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Oral squamous cell carcinoma (OSCC) is a kind of malignant tumors with low survival rate
and prone to have early metastasis and recurrence. Cisplatin is an alkylating agent which
induces DNA damage through the formation of cisplatin-DNA adducts, leading to cell
cycle arrest and apoptosis. In the management of advanced OSCC, cisplatin-based
chemotherapy or chemoradiotherapy has been considered as the first-line treatment.
Unfortunately, only a portion of OSCC patients can benefit from cisplatin treatment, both
inherent resistance and acquired resistance greatly limit the efficacy of cisplatin and even
cause treatment failure. Herein, this review outline the underlying mechanisms of cisplatin
resistance in OSCC from the aspects of DNA damage and repair, epigenetic regulation,
transport processes, programmed cell death and tumor microenvironment. In addition,
this review summarizes the strategies applicable to overcome cisplatin resistance, which
can provide new ideas to improve the clinical therapeutic outcome of OSCC.

Keywords: oral squamous cell carcinoma, cisplatin, chemoresistance, molecular mechanisms, cancer therapy
1 INTRODUCTION

Oral cancer is the sixth leading cause of global cancer-related deaths (1), with the most common
type being oral squamous cell carcinoma (OSCC). OSCC usually presents in smokers and drinkers
aged 40 to 70 years, and in recent years human papillomavirus (HPV) infection has also been
identified as a major cause (2, 3). OSCC tends to have early, extensive lymph node metastases and is
among the malignancies with low survival rates. Despite advances in diagnostic and therapeutic
approaches for OSCC in the past decades, its five-year survival rate remains suboptimal (4). At
present, early stage non-metastatic OSCC (stages I and II) can be largely cured by surgery alone, but
for advanced OSCC (stages III and IV), besides the standard surgical treatment and external
radiotherapy, supportive treatment with a combination of chemotherapeutic agents is required (5).

Cisplatin (cis-diaminedichloroplatinum, CDDP), a chemotherapeutic agent with high antitumor
activity against many cancers in clinical application, is the first-line and most widely used
chemotherapeutic drug for OSCC. In 1968, cisplatin was first discovered to have the ability to
lead to tumor regression in a tumor-bearing mouse model (6), and its antitumor activity was
confirmed in a variety of solid tumors over the next decade (7–9). The cytotoxic effect of cisplatin is
mainly manifested as forming adducts with genomic DNA, which directly damages DNA and
inhibits DNA replication, thereby arresting the cell cycle and eventually leading to cell death
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(Figure 1) (10). In a large-scale randomized clinical trial, a
treatment regimen of postoperative radiotherapy combined
with cisplatin chemotherapy significantly reduced local and
regional recurrences and prolonged disease-free survival (DFS)
in patients with advanced OSCC (11). Meanwhile, preoperative
intraarterial induction chemotherapy with cisplatin partially
reduced tumor volume and improved overall prognosis (12).
Considering the side effects and chemoresistance of cisplatin,
researchers have developed thousands of cisplatin analogues
(13), but only carboplatin and oxaliplatin are currently
approved for clinical use. And these platinum-based agents,
such as carboplatin, are less effective than cisplatin at the same
dose, although they reduce side effects to some extent (14). In
addition, other anti-cancer drugs included targeted drugs also do
not have the absolute advantages. A phase III clinical trial
conducted in Sweden reported that cetuximab plus
radiotherapy (RT) produced an overall toxicity comparable to
cisplatin plus RT in patients with locoregionally advanced head
and neck squamous cell carcinoma (HNSCC), but showed
inferiority in terms of local tumor control and treatment
prognosis (15). Therefore, cisplatin remains the cornerstone of
OSCC chemotherapy.

In recent years, with the widespread use of platinum-based
chemotherapeutic agents, especially cisplatin, many patients
have experienced serious toxic side effects. In particular, the
development of chemoresistance has severely attenuated the
efficacy of cisplatin in the treatment of OSCC. To our
knowledge, no review has systematically summarized the
mechanisms of cisplatin resistance in OSCC. This paper
provides an overview regarding the mechanisms of cisplatin
resistance in OSCC based on now-available research findings
and summarizes promising strategies to overcome cisplatin
resistance in OSCC.
Frontiers in Oncology | www.frontiersin.org 2
2 MOLECULAR BASIS OF CISPLATIN
RESISTANCE IN OSCC

2.1 DNA Damage Response and Cisplatin
Resistance in OSCC
The combination of DNA damage tolerance and DNA damage
repair is critical for tumor cells to counteract cisplatin-induced
DNA damage. The major forms of DNA damage repair are mis-
match repair (MMR), interstrand cross-link repair (ICR),
nucleotide excision repair (NER), base-excision repair (BER),
homologous recombination repair (HR), trans-damaged DNA
synthesis (TLS) and non-homologous end joining (NHEJ) (16).
Enhanced NER has been reported to be associated with cisplatin-
resistant phenotypes in a variety of cancers (17). ERCC1 is an
importantmemberof theNERpathway, and its expressionhasbeen
demonstrated to be negatively correlate with the efficacy of
platinum-based chemotherapy and the prognosis of several
cancers (18–20), including OSCC. For example, ERCC1
expression was enhanced in advanced HNSCC patients who
responded poorly to cisplatin-based chemoradiotherapy and had
thehabit of chewing arecanuts (21); Snail-mediatedupregulationof
ERCC1 led to cisplatin resistance in OSCC (22). Furthermore, not
only the expression level of ERCC1 can regulate the response of
tumor cells to cisplatin, but ERCC1 gene polymorphisms have also
been proved to make sense. Avinash Tejasvi et al. reported that
ERCC1 C118T genotype were more frequently detected in OSCC
specimens and that patients carrying this genotype had a worse
response to cisplatin (23).

