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Although radiotherapy is given to more than 50% of cancer patients, little progress has
been made in identifying optimal radiotherapy - drug combinations to improve treatment
efficacy. Using molecular data from The Cancer Genome Atlas (TCGA), we extracted a
total of 1016 cancer patients that received radiotherapy. The patients were diagnosed
with head-and-neck (HNSC - 294 patients), cervical (CESC - 166 patients) and breast
(BRCA - 549 patients) cancer. We analyzed mRNA expression patterns of 50 hallmark
gene sets of the MSigDB collection, which we divided in eight categories based on a
shared biological or functional process. Tumor samples were split into upregulated,
neutral or downregulated mRNA expression for all gene sets using a gene set analysis
(GSEA) pre-ranked analysis and assessed for their clinical relevance. We found a
prognostic association between three of the eight gene set categories (Radiobiological,
Metabolism and Proliferation) and overall survival in all three cancer types. Furthermore,
multiple single associations were revealed in the other categories considered. To the best
of our knowledge, our study is the first report suggesting clinical relevance of molecular
characterization based on hallmark gene sets to refine radiation strategies.

Keywords: radiotherapy, TCGA (The Cancer Genome Atlas Program), gene set analysis, prognostic, head and neck
(H&N) cancer, cervical cancer, breast cancer
INTRODUCTION

Radiotherapy (RT) represents an essential treatment modality in cancer management, either alone
or combined with other therapies. Approximately 50% of all cancer patients will receive
radiotherapy at some time in their illness, resulting in a cure rate of about 40% (1). Over the
past few decades, technological advances and clinical research have given radiation oncologists the
capability to personalize treatments for accurate delivery of radiation dose based on clinical
parameters and anatomical information (2). However, individual responses to RT vary widely
among disease types and patient populations (3). The resistance to RT is associated with several
biological alterations of the tumor cells and the tumor microenvironment (4). Unravelling the
processes and hallmarks of cancer cells that lead to radioresistance will provide critical insights for
future research into combination therapies with radiotherapy.

A detailed understanding of the cellular pathways involved in the response to irradiation is
imperative to pave the way to more individualized RT. The last 20 years, precision medicine has
harnessed genetic profiling’s power to personalize cancer treatments, nonetheless similar
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predictions regarding tumor benefit following RT are lagging (5).
Prior studies have examined associations between genotype and
clinical radiosensitivity; DNA repair pathway alterations such as
deleterious germline and somatic mutations in genes such as
BRCA1, BRCA2, PALPB2, and ATM have been studied
extensively as potential biomarkers of radiation sensitivity (6).
Next to this, several clinically relevant associations have been
described between epigenetics, hormone axis, receptor tyrosine
kinase (RTK) signaling, intracellular signaling, the tumor
microenvironment and radioresistance (7). Although these
studies often identify genomic features that are known to be
prognostic, translating these findings into actionable treatment
decisions remains a significant challenge (7, 8).

To comprehensively evaluate clinically relevant genetic
signatures, which may function as therapeutic targets of
different cancer types, we integrated and analyzed clinical
information and mRNA-sequencing data from head-and-neck
(HNSC), cervical (CESC) and breast cancer (BRCA) patients that
underwent radiotherapy. First, we selected the 50 hallmark gene
expression signatures from the molecular signature database
collection (MSigDB) (9). Each hallmark in this collection
consists of a “refined” gene set, derived from multiple “founder”
sets, that conveys a specific biological state or process and displays
coherent expression. Using the comprehensive molecular and
clinical data compiled in The Cancer Genome Atlas (TCGA) (10),
we associated the upregulation or downregulation of these 50
hallmark gene expression signatures with the patients’ clinical
outcome. This approach allowed to divide the patients in the three
different groups based on their respective gene expression levels
(upregulated, neutral or downregulated) and correlated these
groups with the patients’ clinical outcome. To the best of our
knowledge, our study is the first report suggesting clinical
relevance of molecular characterization based on hallmark gene
sets to refine radiation strategies.
RESULTS

