiologist and
one other radiologist at 1 month after the initial delineation.
Then, the ICCs of the quantized features extracted from the three
VOI were calculated to evaluate the inter- and intra-rater
consistency of image feature extraction, and features of
ICC >0.85 were selected. Furthermore, feature selection
methods, including variance threshold, SelectKBest, and least
absolute shrinkage and selection operator (LASSO), were used to
reduce redundant features. For variance threshold, features with
eigenvalues of the variance smaller than 0.8 were removed. The
SelectKBest belongs to a univariant feature selection method, and
p-value was used to analyze the relationship between the features
and the classification results. Features with p-value smaller than
0.05 were selected. LASSO filters variables and reduces model
complexity. Variable screening refers to selectively putting
var iab les into the model for fi t t ing to get be t ter
performance parameters.

2.4.5 Construction of Optimal Radiomics Signature
Based on Machine Learning
Based on the selected features, three supervised classifiers were
constructed for the radiomics-based models in this study: K-
nearest neighbor, KNN; support vector machine, SVM; and
logistic regression, LR. KNN calculates the distance between
each sample point and all other sample points, keeps the k
nearest neighbor points of the sample point, and assigns a class to
the sample point by majority vote of the class of its k nearest
neighbors. SVM combined the precision and function
complexity of a given data to find the best proportion and to
obtain the best generalization ability. LR includes classification,
function establishment, solving optimal model parameters
through optimization iteration, and verifying the model
performance. To train the model, Gridsearch algorithm
Frontiers in Oncology | www.frontiersin.org 5
(Python scikit-learn library) was used for parameters that
optimize the performance.

2.4.6 Construction of Radiomics Nomogram
To test whether the combined clinical indicators and radiomics
signatures improve the predictive performance, a multivariate
logistic regression model was used to integrate the established
radiomics labels and the clinical indicators in the training set to
build a predictive model for the combined efficacy. Stepwise
regression analysis and Akaikes information criterion (AIC) test
are used to determine the best clinical information to be included
from the candidate clinical indicators (age, maximum diameter
of the tumor before treatment, tumor location, whether the
tumor was associated with a pathological fracture, and surgical
stage). A low AIC score indicates that the statistical model takes
both complexity and accuracy into consideration. The model
with the lowest AIC score provides the most effective
independent factors, which optimizes the construction of a
multi-factor regression model with the least parameters while
avoiding over-fitting and ensuring desirable data fitting. Based
on the combined model, the nomogram diagram transforms it
into a visual therapeutic prediction model, providing a practical
tool to predict the likely probability of individual chemotherapy
effectiveness. The nomogram sets the corresponding score value
according to the regression coefficient of each variable in the
multivariate logistic regression equation (the contribution of
each influencing factor to the efficacy) and then sums the score
of each influencing factor to calculate the total score. The
conversion function between the total score and the efficacy of
chemotherapy (endpoint event) was then used to obtain the
prediction probability of efficacy for each patient.

2.5 Statistical Analysis
We used Radcloud (Huiying Medical Technology Co., Ltd.) to
manage imaging data, clinical data, and subsequent radiomics
statistics analysis. Another statistical analysis was performed
A B

FIGURE 3 | Example image for osteosarcoma contouring. (A) Outline of regions of interest on one slice of axial T1-weighted MR image of the strongest enhanced
phase. (B) Volume rendering.
November 2021 | Volume 11 | Article 758921
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with SPSS 20.0 and MedCalc15.2.2. Differences of onset age and
tumor size between the effective group and the ineffective group
were compared by means of independent-sample t-test (two-
tailed, p < 0.05). Mann–Whitney U-test was applied to compare
the difference in tumor surgical staging, tumor site, pathological
fracture, and the semi-quantitative parameters (Slope, TTP, R),
with P <0.05 defining the difference as statistically significant. To
assess the predictive performance of the classifiers, the receiver
operating characteristic (ROC) curve, namely, area under the
curve (AUC), was used in both training and testing datasets.
Four indicators, including P [precision = true positives/(true
positives+ false positives)], R [recall = true positives/(true
positives+ false negatives)], f1-score [f1-score = P*R*2/(P +
R)], and support (total number in test set), were selected to
evaluate the performance of the classifiers in this study.