TLS has also been found involved in cisplatin resistance in
OSCC. Polh is known to be a DNA polymerase that functions in
the TLS pathway, which can bypass the cisplatin-DNA adducts
formed during cisplatin chemotherapy and maintain DNA
synthesis, thus resisting cisplatin-induced DNA damage.
FIGURE 1 | Mechanism of action of cisplatin. Following entry into tumor cells by active transport or passive diffusion, cisplatin forms DNA adducts in the nucleus,
leading to cell cycle arrest and cell apoptosis.
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Therefore, endogenous Polh levels may be a potent marker of the
efficacy of cisplatin (24). Chen et al. reported that in OSCC,
prolonged endoplasmic reticulum (ER) stress upregulated Polh
expression and induced the development of cisplatin resistance,
whereas the presence or absence of ER stress had little effect on the
response to cisplatin of cells lacking POLH, the gene encoding
Polh. Interestingly, this study also found that p53 nuclear
translocation occurred in endoplasmic reticulum stress-adapted
cells and that intracellular cisplatin uptake was not significantly
different from control cells, but the accumulation of cisplatin-
induced DNA damage was dramatically reduced. Once p53 was
knocked down, the cells could hardly tolerate prolonged ER stress
and cisplatin treatment (25). This suggested that prolonged ER
stress might counteract the effects of cisplatin by repairing DNA
damage through the Polh-dependent TLS pathway, and inducing
p53 nuclear translocation to make cells tolerate DNA damage. In
summary, targeting DNA repair pathways may be a promising
approach to enhance chemotherapy sensitivity. However, these
findings have not been validated in clinical practice.

2.2 Epigenetic Mechanisms and Cisplatin
Resistance in OSCC
The epigenetic modifications include several different forms such as
methylation, histone modification, and regulation of non-coding
Frontiers in Oncology | www.frontiersin.org 3
RNAs. Genetic mechanisms and epigenetic mechanisms influence
each other and work together to obtain the characteristics of cancer
(26). Many pieces of evidence indicate that epigenetic mechanisms
are also involved in the occurrence and development of OSCC,
including cisplatin resistance in OSCC (Table 1).

2.2.1 Non-Coding RNA-Based Mechanisms
Non-coding RNAs participate in extensive physiological and
pathological processes. Increasing evidences indicate that non-
coding RNAs, including circular non-coding RNAs (circRNAs),
long non-coding RNAs (lncRNAs) and microRNAs (miRNAs),
play a vital role in cisplatin resistance of OSCC.

Circ_0109291 had higher expressions in CDDP-resistant
OSCC tissues and cells compared with CDDP-sensitive OSCC
tissues and cells, and mechanistically promoted proliferation but
inhibited the apoptosis of OSCC cells via miR-188-3p/ABCB1
axis (27). LncRNAs act in a similar form to circRNAs. For
instance, long non-coding RNA Opa-interacting protein 5
antisense RNA 1 (OIP5-AS1) sponged miR-27b-3p and then
influenced the expression of TRIM14, and knockdown of OIP5-
AS1 restored the CDDP sensitivity of resistant OSCC cells (29).
Futhermore, lncRNAs can modulate chemoresistance of OSCC
via influencing epithelial mesenchymal transition (EMT).
LncRNA MALAT1 functionally reduced apoptotic cell death
TABLE 1 | Epigenetic mechanisms and cisplatin resistance in OSCC.

Molecules Expression Targets and signaling
pathways

Regulatory outcomes Reference

Non-coding RNAs
circRNAs
circ_0109291 Up miR-188-3p/ABCB1 Promoted proliferation and inhibited apoptosis (27)
circ_0001971 Up miR-194/miR-204 Promoted proliferation, migration, invasion and inhibited apoptosis (28)
lncRNAs
OIP5-AS1 Up miR-27b-3p/TRIM14 Inhibited apoptosis (29)
MALAT1 Up PI3K/AKT/m-TOR Inhibited apoptosis (30)
LHFPL3-AS1 Up miR-362-5p/CHSY1 Promoted proliferation, migration, invasion and inhibited apoptosis (31)
ZFAS1 Up miR-421/MEIS2 Inhibited apoptosis (32)
CASC2 Down miR-31-5p/KANK1 Enhanced chemoresistance (33)
PVT1 Up miR-194-5p/HIF1a Enhanced proliferation and cisplatin resistance (34)
XIST Up miR-27b-3p Promoted proliferation, inhibited apoptosis and enhanced CDDP resistance (35)
CYTOR Up miR-1252-5p/miR-3148/LPP Induced EMT and resistance to cisplatin (36)
HOXA11-AS Up miR-214-3p/PIM1 Promoted proliferation and inhibited apoptosis (37)
HOTAIR Up – Enhanced proliferation and cisplatin resistance (38)
ANRIL Up MRP1 and ABCC2 Promoted proliferation, inhibited apoptosis and suppressed cisplatin cytotoxicity (39)
UCA1 Up miR-184/SF1 Promoted proliferation, inhibited apoptosis and enhanced cisplatin resistance (40)
miRNAs
miR-5787 Down MT-CO3 Promoted cisplatin resistance, affected oxidative phosphorylation and aerobic glycolysis. (41)
miR-132 Down TGF-b1 Promoted migration and invasion and decreased chemosensitivity (42)
miR-21 Up – Enhanced oncogenicity and chemoresistance of OSCC cells (43)
miR-654-5p Up GRAP/Ras/Erk Promoted proliferation, metastasis, and chemoresistance (44)
miR-1246 Up CCNG2 Promoted cancer stemness and drug resistance (45)
miR-485-5p Down PAK1 Induced EMT and cisplatin resistance (46)
miR-203 Down PIK3CA/Akt Inhibited apoptosis (47)
miR-372 Up ZBTB7A/TRAIL-R2 Enhanced oncogenic potential and cisplatin resistance (48)
miR-27b Down FZD7/beta-catenin Promoted proliferation, migration and suppressed cisplatin sensitivity (49)
miR-125b Down PRXL2A/NRF2 Enhanced drug resistance (50)
miR-222 Up PUMA Drived the oncogenesis and enhanced chemoresistance (51)
Methylation
DDX3 Up FOXM1/NANOG Inhibited cell death and enhanced CSC-like features (52)
Bax Down p53/Akt Inhibited cell death (53)
LCN2 Up NE-kappa B Inhibited apoptosis and induced cisplatin resistance (54)
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by promoting EMT process and activating the PI3K/AKT/m-
TOR signaling pathway in cisplatin-resistant OSCC cells (30).
Studies of differentially expressed circRNAs or lncRNAs
associated with OSCC cisplatin resistance have been emerging.
However, these findings seemed to be cell-specific and could not
be validated in other OSCC cell lines or clinical samples.