Patient Characteristics
To investigate the clinically relevant molecular features of
cancers with regard to survival following radiotherapy, we
selected three relevant cancers: head-and-neck squamous
cancer (HNSC), cervical squamous cancer (CESC), and breast
(BRCA) cancer. HNSC comprises the sixth leading cancer
diagnosis and includes a heterogeneous group of malignant
tumors arising in all structures of the head-and-neck region,
except for the brain, spinal cord, skull base, and skin. Patients
with limited disease (T1-2N0) are treated by surgery or
radiotherapy, according their general condition and functional
implication of the treatment. Patients with locally advanced HNSC
undergo surgery, followed by adjuvant chemoradiotherapy or
radiotherapy alone. If these patients are not amenable to surgery
they are treated by primary (chemo)radiation (11). CESC is the
fourth most common female malignancy worldwide (12). Low stage
CESC patients are treated with either surgery or RT. Concurrent
chemotherapy with RT is given as adjuvant therapy for high-risk
stages I to IIA. In stages IB, IIA-B, III, and IVA, concurrent
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chemotherapy with RT is given as primary therapy. For both
HNSC and CESC the prognostic impact of tumor oxygenation
during radiotherapy has been described in several retrospective
studies. BRCA is a highly heterogeneous disease and the most
common neoplasm in women. Although classic histopathologic
classification of breast cancer remains important, molecular
characterization of the disease is rapidly emerging as a vital tool
for understanding clinical prognosis. Noninvasive and early invasive
BRCA are usually treated with breast conserving surgery following
adjuvant RT. Depending on TNM-stage, hormone receptor
markers, HER2-status, differentiation grade, proliferation markers,
… are early invasive BRCA patients also treated with (neo)adjuvant
radio(chemo)therapy (11). We chose these cancer types to offer a
general overview of the 50 hallmark gene sets’ influence on survival
of patients who underwent RT.

We extracted data from all the 299 HNSC, 168 CESC and
549 BRCA patients that underwent radiotherapy in The Cancer
Genome Atlas (TCGA) Pan-Cancer cohort. Their characteristics
are shown in Table 1. Human Papillomavirus (HPV) negative (-)
was the most common subtype in HNSC patients. At the same
time, most of the CESC were squamous carcinomas and the
majority of BRCA patients had a Luminal A subtype. The
patient’s age ranged from 19 to 90, with the HNSC patients
being the oldest (median 59.34), followed by the BRCA patients
(median 56.71) and the CESC patients (median 48.89). The
majority of patients were female and of the white race. All
genetic data was taken from patients after they underwent
surgery, but before the patients underwent adjuvant (chemo)
radiotherapy. RT treatment schedules were as follows; HNSC
patients received a median of 62Gy with a treatment duration of
45 days. CESC patients received a median of 40Gy with 31.5 days
of treatment and BRCA patients received 60Gy with a treatment
time of 43 days. BRCA patients displayed the most extended
overall survival (OS) and disease-free survival (DFS) (median
OS: 32.48, DFS: 31.3), followed by CESC patients in OS (26.01)
and DFS (26.79) time and HNSC patients presented with the
shortest survival time (OS: 22.59, DFS: 22.42).

Genetic Expression Subtypes Show
Clinically Relevant Patterns
To assess the heterogeneity of the different hallmark expression
gene sets across the three cancer types, we used the
computational method developed by Peng et al. (13). First, we
extracted the z-score ranked RNAseq data of each tumor sample
for the above-described cancer patients. Z-scored data is RNAseq
data normalized across samples by Z score to obtain a rank value
for each gene. Next, we conducted a GSEA analysis, using the
hallmark expression gene sets, on the resulting rank values to
classify tumors into three subtypes: upregulated, neutral or
downregulated (14, 15). The method derives its power by
focusing on gene sets, that is, groups of genes that share a
common biological function, chromosomal location, or
regulation. Tumor samples for which the hallmark expression
genes showed enrichment with high Z scores were defined as an
upregulated subtype. In contrast, samples showing the opposite
pattern were defined as downregulated subtype. Samples
belonged to the neutral subtype when they did not show a
October 2021 | Volume 11 | Article 761901
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significant enrichment pattern. Note that the concept of
“upregulated” or “downregulated” here is relative to other
tumor samples within the same cancer type, rather than
relative to normal tissues (Figure 1A). We divided the 50
hallmark expression gene sets into eight categories based on
their shared overlapping biological or functional process, namely
Radiobiological, Metabolic, Proliferation, Development,
Signaling, Cellular component, Pathway and Immune
(Supplementary Table 1). We are aware that certain gene sets
can be allocated into different categories, for example the G2M
Checkpoint gene set into the proliferation category instead of the
Radiobiological category, as genes often exert their functions on
multiple levels. The eight described categories were based upon
the proposed division of MSigDB and subsequently adapted to
our own notion (9).