3 RESULTS

3.1 Clinical and Pathological Features
There was a total of 102 patients with osteosarcoma (60 males
and 42 females; mean age: 17 ± 9.77 years; range: 5–57 years),
where 71 cases belong to the effective group and 31 cases belong
to the ineffective group. Most clinical risk factors of the patients,
including age, tumor size, pathological fracture, and pathological
type, show no statistically significant difference between the
effective group and the ineffective group (P > 0.05), except for
surgical staging (P = 0.013). The effective or ineffective rate of
chemotherapy was consistent between the training dataset and
the testing dataset, and no significant difference was found in age,
longest diameter of tumor, tumor location, and pathological
fracture. The ratio of patients in each surgical stage was similar
between the two sets (Table 1).

3.2 Predictive Performance of
Conventional Semi-quantitative
Parameters of DCE-MRI
After NAC, the Slope and R of the effective group decreased, and
the TTP increased. The difference of each semi-quantitative
parameter before and after NAC was statistically significant
(P = 0.013). There is no statistically significant difference in
Slope and R (P = 0.350) before NAC; while after NAC, the
Frontiers in Oncology | www.frontiersin.org 6
differences in Slope, TTP, and R between the two groups
becomes statistically significant (P = 0.023). There was a
difference in TIC distribution before and after NAC in the
effective group (P = 0.002). There was no significant difference
in TIC distribution before and after NAC in the effective group
(P = 0.570) (Figure 4). There was no significant difference in TIC
distribution between the two groups before chemotherapy
(P = 0.103). The ROC curve was used to predict the
importance of each semi-quantitative parameter on the efficacy
of NAC in osteosarcoma. Taking the RECIST standard as the
curative effect classification standard, the sensitivity and
specificity of the three parameters (Slope, TTP, and R) to
predict a desirable response to osteosarcoma after
chemotherapy were 0.83, 0.92, and 0.91 and 0.69, 0.85, and
0.75, respectively. The AUC was 0.87, 0.85, and 0.83, respectively.

3.3 Radiomic Features and Predictive
Performance of the Classifiers
In the first step, the reproducibility ICC score of each feature was
used to evaluate feature stability, and features with ICC >0.85
were selected. According to this criterion, 863 (61.2%) stable
features were reserved for further screening. Then, we selected
446 features from 863 features using the variance threshold
method. Furthermore, 74 features are selected with the select K
best method. Finally, LASSO regression was performed to select
74 radiomics features for dimensionality reduction and 10-fold
cross-test to obtain an optimal -log(alpha) value of 1.45
(Figure 5). According to the alpha value, we find the
coefficient of different features, then select the features with
non-zero coefficient, and finally obtain the most relevant
features. Finally, seven radiomics features with the best
correlation with NAC curative effect are selected to construct
prediction models. These seven features were all texture features,
and five of those with the highest LASSO regression coefficient
were features after wavelet transform. The selected features and
their corresponding regression coefficients, associated feature
groups, and filters are shown in Table 2.

The three classifier models (KNN, SVM, and LR) are
separately built by learning feature values extracted from DCE-
MRI to evaluate the training set and the testing set of the model.
The performance of KNN, SVM, and LR classifiers are compared
TABLE 1 | Clinical features.

Clinical features Training set Test set

Effective group Ineffective group P-value Effective group Ineffective group P-value

Age (mean ± SD) 18.49 ± 9.871 14.73 ± 9.331 0.171 17.14 ± 8.326 13.65 ± 8.141 0.243
Tumor size (mean ± SD) (cm) 11.79 ± 4.721 9.1550 ± 4.06873 0.406 12.82 ± 4. 324 10.01 ± 3.987 0.591
Tumor site
Thigh bone
Tibia
Humerus

36 (35.29%)
16 (15.69%)
7 (6.86%)

15 (14.71%)
5 (4.90%)
2 (1.96%)

0.315 9 (8.82%)
2 (1.96%)
1 (0.98%)

6 (5.88%)
2 (1.96%)
1 (0.98%)