MicroRNAs (miRNAs) can negatively regulate gene
expression. Yu et al. reported the difference of miRNAs profile
between the cisplatin-resistant TSCC cell lines and their parental
cell lines for the first time. Compared with parental cells, there
were 19 differential miRNAs in resistant cells, among which 17
were upregulated and 2 were downregulated. In further studies,
researchers found that silence of miR-214 and miR-23a or
overexpression of miR-21 could reverse chemoresistance
against cisplatin in cisplatin-resistant subline (55). MiR-5787
was found downregulated in cisplatin-resistant TSCC cells
and functionally target mitochondrial cytochrome c oxidase
subunit 3 (MT-CO3). Upregulation of miR-5787 in cisplatin-
resistant cells and knockdown its expression in parental cells
could regulate the responses to cisplatin of two cell lines
respectively, and these results were verified in further in vivo
experiments (41).

Previous studies on the non-coding RNAs involved in OSCC
cisplatin resistance have mainly focused on function of circRNAs
and lncRNAs as sponges for miRNAs and the regulatory role of
miRNAs on target genes (Figure 2). Since non-coding RNAs
have other complex functions that have been less studied so far,
their association with cisplatin resistance of OSCC should be
further revealed in the future.

2.2.2 Methylation
Methylation is one of the components of epigenetic regulation
and the most common methylation modifications are DNA
methylation, RNA methylation and histone methylation.
Frontiers in Oncology | www.frontiersin.org 4
Methylation can cause genome instability and mutation, and
then make the cancer cells acquire malignant characteristics (56).
Wang et al. found the expression level of ten-eleven translocation
1 (TET1) was associated with cisplatin resistance, stem cell
properties and o6-methylguanine-DNA methyltransferase
(MGMT) methylation in OSCC. The use of TET1-siRNA
induced MGMT promoter methylation and cell apoptosis,
thereby enhancing the cisplatin sensitivity of OSCC cells with
stemness (57). DDX3, a human DEAD-box RNA helicase
associated with lymph node metastasis, cell migration and
invasion, was found upregulated in cisplatin-resistant OSCC
cells and chemotherapy-non-responder OSCC patients.
Knockdown of DDX3 restored cisplatin-induced cell death in
chemotherapy-resistant cell lines and reduced the proportion of
cells with cancer stem cells (CSCs)-like features via suppressing
the expression of FOXM1 and NANOG. What’s more, DDX3
could regulate m6A demethylase ALKBH5 directly, which
resulted in decreased m6A methylation in FOXM1 and
NANOG nascent transcript that contribute to cisplatin
resistance in OSCC (52). Therefore, DDX3 was expected to be
an effective therapeutic target to overcome cisplatin resistance in
OSCC. Together, these studies suggest that cisplatin resistance in
OSCC may be associated with methylation of cancer-related
genes, and further studies of methylation may be valuable for
tracing chemoresistance.

2.3 Programmed Cell Death (PCD) and
Cisplatin Resistance in OSCC
Cell death is an indispensable process for maintaining the
normal state of living organisms, and can be divided into
accidental cell death (ACD) and regulatory cell death (RCD),
while RCD is also called programmed cell death (PCD). At
present, more and more new forms of PCD other than apoptosis
have been discovered, and they are found to be involved in
FIGURE 2 | Regulation of cisplatin resistance by ncRNAs: a molecular mechanism. LncRNAs and circRNAs can function as sponges for miRNAs, and thus affect the
regulatory role of miRNAs on target genes. In addition, lncRNAs and circRNAs can also interact with proteins, remodel chromosome structure and affect protein synthesis.
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various pathological processes. Emerging evidence suggests that
PCD, especially apoptosis and autophagy, is involved in cisplatin
resistance in OSCC.

2.3.1 Autophagy
Over the past few decades, researchers have made remarkable
breakthroughs with regard to comprehension on what role
autophagy plays in systemic health and disease, in particular
the recognition that autophagy could inhibit or promote tumor
growth and respond to anti-cancer treatments (58–60).
Therefore, studies about the role of autophagy will contribute
to the development of innovative therapies.

It has been shown that DNA-damaging chemotherapeutic
agents such as cisplatin, carboplatin, and 5-fluorouracil could
induce autophagy, thereby reducing apoptosis and making
tumor cells resistant to chemotherapy. Li et al. found high
autophagic flux in cisplatin-resistant OSCC cells, which
showed as increased conversion rate of autophagic protein
LC3, decreased expression of p62, and increased autophagosomes
that were visible by transmission electron microscope (61).
High positive rates of CD44, ABCB1, ADAM17 were observed
in clinical OSCC specimens and cisplatin-resistant OSCC cells.
Interestingly, enhanced autophagy and mitophagy were also
detected. After the use of autophagy inhibitors, decreased
expression of CD44, ABCB1, ADAM17 and increased
sensitivity of cisplatin-resistant OSCC cells to cisplatin could be
detected (62). Reactive Oxygen Species (ROS) and cancer-
associated fibroblasts (CAFs) have been reported to be
associated with tumor progression in OSCC, and studies
showed that these two factors also contributed to cisplatin
resistance through the induction of autophagy (63, 64).

These results have demonstrated that enhanced autophagy
led to cisplatin resistance of OSCC, and inhibition of autophagy
might be an effective method to reverse chemotherapy
resistance. However, autophagy plays as a double-edged
sword in the development of cancer (65, 66). In terms of
drug resistance, a study showed that inhibition of autophagy
led to cisplatin resistance in laryngeal squamous cell carcinoma
(LSCC) (67). Whether autophagy is negatively associated with
sisplatin resistance in OSCC remains unknown and requires
further investigation.

2.3.2 Apoptosis
Apoptosis is a form of PCD regulated by intrinsic and extrinsic
pathways and activated when cells are attacked by special factors
like DNA damage (68). During tumorigenesis and progression,
cancer cells have to carry anti-apoptotic proteins to maintain cell
viability. Nowadays, chemotherapeutic agents mostly rely on
triggering apoptosis to induce cell death. Alternations in
apoptosis related molecules and pathways would make anti-
cancer drugs could not function at conventional concentrations,
which means drug resistance.