To assess the clinical relevance of the expression subtypes
identified above, we determined associations with patient’s OS
using a Kaplan – Meier analysis, since survival represents a
Frontiers in Oncology | www.frontiersin.org 3
critical clinical index of tumor aggressiveness. Figure 1B shows
the summary of 24 significant survival associations for the 50
hallmark expression gene sets associated with one of the three
cancer types. Only 45 of the 50 hallmark gene sets are depicted,
since there were no survival associations for the Apical Surface,
Complement, Inflammatory response, Myogenesis and WNT
Beta Catenin Signaling gene sets. At first glance, CESC patient’s
survival was associated with more hallmark gene sets than the
other two cancer types. Most of the significant associations
across cancer types are related to upregulated gene sets. Since
we look for a link between these different gene signatures and
survival, we cannot exclude that we are measuring intrinsic
aggressiveness of the tumors, sensitivity to chemotherapy or
other features that can influence the prognosis of the patients,
next to radiosensitivity. However, the hallmark gene sets
represent specific well-defined biological states or processes
and display coherent expression. Also, this gene set collection
has been thoroughly validated (9).
TABLE 1 | Patient characteristics.

HHSC CESC BRCA

No. of cases 299 168 549
Subtype

HPV- 228 (76.8)
HPV+ 50 (16.7)
Adeno Carcinoma 23 (13.7)
Squamous carcinoma 131 (78)
Basal 89 (10.7)
HER2 33 (6)
LumA 253 (46.1)
LumB 98 (17.9)
Normal 17(3.1)
HA 21 (7) 14 (8.3) 59 (10.7)

Age (mean +-SOf 59.34 +- 10.64 48.89+-14.28 56.71 +- 12.13
Sex M/F 231/68 0/168 4/545
Stage

I 8(2.7) 92 (16.8)
II 10 (6) 280 (51)
III 36 (12.7) 160 (29.1)
IV 184(61.5) 8 (1.5)
X 6 (1.1)
HA 51 (17.1) 168 (100) 3 (0.5)

TNM
T1/T2/T3/T4/TX/TIS/NA 22/60/57/113/34/0/13 56/48/16/5/11/1/31 149/301/84/14/1/0/0
N0/N1/N2/H3/NX/NA 76/42/122/2/43/14 54/36/0/0/47/31 220/192/78/52/7/0
M0/M1/MX/NA 129/0/45/125 53/8/75/32 453/9/87/0

Ethnicity
Hispanic or latino 13 (43) 10 (6) 25 (4.6)
Hot hispanic or latino 265 (88.6) 78 (46.4) 427 (77.8)
NA 21 (7) 80 (47.6) 97 (17.7)

Race
American Indian or Alaska native

2 (0.7) 1 (0.6) 1 (0.2)
Asian 6 (2) 5 (3) 10 (1.8)
Black, or African American 28 (9.4) 17 (10.1) 98 (17.9)
White 256 (85.6) 123 (732) 398 (72.5)
HA 7 (2.3) 22 (13 1) 42 (7.7)

Dose (Gy) (median –IQR) 62 (60 - 66) 40 (27 - 45) 60 (50 – 60.4)
Treatment days (median-IQR) 45 (41 – 52) 31.5 (18.75 - 42.25) 43 ( 32 - 47)
Overall survival
(Months) (median-IQR)

22.59 (13.69 - 41.72) 26.01 (16.17 - 48.67) 32.48 (18.6 – 63.3)