0.478

With pathological fracture 21 (20.59%) 13 (12.75%) 0.734 6 (5.88%) 3 (2.94%) 0.565
Surgical stage 0.013 0.025
II 47 (46.08%) 12 (11.76%) 9 (8.82%) 5 (4.90%)
III 12 (11.76%) 10 (9.80%) 3 (2.94%) 4 (3.92%)
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via AUC, sensitivity, and specificity (Table 3). These classifiers
exhibit a satisfying performance of NAC for OS classification on
the ROC curve, with an AUC of 0.86, 0.92, and 0.93, respectively
(Figure 6). The AUC of the SVM and the LR classifier is the most
optimal. When the SVM classifier is used for training, the
sensitivity and specificity of the effective group are 0.82 and
0.85, and these were 0.85 and 0.82 for the ineffective group,
respectively. The 95% CI is 0.85–1.00, and the accuracy of the
training set and the testing set was 0.89 and 0.84, respectively.
When the SVM classifier was used for training, its accuracy,
recall rate, and F1 value were 0.78, 0.78, and 0.78 in the effective
group, respectively, and 0.80, 0.80, and 080 in the ineffective
group, respectively. At the same time, when the LR classifier was
used for training, the results were also optimal. The sensitivity
and specificity of the effective group were 0.85 and 0.85,
respectively. The sensitivity and specificity of the ineffective
group were 0.85 and 0.85, respectively. The 95% CI was 0.81–
0.98, and the accuracy of the training set and the testing set is
0.86 and 0.84, respectively. When using the LR classifier for
training, its accuracy, recall rate, and F1 value were 0.80, 0.89,
and 0.84 in the effective group, respectively, and 0.89, 0.80, and
084 in the ineffective group, respectively. Such results indicate
that the model, based on radiomics features, has adequate
efficacy differentiation ability in both the training set and the
testing set.

3.4 Prediction Model of the Radiomics
Nomogram
After constructing the radiomics labels, the combined prediction
model was formed by combining the labels with clinical
indicators. After AIC stepwise regression, surgical staging was
determined as the optimal clinical index. The combined model
Frontiers in Oncology | www.frontiersin.org 7
was successfully constructed using a multivariate logistic
regression model to integrate surgical staging and radiomics
labels and then demonstrated using a visual nomogram
(Figure 7). The nomogram scores were given based on the
weights of independent variables in the regression model, and
the scale length of the nomogram variable is positively correlated
with its impact on the efficacy prediction. Out of the two factors,
the radiomics label contributed the most to predicting the
outcome (the longest scale), followed by surgical staging. The
high-probability segment of the radiomics label corresponds to
the high-score area (score axis), and the low-probability segment
corresponds to the low-score area. The probability of
chemotherapy sensitivity in patients with earlier surgical
staging is higher than that in patients with later staging. The
scores of all factors were added up to obtain the total score, which
was perpendicular to (probability axis of chemotherapy effect)
obtain the probability of individual final chemotherapy effect. In
addition, the integration of the surgical staging, prediction model
of joint radiomics tag, presents desirable prediction performance.
The training set classification accuracy is 0.91, while that of the
testing set was 0.90, which are both higher than the performance
of the simple radiomics group learning model. Furthermore, the
AUC of the combined model was also significantly higher than
that of the radiomics model, with the training set at 0.94 and the
testing set at 0.95. It also reveals that the prediction efficiency of
the radiomics nomogram was better than that of conventional
semi-quantitative parameters (with AUC of 0.87, 0.85, and 0.83,
respectively) of DCE-MRI. The AUC of the combined model was
higher than that of the radiomics model in both the training set
and the testing set. In conclusion, the combination of radiomics
features and surgical staging improves the capability of curative
effect prediction and improves the performance of the combined
A B

D E F

C

FIGURE 4 | Male, 20 years old, left lower femoral osteosarcoma, ineffective group. (A, D) The dynamic enhanced axial T1WI fat suppression images before and
after neoadjuvant chemotherapy (NAC). (B, E) The wash-in slope (Slope) images before and after NAC. The slope value and tumor active area increased. (C, F) The
enhancement signal curve corresponding to the most obvious enhancement area, both curve type III before and after NAC.
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model with more accurate prediction results than the single
radiomics model.
4 DISCUSSION

Although the introduction of NAC in OS treatment has
improved the survival rate of patients, local recurrence or
Frontiers in Oncology | www.frontiersin.org 8
metastasis still occurs in approximately 30 to 40% of the
patients due to tumor heterogeneity, and there are significant
differences in tumor biological behavior and response to NAC in
different patients (12). In recent years, with the development of
medical image analysis technologies in machine learning, the
concept of “radiomics” has emerged. The quantitative image
features extracted from conventional images are called “imaging
features”, which include not only the intensity, shape, size, and
A

B

C

FIGURE 5 | Radiomic feature selection using least absolute shrinkage and selection operator (LASSO) regression. (A) MSE path, the black solid line is the mean
value of mean square error, and the maximum number of iterations is 100. Ten-fold cross-test was used to find the optimal -log(alpha) value of 1.45. (B) LASSO
path, the radiomic features change with alpha value. (C) Histogram showing the selected seven features and their coefficients in LASSO model. Using LASSO model,
seven features which correspond to the optimal alpha value were selected.
TABLE 2 | Description of the selected radiomic features with their associated feature group and filter.