The Bcl-2 family consists of anti-apoptotic proteins (e.g., Bcl-
2 and Bcl-xL) and pro-apoptotic proteins (e.g., Bax, Bak, and
Bad). It has been demonstrated that the expressions of Bcl-2-
family members have a non-negligible effect on the response of
cancers to chemotherapy (69). For example, Bcl-xL was
Frontiers in Oncology | www.frontiersin.org 5
overexpressed in cisplatin-resistant OSCC cell lines and
suppression on its upstream regulators to attenuate Bcl-xL
expression could promote apoptosis (70). Mcl-1 is also an
important member of the Bcl-2 anti-apoptotic family. A survey
about the expression of Bcl-2 anti-apoptotic proteins in 68
human cancer cell lines showed that in many solid tumors, the
expression level of Mcl-1 was much higher than that of other Bcl-
2 anti-apoptotic members (71). Maji et al. found that the Mcl-1
expression was upregulated in both chemoresistant OSCC lines
and chemoresistant tumors. Mechanistically, STAT3 and AKT-
mediated GSK3b both functioned in regulating the expression of
Mcl-1. After blocking Mcl-1 expression by applying siRNA or
chemical inhibitors, a significant increase in apoptosis could be
observed, suggesting that overexpressed Mcl-1 was related to
multiple drug resistance in OSCC (72). Beyond that, reduced
expression of pro-apoptotic proteins also contributed to
chemoresistance. Bax expression was reduced in cancer tissues
of OSCC patients who were resistant to cisplatin-based
chemoradiatherapy and two cisplatin-resistant OSCC cells
lines. Bax was a downstream gene in p53/Akt pathway, the
application of Akt inhibitors released the inhibition of Bax and
increased the proportion of apoptosis among cisplatin-resistant
OSCC cells (53). In summary, restoration of the inhibited
apoptotic process may be an effective strategy to induce OSCC
cell death.

Survivin is a member of the inhibitor of apoptosis protein
(IAP) family, and recognized as a potential predictive biomarker
for cancers for its high expression (73, 74). Münscher et al. found
survivin was expressed at high levels in HNSCC, and positively
correlated with the malignant characteristics (75). Another study
reported that nicotine reduced cisplatin-induced apoptosis in
oral cancer cells, while this protective effect could be attenuated
when survivin was inhibited (76). YM155 is a small molecule
inhibitor of survivin that has been found to be effective and
selective in recent years. Experiments showed that, YM155
induced apoptosis and autophagic cell death in OSCC cells by
effectively downregulating survivin in the cytoplasm and
upregulating Beclin1 through the Akt/mTOR pathway (77).
Meanwhile, the combination of YM155 with cisplatin yielded
better anti-cancer effects than monotherapy (78). More recently,
an antagonist of IAPs, Debio 1143, has shown potential to
enhance the antitumor activity of cisplatin and radiotherapy in
HNSCC, and a phase III clinical trial will be conducted to
demonstrate its efficacy (79).

In general, targeting anti-apoptotic molecules or promoting
the expression of pro-apoptotic molecules may be an effective
mechanism to reverse chemoresistance in OSCC.

2.4 The Tumor Microenvironment (TME)
and Cisplatin Resistance in OSCC
The tumor microenvironment consists of the tumor cells
themselves, multiple stromal cells and extracellular matrix, and
is usually characterized by hypoxia, and immunosuppression
(80–82). The interactions of various cells and cytokines form a
complex network of mechanisms (83), and recent studies have
revealed that TME is responsible for the induction of multidrug
resistance in OSCC (Figure 3).
October 2021 | Volume 11 | Article 761379

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cheng et al. Cisplatin Resistance in OSCC
2.4.1 Hypoxic Microenvironment
OSCC is a solid tumor with a high hypoxia degree inside and this
hypoxic condition may cause patients respond poorly to
anticancer treatments (84). Hypoxia can activate the
expression of HIFs to maintain cell viability, especially HIF-1a,
which is widely expressed in different cancer cells (85). High
expression of HIF-1a has been demonstrated to be associated
with the malignant features of OSCC, and patients with high-
expression levels of HIF-1a tend to have a shorter overall
survival (86). HIF-1a can activate the transcription of multiple
genes under hypoxic conditions, including vascular endothelial
growth factor (VEGF) (87). To some extent, HIF-1a promotes
angiogenesis in tumors under hypoxic environment by inducing
the expression of VEGF, thereby regulating the balance of oxygen
supply and metabolism within the tumor, and improving the
survival of tumor cells (88). Moreover, HIF-1a participates in the
regulation of apoptosis. For example, HIF-1a inhibited cell
apoptosis by promoting the expression of the anti-apoptotic
protein Bcl-2 while suppressing the expression of the pro-
apoptotic proteins Bax and Bak, and the application of siRNA
to downregulate HIF-1a expression restored sensitivity to
chemoradiotherapy of OSCC cells (89, 90). Qi et al. reported
that under hypoxic conditions, the synergistic application of
metformin and cisplatin suppressed the expression of the
upstream transcription factor NK-kB of HIF-1a, thereby
blocking the synthesis of HIF-1a to enable cisplatin to exert its
anticancer effects without difficulty (91). These studies validate
the relationship between HIF-1a and resistance to cisplatin,
suggesting that hypoxia significantly affects cisplatin therapy
and further investigation of potential molecular mechanisms in
hypoxia-induced chemoresistance will provide new promising
directions for the treatment of OSCC.
Frontiers in Oncology | www.frontiersin.org 6
2.4.2 Immune Microenvironment
In recent years, most HNSCC have been shown to have highly
immunosuppressive TME which allows the tumor to escape the
host immune response. What’s more, tumor immune escape is
also a crucial contributor for the formation of multi drug
resistance, because drug-resistant cells are more likely to evade
recognition and killing by the immune system than drug-
sensitive cells (92). Programmed death 1 (PD-1) is widely
expressed on the surface of immune cells such as T cells, B
cells and macrophages, whereas programmed death ligand 1
(PD-L) is expressed in a variety of tumor cells. The combination
of PD-L and PD-1 on the surface of T cells can inhibit the activity
of killer T cells and even induce their apoptosis, thus allowing
tumor cells to gain immune escape (93). A global proteomic
profiling of cisplatin-sensitive and cisplatin-resistant OSCC cell
lines showed CMTM6 was the top-ranked upregulated protein in
cisplatin-resistant cells (94). What’s more, it had been
demonstrated that in HNSCC, CMTM6 positively correlated
with PD-L1 expression and both of CMTM6 and PD-L1 were
associated with a worse prognosis. Knockdown of CMTM6
resulted in decreased PD-L1 expression and increased tumor-
infiltrating CD4+CD8+ T cells (Tregs), which consequently
improved antitumor immunity and cisplatin-induced
apoptosis; whereas overexpression of CMTM6 resulted in
increased PD-L1 expression and decreased sensitivity of OSCC
cells to cisplatin (95, 96). The relevance of PD-L1, another ligand
of PD-1, to cisplatin resistance in OSCC has also been reported.
Sudo, et al. established a cisplatin-resistant OSCC cell line, HSC-
2, and found that cisplatin upregulated the gene expression levels
of PD-L2, ABCG2 in HSC-2 in a time-dependent manner. In
addition, STAT1/3 mediated the induction of PD-L2 by cisplatin,
and PD-L2-positive cells have higher metastatic and invasive
FIGURE 3 | TME and cisplatin resistance in OSCC. TME is typically characterized by hypoxia and immunosuppression. Hypoxia induces HIF-1a-mediated signaling
cascades, including induction of VEGF expression to promote tumor angiogenesis in hypoxic conditions and inhibition of apoptosis by regulating the expression of
Bcl-2 anti-apoptotic family. In addition, a large number of cellular factors released by cancer cells and various bystander cells cause immune evasion by regulating
the production and function of immune cells. Overall, the above pathways contribute to the cisplatin resistance of OSCC.
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potential compared to PD-L2-negative cells (97). These studies
suggested that anti-PD-L immunotherapy may be valuable for
cisplatin-resistant OSCC patients.