Disease free survival Months (median -IQR) 22.42 (12.92 - 41.85) 26.79 (16.83 - 53.59) 31.3 (18.21 - 59.67)
October 2021 | Volum
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Specific tumor subtypes are identified in a clinical setting, as
those tumor subtypes that are informative about cancer
pathophysiology and are, in some cases, used for clinical
decision making. For example, targeted therapies based on
molecular targets such as BCR-ABL inhibitors in leukemia
(16), BRAF and MEK inhibitors in melanoma (17, 18) and
therapies targeting epidermal growth factor receptor (EGFR) in
Frontiers in Oncology | www.frontiersin.org 4
lung cancer and head-and-neck cancer patients (19) have
significantly impacted the cancer treatment landscape.
Therefore, we first examined whether these known clinical
tumor subtypes influenced the survival of patients who
underwent radiotherapy. Figure 1C shows the survival curves
of each tumor type per cancer. In our analysis, only a statistically
significant difference between HPV- and HPV+ HNSC patients
A B

C

FIGURE 1 | Classification and association of gene set expression signatures with patient survival times and tumor subtypes. (A) The computational method to classify
tumor samples into three expression subtypes: upregulated, neutral and downregulated. These subtypes were than associated with patient OS. (B) Clinical associations
of gene set expression signatures with patient OS. Color indicates correlation direction and size the level of p-value (log-rank test). Grey dots were not significant and had
p-value lower than 0.5. Blanc spots were not significant for association with OS and had a p-value higher than 0.5. (C) Kaplan-Meier plots for molecular subtypes of
HNSC, CESC and BRCA associated with patient overall survival times.
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could be observed. HPV+ cancer patients who underwent
radiotherapy displayed a better survival than HPV- negative
cancer patients, which was already demonstrated in recent
research (20, 21). There was no significant survival difference
between adeno- or squamous-carcinoma CESC patients, which is
not surprising considering the small number of patients with
squamous cell carcinoma. The absence of a difference between
the molecular BRCA cancer subtypes may be explained by the
variety of specific adjuvant treatment strategies that are delivered
ranging from anti-hormonal therapy and anti-HER2-antibodies
to (dose-dense) chemotherapy.

Radiobiological Category
The radiobiological category incorporated six gene sets, namely:
Hypoxia, G2M Checkpoint, Reactive Oxygen Species (ROS), UV
Response Down, UV Response Up and DNA Repair. We
clustered these gene sets because each of them has a direct link
with radioresistance. Already since the 1950s, it was known that
hypoxic cancer cells were more resistant to ionizing radiation.
Measured by polarographic oxygen electrode, the oxygenation
status in CESC, HNSC and soft tissue sarcomas has been proven
to be an adverse prognostic factor for radiotherapy (22, 23).
These measurements were performed in tumors that were
treated with primary radiotherapy. According to our analysis,
in a post-operative setting, upregulation of the hypoxia gene set
had a negative association with OS for HNSC (Figure 2A, p =
0.014) and a negative (non-significant) trend for CESC
(Figure 2B, p = 0.078) patients, but not for BRCA patients
(Figure 2C, p = 0.64). Surprisingly, was there an association for
the HNSC and CESC patients and not for the BRCA patients,
since all three patients groups were irradiated postoperatively to
eliminate lingering cancer cells, which evidently are not
subjected to hypoxic conditions.

In general, cells are the most sensitive to radiotherapy in the
G2 or M phase of the cell cycle (24–27). Successful research has
been performed by combining inhibitors of the G2M checkpoint
arrest with radiotherapy (28–32). Only for HNSC patients, the
upregulation and downregulation of the G2M gene set was
associated with better survival (Figure 2D, p=0.00042). HNSC
patients with an upregulated G2M gene had a survival benefit for
the first two years; afterwards the survival curve converged with
the curve of the reference (neutral) patient group (Figure 2D).

ROS causes approximately two-thirds of radiation-induced
DNA damage, so cancer cells’ capability to detoxify ROS has an
impact on their radiosensitivity (22, 33). Research has shown
that increased expression or activity of antioxidant enzymes was
correlated with poor radioresponse (34–36). Upregulation of the
ROS gene set (genes that are upregulated by ROS, meaning genes
activated by oxidative stress or responsible for antioxidant
activity) was associated with better OS in CESC patients
(Figure 2E, p = 0.0056), while upregulation had a negative
association with OS for BRCA patients (Figure 2F, p = 0.037).