Filter Radiomic class Radiomic feature Coefficient

Wavelet-LLL GLDM Large-dependence emphasis 0.05951
Wavelet-LHH GLDM Large-dependence high-gray-level emphasis 0.07326
Wavelet-LLL GLDM Dependence entropy -0.01009
Original GLDM Large-dependence high-gray-level emphasis 0.00924
Logarithm GLDM Large-dependence high-gray-level emphasis 0.00001
Wavelet-LLH GLDM Large-dependence low-gray-level emphasis 0.10825
Wavelet-LHH GLSZM Small area high-gray-level emphasis 0.08899
November 2021 | Volume 11 | Ar
GLDM, gray-level dependence matrix; GLSZM, gray-level size zone matrix.
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volume information of the lesion but also the texture features
and the high-level wavelet transform features which are difficult
to observe with the naked eye (13). Unlike a needle biopsy that
only partially provides pathological information of the tumor,
radiomics features provide information in the three-dimensional
volume of the tumor, which reflect the heterogeneity of the
tumor and provide a comprehensive view of the tumor for
treatment guidance. Furthermore, it is a non-invasive method
that enables constant tumor change monitoring as well as
constant tumor response to treatment evaluation (14, 15). In
this study, we aim to establish the best artificial intelligence
model based on radiomic features extracted from original MRI
images of osteosarcoma patients. Thus, we can individually
evaluate the efficacy of NAC.

Our research demonstrates that, besides surgical staging, other
clinical characteristics, including age, tumor size, whether
pathological fracture occurs, and tumor site, are not adequate as
independent risk factors to predict the effectiveness of NAC for
osteosarcoma, which is similar to the result of a previous study
using traditional methods (16). For stage III patients who have
already metastasized, poor efficacy indicates that earlier tumor
Frontiers in Oncology | www.frontiersin.org 9
detection results in better efficacy of NAC, which also agrees with
previous research results (17). The insignificance of other clinical
indicators may be due to an inadequate sample size, limited data
source, and geographical constraints. In this study, the DCE-MRI
sequence is selected for feature extraction because of thinner slice
thickness and higher image resolution, which displays a more
distinct tumor boundary and reflects more heterogeneous
information such as blood supply inside the tumor (18). We did
not include DWI sequence due to unclear lesion boundaries on
DWI, poor image resolution, and difficulties to completely
segment the lesions, especially the adjacent bone parts.
Kickingereder et al. (19) used MR imaging radiomic features to
predict the survival of bevacizumab in the treatment of recurrent
glioblastoma and obtained more radiomic features from the
enhanced T1WI sequence (62.5%) than from the T1WI and T2-
FLAIR sequences (37.5%), and the prognostic weight of the
radiomic features obtained from the enhanced sequence is also
higher than that of the plain scan sequence. Therefore, compared
with conventional MR sequence, image segmentation on the
enhanced sequence produces more radiomic features, which is
more valuable for model construction.
TABLE 3 | Receiver operating characteristics and three indicators -Precision, Recall, F1-score results with K-nearest neighbor (KNN), support vector machine (SVM),
and logistic regression (LR) classifiers of test set.

Classifiers Efficacy AUC 95% CI Sensitivity Specificity Precision Recall F1-score

KNN Ineffective 0.86 0.74–0.99 0.8 1 1 0.8 0.89
Effective 0.86 0.74–0.99 1 0.8 0.82 1 0.9

SVM Ineffective 0.92 0.72–1.00 0.8 0.78 0.8 0.8 0.8
Effective 0.92 0.72–1.00 0.78 0.8 0.78 0.78 0.78