TGF-b is an important regulator of immune homeostasis in
tumormicroenvironment, and it can create an immunosuppressive
TME by regulating the production and function of multiple
immune cells (such as regulatory T cells and dendritic cells) (98).
In OSCC, the application of miRNAs mimics targeting TGF-b1
effectively reduced the gene expression of TGF-b1, inhibited
growth, invasion, and metastasis of tumor cells and increased the
sensitivity of drug-resistant cells to cisplatin (42). Based on this
study,we canspeculate that thehighexpressionofTGF-b1may lead
to cisplatin resistance in OSCC by suppressing immune
cell function.

In the tumor microenvironment, aberrant expression of Toll-
like receptors (TLRs) not only gives tumor cells the opportunity
to escape the host immune response, but also contributes to
tumor development by promoting proliferation and angiogenesis
and resisting apoptosis (99, 100). Current preclinical trials have
shown that monotherapy or combination therapeutic strategies
of applying TLRs modulators can effectively improve tumor
prognosis (101). In OSCC, the application of Poly(I:C), an
agonist of TLR3, reduced drug efflux by inhibiting ABC
transporters in tumor cells, activated immune cells in TME,
induced delayed tumor cell apoptosis that based on caspase3
pathway, and enhanced the anti-cancer effect of low-dose
cisplatin with reduced adverse side effects (102). This
chemoimmunotherapeutic strategy of sequential application of
the TLR3 agonist Poly(I:C) and low-dose cisplatin was suitable
for long-term treatment of OSCC patients with poor physical
status and bad response to conventional chemotherapy drugs.

Understanding the role played by immune checkpoints and
the tumor microenvironment in anticancer therapy could help
Frontiers in Oncology | www.frontiersin.org 7
improve single-drug-based chemotherapy regimens and thus
facilitate the development of a novel chemotherapy strategy
that incorporates immunotherapy.

2.5 Transport and Cisplatin Resistance
in OSCC
Anti-cancer drugs must reach an appropriate concentration at the
target site in order to exert their killing effect in tumor cells.
Predictably, if the concentration in cells does not reach the
concentration required for treatment for some reason, the anti-
cancer drugs will not function, in which case drug resistance will
occur. ATP binding cassette (ABC) transporters are well known
for their role to enable drug efflux in multidrug resistance (MDR).
They serve as transmembrane proteins that facilitate the efflux of
anticancer drugs from cancer cells hence reducing intracellular
drug levels. In addition, extracellular vesicles also play a key role
in cancer chemoresistance as natural carriers of signals in the
organism. For example, exosomes can wrap therapeutic drugs and
export them out of the cell, or transport drug efflux pumps into
the cell (103). The mechanisms of cisplatin resistance based on
transport process in OSCC are reviewed below (Figure 4).

2.5.1 ABC Transporters
Currently, the most studied ABC transporters associated with
drug resistance include ABCB1 (P-glycoprotein/P-gp/MDR1),
ABCG2 (Breast Cancer Resistance Protein/BCRP) and ABCC1
(Multidrug Resistance Protein1/MRP1) (104). However, the
regulatory roles of ABC transporters in cisplatin-resistant
OSCC are still poorly understood.

Choi, et al. established three cisplatin-resistant OSCC cell
lines and found elevated gene expression of BCRP and MDR1 in
these three cell lines (105). Lu et al. found higher expression of
ABCC1 and ABCG2 in specimens from OSCC patients who had
FIGURE 4 | A model of transport process-mediated cisplatin resistance in OSCC. ABC transporters act as transmembrane proteins that result in the efflux of
cisplatin from OSCC cells and reduce intracellular drug levels. And extracellular vesicles act as natural carriers of biological signals that can deliver substances such
as functional RNAs from cisplatin-resistant OSCC cells to parental cells, thus enabling the propagation of cisplatin resistance in OSCC cells.
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poor differentiation and received chemotherapy compared to
those from patients with well differentiation and was not treated
with chemotherapy. In addition, in vitro experiments revealed
that the Hedgehog signaling pathway was activated in OSCC
cells resistant to cisplatin and 5-FU. Overexpression of SHH, a
key gene in the Hh pathway, resulted in increased ABCG2
expression, which suggested that the Hh pathway promoted
multidrug resistance in OSCC by modulating the ABC
transporters (106). For decades, small molecule transport
inhibitors based on strategies targeting ABC transporters have
been developed to avoid drug efflux. Unfortunately, these
inhibitors have been proven to have only a limited effect in
clinical trials (107, 108). The reason for the failure might be that
the inhibitors was targeted and compensatory up-regulation
of other ABC transporters could still lead to the efflux of
chemotherapeutic drugs. Therefore, a comprehensive study of
the ABC transporter family is necessary to understand the
function of other proteins in this family. In the meantime,
agents that directly target the upstream regulators should be
developed to avoid the compensatory mediation between
downstream ABC transporters.