The three last gene sets were related to DNA damage and in
what way cancer cells can respond. DNA is the primary target of
radiation and its damages are the prime source of the biological
effects of radiation (24, 37, 38). UV response (down and up)
involved the downregulated or upregulated genes after cells were
Frontiers in Oncology | www.frontiersin.org 5
radiated with UV radiation. The DNA repair gene set
incorporates the genes involved in DNA repair. The
upregulation of the UV Response Down gene set was
associated with worse survival in CESC (Figure 2G, p= 0.001).
For HNSC patients, the upregulation of the UV Response Up
gene set was associated with worse OS (Figure 2H, p =0.0039)
Neither upregulation nor downregulation of the DNA Repair
gene set was associated with OS in any of the three cancer types.

To summarize the generated data per gene set, we calculated
the cox proportional hazard ratios for every gene set (Figure 2I).
The hazard ratio describes the probability of death of a patient,
while the KM curves estimate the survival function. For the KM,
a log rank test is used to test the hypothesis that different
populations’ survival curves do not differ. The upregulation of
the hypoxia gene set in HNSC was associated with an increased
risk of death (Figure 2I, HR: 1.77). Both upregulation and
downregulation of the G2M gene set were associated with a
reduced risk of death in HNSC patients (Figure 2I, HR-up: 0.58;
HR-down: 0.24). The upregulation of the ROS gene set was
associated with a higher risk of death in BRCA (HR: 1.87) but
displayed a reduced risk of death in CESC patients (HR: 0.41)
(Figure 2I). CESC patients with an upregulation of the UV
Response Down gene set were associated with three times higher
risk of death (Figure 2I, HR: 3.06) and HNSC patients with an
upregulation of the UV Response Up gene set were associated
with a higher risk of death (HR: 1.80) (Figure 2I). In line with the
KM curves, neither upregulation nor downregulation of the
DNA repair gene set were associated with any hazard ratio.

Metabolism Category
The metabolism category exist of seven gene sets: Glycolysis,
Oxidative Phosphorylation (OXPHOS), Fatty Acid Metabolism,
Cholesterol Homeostasis, Heme Metabolism, Xenobiotic
Metabolism and Bile Acid Metabolism. Metabolic reprogramming
of cancer cells is considered one of the hallmarks of cancer (39, 40).
Increasing evidence suggests that metabolic reprogramming in
cancer is one of the major factors contributing to radioresistance
(41–43).

Alterations in the glycolytic metabolism in cancer influences
radioresponses and extensive research has been performed to
develop molecules or inhibitors of several glycolytic targets (44,
45). In our analysis, the upregulation of the Glycolysis gene set
was associated with a worse OS in HNSC (Figure 3A;
p =0.00023) and CESC (Figure 3B; p=0.015), while no
association was found for BRCA patients (Figure 3C; p = 0.47).