LR Ineffective 0.93 0.75–1.00 0.8 0.89 0.89 0.8 0.84
Effective 0.93 0.75–1.00 0.89 0.8 0.8 0.89 0.84
November 2021 | V
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FIGURE 6 | The receiver operating characteristics (ROC) curves of the K-nearest neighbor (KNN), support vector machine (SVM), logistic regression (LR), and the
nomogram in the test. (A) ROC curves of KNN methods for classification. (B) ROC curves of SVM methods for classification. (C) ROC curves of LR methods for
classification. (D) Prediction performance of the ROC curves for the nomogram and radiomics signature (the model of LR). The nomogram provides higher area
under the subject curve values than the radiomics signature.
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In this study, we analyze the data from 102 patients with
osteosarcoma, and we used machine learning to validate that MR
radiomics features before NAC therapy are closely related to
tumor heterogeneity and the efficacy of NAC. Seven high-level
statistical features were selected from the DCE-MRI images that
highly relate to the NAC efficacy. Such features are indicators of
strength and texture, which effectively reveal the heterogeneity
and subtle changes in tissue morphology within the tumor (20,
21). Five of the features were texture features after wavelet
transform. Wavelet transform calculates the resolution of the
signals at different time, space, and frequency scale planes.
Therefore, in various researches on radiomics, texture features
after wavelet transform are used to construct prediction models.
Hu et al. pointed out that, compared with gray-level co-
occurrence matrix, wavelet features extracted from bone DR
have higher accuracy in diagnosing osteosarcoma. Mahrooghy et
al. found that wavelet features extracted based on DCE-MRI can
effectively reflect the heterogeneity of breast cancer, and the
constructed breast cancer prognosis classification model also has
high predictive performance (22). Of these seven features, six
features are gray-level dependence matrix features, and one is
gray-level size zone matrix feature, indicating the importance of
gray values in NAC efficacy evaluation. This assumption is
consistent with the results of previous imaging studies on the
prediction of sentinel lymph node metastasis in breast cancer
(23). Among these features, the most important features with the
highest LASSO coefficient are large-dependence low-gray-level
emphasis and small-area high-gray-level emphasis. They
measure the joint distribution of large dependence with lower
gray-level values and the proportion in the image of the joint
distribution of smaller-sized zones with higher gray-level values,
respectively. Furthermore, previous studies on cardiac SPECT
radiomic feature also emphasized the importance of these two
features (24).

We aim to establish the best artificial intelligence model to
predict the efficacy of NAC for osteosarcoma treatment. In our
Frontiers in Oncology | www.frontiersin.org 10
study, SVM and LR performs better than KNN, possibly because
the manual delineation of lesions adopted in this study was
affected by human factors. Osteosarcoma is often mixed with the
formation of tumor bone, leading to the inclusion of undesired
tumor bone components in manual segmentation. The feature
parameters extracted from the images of these tissues are less
capable of differentiating subtle differences between groups,
resulting in the low diagnostic efficiency of KNN. LR is a
classical classifier which provides not only the results but also
the corresponding probabilities, so the fitted parameters can
clearly display the impact of each feature on the result. However,
it is essentially a linear classifier, which is not applicable when the
correlation between features is high. It is also not robust to
outliers. In this study, the SVM classifier also has a high
predictive performance, with the sensitivity, specificity, and
AUC of the testing set being 0.79, 0.79, and 0.93, respectively.
Thus, the appropriate classifier should be selected based on the
specific situation. LR is suitable for the case whose number of
features is large and is similar to the number of samples. SVM is
suitable for a small number of features with general samples that
are neither too large nor too small. Our results suggest that a
classifier based on radiomics features extracted from the best-
enhanced DCE-MRI can be used as a new method to predict the
efficacy of NAC. This method can help determine the efficacy of
NAC before surgery. Therefore, it is capable of assisting
clinicians to determine appropriate treatment plans for
patients. Previously, several reports have demonstrated that
predictive models based on radiomics features can be used to
predict the efficacy of colorectal, lung, and liver cancers (6, 7, 25).