2.5.2 Extracellular Vesicles
Extracellular vesicles (Evs) can be subdivided into exosomes (30–
100 nm),microvesicles (MVs) (100–1,000 nm), and the oncosomes
(1–10mm), but theway todivide these three by size is not absolute, a
more reasonable method is to distinguish them by their origin and
function. Extracellular vesicles can deliver cellular cargoes such as
proteins, nucleic acids, lipids and other biomolecules or
pharmacological compounds to recipient cells, thus affecting the
biological functions of recipient cells (109, 110). Currently,
exosomes and microvesicles are more studied in OSCC
chemoresistance (111, 112). It has been investigated that miR-21
is involved in multidrug resistance of various cancers (113, 114).
Liu, et al. found that culturing cisplatin-sensitive OSCC cells with
conditioned media obtained from cisplatin-resistant OSCC cells
resulted in decreased sensitivity of parental cells to cisplatin and
reduced expression of gH2AX, a protein marker characterizing
DNAdamage.However, applicationof conditionedmediaobtained
from resistant cells treated with the exosome inhibitor GW4869
reversed this phenomenon. Further mechanistic studies showed
that exosomes derived from resistant cells delivered miR-21 to
parental cells. MiR-21 targeted PTEN and PDCD4 in cispaltin-
sensitive cells, with a resultant inhibition of cisplatin-induced
apoptosis (115). Not coincidentally, Chen et al. reported that
miR-21 was the most abundantly expressed miRNA in CSC_EVs
derived from OSCC cells (43). The application of Ovatodiolide
(OV), a newly discovered bioactive component with anti-cancer
activity, reduced the expression of oncogenic markers like PI3K,
STAT3 and miR-21, and effectively inhibited CSC_EVs mediating
cisplatin resistance and tumorigenesis (116). Thus, extracellular
vesicles and the cellular cargoes they carry, such as miR-21, can be
used as candidate targets for counteracting drug resistance.
Moreover, researchers have developed innovative anti-cancer
therapies that utilize the biological functions of extracellular
vesicles, such as exosomes drug delivery systems (117).
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2.6 Other Possible Mechanisms of
Cisplatin Resistance in OSCC
Epithelial-mesenchymal transition (EMT). Many studies have
found that chemo-resistant tumor cells often exhibit a transition
from epithelial to mesenchymal, with the disrupted intercellular
adhesion, resulting in a greater migratory and invasive capacity
of tumor cells and correlating with worse prognosis of patients
(105, 118–120). Therefore, blocking the EMT process may
improve the antitumor efficacy of chemotherapeutic agents
(121, 122). Chen, et al. reported that in OSCC, high expression
of FOXD1 induced EMT and resistance to cisplatin via the
CYTOR/miR-1252-5p/miR-3148/LPP signaling axis, whereas
blocking FOXD1 expression could interfere with CYTOR-
dependent signaling events, ultimately reducing the EMT
phenotype and restoring sensitivity of drug-resistant cell lines
to cisplatin (36).

Cancer stem cells (CSCs). According to the cancer stem cell
hypothesis, the presence of cancer stem-like cells contributes to
tumor recurrence and drug resistance, and there is a correlation
between stemness-related genes and poor prognosis (123, 124).
CD10 is a newly identified surface marker of cancer-associated
fibroblasts, which maintains cancer stemness and facilitates
cancer therapy resistance. It was experimentally demonstrated
that CD10-positive OSCC cells exhibited enhanced self-renewal
ability, tumorigenicity, and poor response to cisplatin. And
further studies revealed that CD10 might act through the
Hedgehog pathway to enhance cell stemness and cisplatin
resistance (125). Naik et al. reported that, in OSCC, cisplatin
could induce FaDu cells to exhibit a remarkable stemness feature,
and the positive rate of the CSC marker CD44 in cisplatin-
resistant FaDu cells reached a peak of 90%. Mechanistically,
enhanced autophagy and mitochondrial phagocytosis promoted
the accumulation of b-catenin in OSCC cells to activate CSC
properties, and thus leading to cisplatin resistance (62).

p53. As a well-known tumor suppressor gene, p53 serves as a
hub for cellular stress response by regulating the transcription of
multiple downstream targets. p53 mutations are common in
human cancers, and mutant p53 not only leads to tumor
aggressiveness but also to therapeutic resistance (126, 127).
Temam et al. reported that p53 mutations were closely
associated with reduced efficiency of platinum- and
fluorouracil-based induction chemotherapy in advanced
HNSCC (128). In another study, HNSCC cells with
cytoplasmic mutant p53 were generally more resistant to
cisplatin than cells with nuclear mutant p53. As a result,
cytoplasmic p53 mutant proteins promoted upregulation of
intracellular ABC transporter proteins (ABCC2 and ABCG2)
and increased metabolic activity (129).

Furthermore, several diverse studies about cisplatin resistance
in OSCC also merit mention, but the underlying mechanisms do
not fall into the aforementioned categories (Table 2). For
example, a specific region on the endoplasmic reticulum (ER)
membrane protein p22phox could bind to cisplatin directly, thus
blocking cisplatin entering into the nucleus and inducing DNA
damage in OSCC cells (130, 142, 143). Downregulated
cylindromatosis (CYLD) contributed to cisplatin resistance of
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OSCC cells via excessive activation of NF-kB (131). Although
these findings are mostly inferred from basic experiments, they
provide motivation and corroboration for researchers to improve
clinical treatment outcomes for OSCC.
3 STRATEGIES TO REVERSE CISPLATIN
RESISTANCE IN OSCC AND NOVEL
THERAPEUTIC OPPORTUNITIES

3.1 Enhancing Drug Influx: Drug Delivery
Systems
Appropriate drug concentration is an important prerequisite to
ensure anticancer efficacy. Recently, researchers have attempted
to use nanoparticles (NPs) as carriers for chemotherapeutic drug
delivery. Owing to ultra-small size and potent adsorption
properties, on the one hand, NPs can directly target tumor
sites, which results in the localized accumulation of drugs and
prolonged drug release time; on the other hand, the targeting of
NPs reduces the toxicity of loaded drugs towards normal tissues
(144, 145).