Although rewiring energy metabolism in cancer is mostly
associated with a switch from OXPHOS to glycolysis (46),
research demonstrates that cancer cells can use a wide range of
energetic profiles and OXPHOS represents a major source of
energy production (47). Recent evidence links the upregulation
of OXPHOS or metabolic plasticity to increased radioresistance
in oesophageal adenocarcinoma, breast, pancreatic and head and
neck cancer (48–51). There appeared to be non-significant trend
(in the first months) of better OS in HNSC when OXPHOS was
downregulated (Figure 3D; p = 0.093), while in CESC there
appeared to be a non-significant trend of better OS when
OXPHOS was upregulated (Figure 3E ; p =0.066) .
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FIGURE 2 | Associations of gene sets of the Radiobiological category with patient overall survival times. Kaplan-Meier plots for the Hypoxia gene set of (A) HNSC,
(B) CESC and (C) BRCA patients associated with OS. (D) Kaplan-Meier plot for the G2M Checkpoint gene set of HNSC patients associated with OS. Kaplan-Meier
plots for the ROS gene set for (E) CESC and (F) BRCA patients associated with OS. (G) Kaplan-Meier plot for the UV Response Down gene set for CESC patients
associated with OS. (H) Kaplan-Meier plot for the UV Response Up gene set for HNSC patients associated with OS. (I) Forest plot showing the results from CoxPH
model fits for OS of all the Radiobiological category gene sets. Results for the HNSC patients are in blue, brown for the CSC patients and black for the BRCA
patients. Upregulated gene sets are depicted with a □ symbol [closed ■ means these results are significant (p>0.05)]. Downregulated gene sets are depicted with a
○ symbol [closed ● means these results are significant (p>0.05)].
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FIGURE 3 | Associations of gene sets of the Metabolism category with patient overall survival times. Kaplan-Meier plots for the Glycolysis gene set of (A) HNSC,
(B) CESC and (C) BRCA patients associated with OS. Kaplan-Meier plots for the Oxidative Phosphorylation gene set of (D) HNSC patients, (E) CESC patients and
(F) BRCA patients associated with OS. (G) Kaplan-Meier plot for the Fatty Acid gene set for CESC associated with OS. Kaplan-Meier plots for the Cholesterol gene
set for (H) CESC patients and (I) BRCA patients associated with OS. (J) Forest plot showing the results from CoxPH model fits for OS of all the Metabolism category
gene sets. Results for the HNSC patients are in blue, brown for the CSC patients and black for the BRCA patients. Upregulated gene sets are depicted with a □
symbol [closed ■ means these results are significant (p>0.05)]. Downregulated gene sets are depicted with a ○ symbol [closed ● means these results are
significant (p>0.05)].
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Downregulation of OXPHOS in BRCA patients was associated
with worse OS (Figure 3F; p =0.024). Many cancers show an
upregulated lipogenesis (52) and recent research linked this with
enhanced radioresistance in prostate cancer and breast cancer
cells (53–56). Nonetheless, no significant association was found
for the Fatty Acid Metabolism gene set in any of the cancer types,
however upregulation appeared to be associated with better OS
in CESC patients (Figure 3G).

Cholesterol is vital for the survival and growth of mammalian
cells. It is a membrane constituent and a precursor to bile acids
and steroid hormones, which can initiate and promote colon,
breast and prostate cancers (57). Targeting cholesterol
metabolism with statins in clinical studies for cancer patients
suggested an added benefit for patient survival across various
cancer types (58–63). In combination with radiation, statins can
improve clinical outcomes via their radiosensitizing properties.
However, the available clinical data is conflicting (64, 65). Here,
upregulation of the Cholesterol Homeostasis gene set was
associated with worse OS for CESC patients (Figure 3H; p=
0.012). For BRCA patients, no association was found (Figure 3H;
p = 0.52)

The critical role of heme in mitochondrial respiration and
ADP/ATP exchange presumably explains how heme plays a
pivotal role in fueling tumor cells’ proliferation. However, only
a small amount of research has been performed regarding the
role of heme metabolism and radioresistance. It has been proven
that expression of heme oygenase is linked with response to
radiotherapy in nasopharyngeal carcinomas (66). In solid
tumors, the extracellular and intracellular distribution of drugs
exhibits a high degree of variability, is largely controlled by Drug
and xenobiotic metabolizing enzymes (DXME) and influx and
efflux systems that transport drugs into and out from cells.
Expression of DXME within tumor cells is known to play a
role in tumor cell survival and in tumor-specific absorption,
distribution, metabolism, and excretion (ADME) of drugs (67).
Cancer cell drug resistance or sensitivity is critically impacted by
expression of DMXE within tumors. Understanding which
specific DXME contributes to response to particular drugs will
lead to better precision medicine (68, 69). However, no research
has been done in combination with radiotherapy. Bile acids are
physiological detergent molecules synthesized from cholesterol
exclusively in the liver (70–72). Bile acids itself have been
implicated in the development of hepatocellular, bile duct and
colon cancer (73–75). Research has mainly been performed to
develop novel therapeutic approaches to treat cholestasis and
inflammation-related liver diseases (72, 76). Upregulation or
downregulation of the Heme Metabolism, Xenobiotic and Bile
Acid Metabolism gene sets had no significant difference in
survival (Data not shown).

Hazard ratio’s are again in line with the Kaplan-Meier curves.
The risk of death for HNSC (HR: 2.13) and CESC (HR: 2.0)
patients with an upregulated Glycolysis gene set was enhanced
(Figure 3J). Downregulation of the OXPHOS gene set was
associated with a lower risk of death in HNSC patients
(Figure 3J; HR: 0.39). In contrast, this was associated with a
higher risk of death in BRCA patients (Figure 3J; HR: 3.06).
Frontiers in Oncology | www.frontiersin.org 8
For the Fatty acid gene set, no associations were found
(Figure 3J). In CESC patients, the upregulation of the
Cholesterol Homeostassis gene was associated with a higher
risk of death (Figure 3J, HR: 2.04). Lastly, upregulation or
downregulation of the Heme Metabolism, Xenobiotic and Bile
Acid Metabolism gene sets had no significant difference in
survival or risk (Figure 3J).