The semi-quantitative parameters of DCE-MRI effectively
reveal the characteristics of tumor angiogenesis: the level of
Slope and TTP represents the amount of new angiogenesis in
tumor tissue, and R reflects the overall vascular density and
permeability of the tumor. We adopt ROC curve analysis in this
study and found that Slope, TTP, and R also exhibit notable
predictive efficacy in predicting the NAC response of OS, and
FIGURE 7 | Radiomics nomogram to predict the efficacy of neoadjuvant chemotherapy. The radiomics nomogram is developed in the training set with radiomics
signature and surgical staging.
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Slope receives the highest value. However, a nomogram based on
radiomics offers better predictive performance. The reason may
be that traditional semi-quantitative parameters are based only
on imaging, but a nomogram combines a large amount of high-
throughput imaging information and clinically valuable
indicators to form a more comprehensive evaluation model. It
customizes the treatment for patients more accurately and
improves the prognosis. The combined model, nomogram, has
high predictive accuracy and is convenient and practical, and it
has broad clinical application prospects in the treatment of OS.
This model is helpful to optimize the treatment strategy of locally
advanced cervical cancer. Currently, there is a lack of effective
markers to predict the efficacy of chemotherapy in clinical
practice, and it is uncertain whether patients should receive
preoperative NAC. A nomogram enables doctors to identify
chemotherapy-sensitive or chemotherapy-insensitive patients
before the initial treatment to develop appropriate regimens.
For insensitive patients with large tumor foci, simultaneous
radiotherapy and chemotherapy should be selected
immediately, and for young patients with chemotherapy-
sensitive patients, NAC combined surgery is recommended. In
addition, due to the deficiency of radiotherapy facilities in some
developing countries, NAC has been explored as an advanced
treatment for tumor control before concurrent radiotherapy and
chemotherapy. The combined radiomics model can also assist in
identifying patients who are suitable for NAC prior to
concurrent radiotherapy and chemotherapy. Furthermore, the
nomogram combined model may be able to predict the response
of patients with recurrent or metastatic cervical cancer to
systemic chemotherapy using preoperative MRI images. If the
nomogram combined radiomics model can be utilized in clinical
practice, it will be beneficial to promote personalized precision
medicine for OS.

In conclusion, our study demonstrates the feasibility of
combining artificial intelligence with MRI radiomics to predict
the efficacy of NAC for osteosarcoma by depicting VOI during
the most intense period of enhancement. This is a noninvasive
and highly accurate method that can predict the efficacy of NAC
for osteosarcoma before surgery. It helps avoid ineffective multi-
cycle chemotherapy in patients who do not respond well to
chemotherapy as well as guide the clinical doctors with a
different therapeutic schedule.
4.1 Deficiencies and Prospects of This
Study
Due to sample size limitation, the number of cases used in the
testing set of this study is small. It is necessary to further increase
the sample size of the testing set in the future to compare the
effectiveness and practicability of these classifiers. Furthermore,
this study only used radiomics and clinical features to construct
the NAC efficacy prediction model, without the pathological
information of the patients. Further research is needed to
construct a more comprehensive prediction model combining
clinical, pathological, and imaging features. In addition, VOI in
this study is manually delineated. Since the delineation process is
Frontiers in Oncology | www.frontiersin.org 11
time-consuming, this study adopted the sketching scheme of the
review of young doctors and senior doctors, without repeated
sketching of lesion areas. In subsequent studies, the accuracy and
repeatability of VOI should be further evaluated. For research
with a larger sample size in the future, semi-automatic or
automatic segmentation can be adopted to reduce time cost.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

This study was retrospective and was approved by the
Institutional Review Board of People’s Hospital of Zhengzhou
University, and informed consent of the patients was waived.
AUTHOR CONTRIBUTIONS

YG was the general responsible person of the project, responsible
for the design of the project, writing and checking the article, and
responsible for the reliability of the article. YG also formulated
the overarching research goals and aims. HL participated in the
development of the whole experiment, planned the main parts of
the experiment, and analyzed the results. HL was also responsible
for the detailed analysis and delineation of patients’MRI images.
YG and HL are also responsible for the coordination and review
of this study. TC participated in the planning and execution of
the experiment, and assisted in the specific analysis, delineation,
and verification of patients’ MRI images. LZ was responsible for
the design of the experiment, the exploration and
implementation of the radiomics methodology, the analysis of
the results, and the writing of the main part of the manuscript.
FZ was responsible for the collection, sorting, classification, and
statistics of clinical information of patients. YX was responsible
for software design, computer programming, and data analysis
related to the radiomics portion of the study. QG was responsible
for patient enrollment, imaging and clinical information
collection, and data collation. All authors contributed to the
article and approved the submitted version.
SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2021.758921/
full#supplementary-material
November 2021 | Volume 11 | Article 758921

https://www.frontiersin.org/articles/10.3389/fonc.2021.758921/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.758921/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics-Evaluated Efficacy of NAC
REFERENCES

1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer Statistics
in China, 2015. CA Cancer J Clin (2016) 66(2):115–32. doi: 10.3322/
caac.21338