Novel N-vinylpyrrolidone (NVP)/acrylic acid (AA)
nanoparticles have been revealed to bind and deliver cisplatin
into cells via coordination bonds. Cisplatin bound to NPs
showed higher uptake rate in OSCC cells compared to free
cisplatin. This drug delivery system was non-toxic to normal
oral epithelial cells, but induced a higher percentage of early
apoptosis in OSCC cells and reduced the localized inflammatory
response elicited by apoptosis (146). Wang et al. synthesized
CDDP loaded and ligand-modified PLGA-PEG/NR7
nanoparticles, which were capable of targeting OSCC cells
highly expressing epidermal growth factor receptor (EGFR).
Due to the hydrophilic PEG shell and hydrophobic PLGA core
of the polymeric NPs, the CDDP loaded therein were allowed for
a slow and stable release. In addition, the modified NPs had a
higher cellular uptake rate compared to the non-targeting
Frontiers in Oncology | www.frontiersin.org 9
nanoparticles and significantly enhanced the anticancer effect
by actively delivering more cisplatin to the tumor site (147).

Overall, nanomedicine delivery systems are promising in
enhancing the efficacy of cisplatin and reversing cisplatin
resistance in OSCC. Unfortunately, cisplatin-loaded nanoparticles
have not yet gained clinical approval.

3.2 Combination Therapeutic Regimens
3.2.1 Combination With Cytotoxic Chemotherapeutic
Agents
Novel combination regimens involving cisplatin and other
cytotoxic agents have been investigated to improve therapeutic
outcome of advanced OSCC. Arsenic trioxide (ATO) is one
of the few FDA-approved commercially available inorganic
non-radioactive anticancer drugs (148), and studies have
demonstrated that arsenic trioxide has broad anticancer
activity against multiple tumors (149–151). More importantly,
the combination of ATO and cisplatin exhibited remarkable
synergistic effects (152–154). In OSCC, Kotowski et al. reported
that the combination of ATO and CDDP exhibited stronger
cytotoxic effects compared to monotherapy (155). Nakaoka et al.
found that ATO/CDDP increased the proportion of cells that
underwent apoptosis and cell cycle arrest. The potential
mechanism could be that ATO/CDDP led to a decrease in
mitochondrial membrane potential by stimulating the
production of ROS in tumor cells, which subsequently
activated the caspase-3/7 signaling pathway, and resulted in
cell apoptosis. The experimental results of downregulated
cytochrome c, anti-apoptotic Bcl-2 and XIAP also provided a
support for this hypothesis (156). However, these results were
derived from in vitro experiments, and no publications or clinical
trials have reported in the subsequent nearly decade that ATO
might benefit as a chemosensitizer for cisplatin-based
chemotherapy in OSCC, and its efficacy still requires
further validation.

With the increasing availability of new cytotoxic agents,
investigators have tried a wide range of cisplatin-based
TABLE 2 | Other factors and cisplatin resistance in OSCC.

Other factors Expression Major effects Reference

p22phox Up Blocked cisplatin entering into the nucleus and inducing DNA damage (130)
Cylindromatosis (CYLD) Down Knockdown of CYLD attenuated the cytotoxicity of cisplatin through hyperactivation of

NF-kB
(131)

RRBP1 Up RRBP1 induced cisplatin resistance via activating Yes-associated protein1 (YAP1) (132)
Cancer-derived IgG
(CLgG)

Up Inhibiting the expression of CIgG enhanced cisplatin-induced apoptosis via PTP-BAS/
Src/PDK1/AKT signaling pathway

(133)

Naa10p Down Overexpression of Naa10p enhanced the cisplatin sensitivity in OSCC (134)
tongue cancer chemotherapy resistance-
associated protein1 (TCRP1)

Up TCRP1 induced the activation of the PI3K/Akt/NF-kB signaling pathway and cisplatin
resistance

(135–137)

Yes-associated protein (YAP) Up Translocation of YAP from the cytoplasm to the nucleus drived the CDDP resistance in
OSCC

(138)

beta-catenin Up Overexpressed beta-catenin promoted cisplatin resistance in OSCC (139)
FAT atypical cadherin 1 (FAT1) Overexpressed FAT1 inhibited apoptosis vis reducing the oxidative stress and induced

cisplatin resistance
(138)

TEAD4 Up Overexpression of TEAD4 promoted the transcription of S100A13 gene and resulted in
chemoresistance

(140)

Nanog Up Nanog regulated the expression of Slug, E-cadherin, Oct-4, and c-Myc genes and
caused cisplatin resistance

(141)
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combination chemotherapy regimens in clinical trials of OSCC,
such as cisplatin plus 5-fluorouracil (PF) combination, cisplatin
plus paclitaxel (PP) combination (157), and docetaxel, cisplatin
plus 5-FU (TPF) combination (158). However, PP and PF
regimens have been proven to show no difference in survival
(158). Although TPF regimen has shown superiority over PF
regimen and to be favorable in reducing tumor-induced
dysphagia and distant metastasis (159), the superiority has
been questioned in recent years and there is no definitive
evidence that it is superior to concomitant treatment in terms
of survival (160–162). In addition, TPF regimens carry a high
risk of toxicity, which can be fatal for many patients with co-
morbidities, with a treatment-related mortality rate of up to
6% (163). Therefore, the exact role of doublet or triplet
chemotherapy regimens requires further exploration, and
certain criteria should be established to identify the patient
subgroup that would benefit from them, thereby improving
treatment outcomes and reducing treatment risks.

3.2.2 Combination With Molecular Targeted Agents
In studies of OSCC tumor heterogeneity, a number of genes and
molecules associated with poor prognosis have been identified to
be commonly altered, and researchers view them as potential
targets for OSCC treatment.