Proliferation Category
The proliferation category incorporates gene sets that are
involved in the cell cycle progression, nutrient signals
necessary for proliferation and proper function of cells. The
proliferation category contains six gene sets: E2F Targets, Mitotic
Spindle, MTORC1 Signaling, Myc Targets V1, Myc Targets V2
and P53. We expected that tumors with an upregulated gene set
from the proliferation category would exhibit a more aggressive
phenotype with a worse prognosis.

E2Fs have emerged as major transcriptional regulators of cell
cycle-dependent gene expression. E2F activity, as defined by
expression of E2F target genes, is high in virtually all cancers,
often owing to inactivation of its main binding partner and key
regulator, RB (encoded by RB1), overexpression of cyclin-
dependent kinases (CDKs) or inactivation of CDK inhibitors
(77–79). The E2F family controls the transcription of cellular
genes that are responsible for cell division (80). The expression
pattern of E2F activators is abnormal in multiple human
malignancies, such as ovarian cancer (81), breast cancer (82),
bladder cancer (83), prostate cancer (84), lung adenocarcinoma
(85) and colon cancer (86, 87). In conclusion, the E2Fs are a
complex family of transcriptional regulators whose precise
expression and activity are critical to protect cells from
abnormal proliferation and cell cycle-generated genomic
errors. So far, the E2Fs family has not yet been investigated as
potential target for radiosensitization. Our analysis establish that
downregulation of the E2F Targets gene set was associated with
better OS in HNSC (Figure 4A; p =0.027). Although not
significantly, we visually saw a trend of better OS with the
upregulation of the E2F Targets gene of CESC patients
(Figure 4B; p = 0.17) and no association was found in BRCA
patients (Figure 4C; p=0.22).

The mitotic spindle is essential for cell division by mitosis, so
inhibition is an effective way to delay or stop exit from mitosis.
Anti-mitotic drugs like taxanes and vinca alkaloids were clinically
effective as anti-tumor compounds (88, 89) and a lot more are
under development (90). Some clinical trials have combined these
newer drugs with radiotherapy, but the focus is on combination
with chemotherapy (91). For both upregulation and
downregulation of the Mitotic Spindle gene set visually there
appeared to be a non-significant trend with better OS in HNSC
patients (Figure 4D, p = 0.14), while for CESC patients visually
there appeared a non-significant trend (in the first 60 months)
with worse OS for the upregulation(Figure 4E, p =0.24).
Downregulation of the Mitotic Spindle in BRCA was
significantly associated with worse OS (Figure 4F, p=0.0069).

MTORC1 is key driver of cancer drug resistance, since it
integrates a diverse set of environmental cues, from growth
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FIGURE 4 | Associations of gene sets of the Proliferation category with patient overall survival times. Kaplan-Meier plots for the E2F Targets gene set of (A) HNSC,
(B) CESC and (C) BRCA patients associated with OS. Kaplan-Meier plots for the Mitotic Spindle gene set of (D) HNSC patients, (E) CESC patients and (F) BRCA
patients associated with OS. (G) Kaplan-Meier plot for the MTORC1 gene set for HNSC associated with OS. (H) Kaplan-Meier plot for the MYC Targets V1 gene set
for CESC patients associated with OS. (I) Forest plot showing the results from CoxPH model fits for OS of all the Proliferation category gene sets. Results for the
HNSC patients are in blue, brown for the CSC patients and black for the BRCA patients. Upregulated gene sets are depicted with a □ symbol [closed ■ means
these results are significant (p>0.05)]. Downregulated gene sets are depicted with a ○ symbol [closed ● means these results are significant (p>0.05)].
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factor signals and nutritional status to direct metabolism and cell
growth (92–95). Upregulation of MTROC1 signaling is also
linked to enhanced radiotherapy resistance (96). Multiple
groups have also demonstrated that the PI3K/AKT/mTOR
pathway activation in response to radiotherapy is a principal
mechanism of radioresistance (97, 98). Our data showed that
upregulation of MTORC1 Signaling gene set was associated with
worse OS in HNSC patients (Figure 4G, p = 0.014)