2. Endicott AA, Morimoto LM, Kline CN, Wiemels JL, Metayer C, Walsh KL,
et al. Perinatal Factors Associated With Clinical Presentation of
Osteosarcoma in Children and Adolescents. Pediatr Blood Cancer (2017) 64
(6):e26349. doi: 10.1002/pbc.26349

3. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick GR. Current and Future
Therapeutic Approaches for Osteosarcoma. Expert Rev Anticancer Ther
(2018) 18(1):39–50. doi: 10.1080/14737140.2018.1413939

4. Casali PG, Bielack S, Abecassis N, Aro HT, Bauer S, Biagini R, et al. Bone
Sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for
Diagnosis, Treatment and Follow-Up. Ann Oncol (2018) 29(Suppl 4):v79–
95. doi: 10.1093/annonc/mdy310

5. Lo H-C, Hung S-T, Kuo D-P, Chen Y-L, Lee H-M. Quantitative Diffusion-
Weighted Magnetic Resonance Imaging for the Diagnosis of Partial-
Thickness Rotator Cuff Tears. J Shoulder Elbow Surg (2016) 25(9):1433–41.
doi: 10.1016/j.jse.2016.01.020

6. Thawani R, McLane M, Beig N, Ghose S, Prasanna P, Velcheti V, et al.
Radiomics and Radiogenomics in Lung Cancer: A Review for the Clinician.
Lung Cancer (2018) 115:34–41. doi: 10.1016/j.lungcan.2017.10.015

7. Cozzi L, Dinapoli N, Fogliata A, Hsu WC, Reggiori G, Lobefalo F, et al.
Radiomics Based Analysis to Predict Local Control and Survival in
Hepatocellular Carcinoma Patients Treated With Volumetric Modulated
Arc Therapy. BMC Cancer (2017) 17(1):829. doi: 10.1186/s12885-017-3847-7

8. Huang YQ, Liang CH, He L, Tian J, Liang CS, Chen X, et al. Development and
Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph
Node Metastasis in Colorectal Cancer. Sci Foundation China (2016) 34
(18):2157–64. doi: 10.1200/JCO.2015.65.9128

9. Gerrand C, Athanasou N, Brennan B, Grimer R, Judson I, Morland B, et al.
UK Guidelines for the Management of Bone Sarcomas. Clin Sarcoma Res
(2016) 6:7. doi: 10.1186/s13569-016-0047-1

10. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al.
New Response Evaluation Criteria in Solid Tumours: Revised RECIST
Guideline (Version 1.1). Eur J Cancer (2009) 45(2):228–47. doi: 10.1016/
j.ejca.2008.10.026

11. Wolf RE, Enneking WF. The Staging and Surgery of Musculoskeletal Neoplasms.
Orthop Clin North Am (1996) 27(3):473–81. doi: 10.1016/S0030-5898(20)32093-9

12. Casali PG, Bielack S, Abecassis N, Aro HT, Bauer S, Biagini R, et al. Bone
Sarcomas: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and
Follow-Up. Ann Oncol (2014) 25:i113–23. doi: 10.1093/annonc/mdy310

13. Avanzo M, Stancanello J, El Naqa I. Beyond Imaging: The Promise of
Radiomics. Physica Med (2017) 38:122–39. doi: 10.1016/j.ejmp.2017.05.071

14. Aerts HJWL. The Potential of Radiomic-Based Phenotyping in Precision
Medicine: A Review. JAMA Oncol (2016) 2(12):1636–42. doi: 10.1001/
jamaoncol.2016.2631

15. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More Than Pictures,
They Are Data. Radiology (2016) 278(2):563–77. doi: 10.1148/radiol.2015151169

16. Zhu W, Zhu L, Bao Y, Zhong X, Chen Y, Wu Q. Clinical Evaluation of
Neoadjuvant Chemotherapy for Osteosarcoma. J B.U.ON. Off J Balkan Union
Oncol (2019) 24(3):1181. doi: 31424677

17. Fonseca A, Ryan AL, Gibson P, Hendershot E, Hopyan S, Ranson M, et al.
Radiological Assessment and Outcome of Local Disease Progression After
Frontiers in Oncology | www.frontiersin.org 12
Neoadjuvant Chemotherapy in Children and Adolescents With Localized
Osteosarcoma. J Clin Med (2020) 9(12):4070. doi: 10.3390/jcm9124070
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