EGFR is a member of the human epidermal growth factor
receptor (HER) family. Currently, there are two main types of
medications that target EGFR in clinical practice, which are
monoclonal antibodies represented by cetuximab and tyrosine
kinase inhibitors (TKIs) (164). In a multi‐centric phase III
clinical trial, a regimen of cetuximab combined with platinum–
fluorouracil improved treatment response rate, PFS and OS in
patients with recurrent and/or metastatic squamous cell
carcinoma of the head and neck (R/M-SCCHN) compared
with platinum–fluorouracil chemotherapy alone (165).
However, the benefits of the combined regime was not
absolute, in another phase III clinical trial, the addition of
cetuximab failed to improve PFS or OS in patients with stage
III-IV OSCC receiving cisplatin and radiation therapy (166).
When it comes to EGFR-TKIs, regrettably, there was insufficient
evidence showing the addition of EGFR-TKIs to standard
therapies could provide overall therapeutic benefits.
Additionally, cetuximab resistance has been reported, and the
use of EGFR-mAb and EGFR-TKIs may lead to increased skin
toxicity (167, 168).

Apart from EGFR, targeting other molecules can also benefit
the anticancer treatment. Stathmin is a downstream molecule in
the PI3K/AKT/mTOR signaling pathway, and OSCC patients
with high stathmin expression responded poorly to TPF
chemotherapy regimens. The combination of PI3K inhibitor,
BKM-120, with TPF decreased the expression and phosphorylation
of stathmin, and induced cell cycle arrest, thereby increasing the
proportion of apoptotic tumor cells and inhibiting the growth of
xenografts (169). The combination of Bruton’s tyrosine kinase
(BTK) inhibitors, ibrutinib, and cisplatin were capable of
suppressing stemness characteristics and promoting apoptosis in
OSCC cells (170).
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Since the above findings are mostly obtained from prospective
studies, the simultaneous or sequential combination of targeted
agents and conventional chemotherapeutic agents remains
controversial, and the combination strategies need further
clinical study.

3.2.3 Combination With Immunotherapeutic Drugs
Recent studies have shown that early immunotherapy is of great
benefit to the prognosis of OSCC patients. New generation of
immunotherapy applies immune checkpoint inhibitors to alter
the immunosuppressive tumor microenvironment and reactivate
the host immune response to tumor cells, thereby inhibiting
tumor cell proliferation and even triggering apoptosis (171). In
2016, two immune checkpoint inhibitors, pembrolizumab and
nivolumab, were approved by FDA for advanced R/M-SCCHN
patients who had disease progression during or following
treatment with cisplatin (172–174). Following that, multiple
immune checkpoint inhibitors (ICIs) have been applied to the
treatment of OSCC, among which PD-1/PD-L1 targeted are the
most numerous. In a systematic review of eight clinical trials
applying ICIs, the authors reported that the standard therapy
had poor efficacy in PD-L1-positive R/M SCCHN patients, while
the immunotherapy had a better performance. The overall
survival (OS) of R/M SCCHN patients using PD-1 checkpoint
inhibitors ranged from 7.5 to 14.9 months, which was
significantly longer compared to those receiving standard
therapy, and the life quality of patients was significantly
improved due to immunotherapy producing fewer systemic
toxicities (175). Immune checkpoint inhibitors and cisplatin
exert anticancer activity through different mechanisms, and
immunochemotherapy combining the two may be beneficial
in the treatment of advanced OSCC. However, Tringale
et al. reported that the overall efficiency of current immune
checkpoint inhibitors for R/M SCCHN is not favorable
due to the high cost of treatment, and further research is
needed to minimize treatment costs and improve treatment
outcomes (176).

3.2.4 Combination With Potential Anti-Cancer
Drugs: Natural Products
Since a long time, natural products have served as one of the
most important sources of anti-cancer drugs. Some anticancer
drugs that possess definite anticancer activity and have been
widely used, such as hydroxycamptothecin and paclitaxel (PTX),
are natural products, secondary metabolites and/or their
structural analogues. Recently, combination therapies of
natural products and traditional anticancer drugs have shown
potential on improving therapeutic effect.

Sulforaphane (SF) and curcumin (CRM) are both natural
compounds derived from plants and commonly employed as
antioxidants in anticancer therapy (177). The combination of SF
and CDDP inhibited the growth of SCCHN cells and made the
cytotoxicity of CDDP 2 times magnified (178). While the
combination therapy with liposomal curcumin and cisplatin
also had an enhanced growth inhibitory effect on HNSCC
compared to monotherapy (179). In addition, several natural
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cheng et al. Cisplatin Resistance in OSCC
products, ursolic acid (180), plumbagin (181) and epigallocatechin
gallate (182) are also worth mentioning, which exhibit
chemosensitizing function in cisplatin-resistant OSCC through
similar mechanisms. Although the potential of natural products
in anticancer therapy has been demonstrated in many preclinical
trials, there are stillmanyhurdles toovercomebefore formal clinical
application, such as the low water solubility, poor stability, and low
oral availability. Therefore, the physicochemical characterization of
natural products needs to be further improved in the future to
achieve effective clinical application.
4 CONCLUSION AND PERSPECTIVES

Resistance to cisplatin remains a major challenge that hinders the
success of OSCC treatment. According to current knowledge,
multiple factors such as DNA damage and repair, transport
process, and programmed cell death are involved in initial or
acquired resistance to platinum-based drugs in OSCC. Recently,
new factors such as epigenetic biological processes and tumor
microenvironment have also received increasing attention in the
study of the mechanisms of chemoresistance in OSCC. Increased
understanding of the underlying molecular mechanisms of
cisplatin resistance is essential to predict, prevent, and reverse
chemoresistance. Drug resistance is essentially a form of tumor
heterogeneity, and the molecules that have been reported to be
associated with OSCC cisplatin resistance may not be
representative of the entire resistant subset due to small sample
size or lack of clinical validation. In the future, a large-scale
screening may be needed to identify biomarkers associated with
cisplatin resistance in OSCC and validate them prospectively
Frontiers in Oncology | www.frontiersin.org 11
before treatment, thus identifying cases that may benefit from
cisplatin-based treatment and providing more rational
personalized treatment regimens for resistant patients, which
could improve treatment outcomes and increase survival in
refractory OSCC patients.
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