MYC is a master transcriptional regulator that controls
almost all cellular processes. There is a wealth of data
indicating that the deregulation of MYC activity occurs in
many cancers and contributes to disease progression, metastatic
potential, and therapeutic resistance (99, 100). Overexpressed c-Myc
has also been found to promote radioresistance (101, 102). Only
downregulation of the MYC Targets V1, and not MYC Targets V2,
was associated with better OS in CESC patients (Figure 4H, p =
0.021) MYC Targets V2 was not associated with OS in any of the
three cancers (data not shown).

The transcription factor P53 is known as a key molecule for
determining cellular responses to ionizing radiation by initiating
a spectrum of cell-type specific responses, including cell cycle
arrest, senescence, apoptosis and DNA damage repair (103, 104).
It has been shown that p53 determines tissue-specific
radiosensitivity and mutations of p53 can influence this
radiosensitivity (105). Surprisingly, neither upregulation nor
downregulation was associated with OS in any of the three
cancers (data not shown).

Figure 4I shows the calculated HRs. In HNSC patients, the
downregulation of the E2F Targets gene set was associated with a
lowered risk of death by more than two-fold (Figure 4I, HR:
0.41). No association was found for CESC or BRCA patients.
Downregulation of the Mitotic Spindle in BRCA patients showed
a two-fold higher risk of death (Figure 4I, HR: 2.3). The
upregulation of the MTORC1 Signaling gene set was only
associated with a higher risk of death in HNSC patients
(Figure 4I, HR: 1.63). MYC Targets V1 was associated with a
lower risk of death in CESC patients (Figure 4I, HR: 0.32), while
MYC Targets V2 was not associated with risk of death in any of
the three cancers (Figure 4I). Upregulation or downregulation of
the P53 gene set was not associated with death risk in any of the
three cancers (Figure 4I).

Other Expression Sets With Clinical
Relevance
The remaining categories of gene sets are the Development,
Signaling, Cellular component and Pathway. Since only a small
amount gene sets from the remaining categories have an
association with OS in one of the three cancer types, we will
not discuss all of them in detail but will only highlight the gene
sets displaying an association with OS.

Most of the associations between the remaining gene sets and
OS were found in CESC patients (Figures 5A–H). From the
Development category we showed that upregulation of the
Epithelial Mesenchymal Transition gene set (Figure 5A, p =
0.016) and upregulation of the Pancreas Beta Cell gene set
(Figure 5B, p=0.0025) were associated with worse OS. The
Frontiers in Oncology | www.frontiersin.org 10
epithelial-mesenchymal transition (EMT) is an important step
leading to invasion and migration of various cancer cells (106).
Recently, more and more evidence has shown that EMT functions
as an essential process involved in radioresistance (107–109). The
Pancreas Beta Cell gene set incorporates genes that were
specifically upregulated in pancreatic beta cells. In the signaling
category, the upregulation of the Androgen Response (Figure 5C,
p = 0.0071), Estrogen Response Early (Figure 5D, p = 0.008),
KRAS Signaling Up (Figure 5E, p = 0.032) and TGF-b Signaling
(Figure 5F, p = 0.00024) were associated with worse OS.
Androgens are expressed at different levels in men and women,
and while they are important for proper development, they can
also drive tumor growth. The role of the androgen receptor in
prostate cancer has been extensively studied, but recent data
suggest that androgen receptor signaling may also be important
in breast cancer, glioblastoma, and additional tumor types (110,
111). One study found that significant subsets of gynecologic
cancers express androgen receptors, which may have clinical
relevance. Radiotherapy has been shown to induce Androgen
receptor expression in prostate cancer cells, and androgen
deprivation therapy sensitizes cancer cells to radiotherapy (112).
Numerous studies have established a proof of concept that
abnormal expression and function of estrogen receptors (ER)
are crucial processes in initiation and development of hormone-
related cancers and affect the efficacy of anti-cancer therapy (113).
Research is ongoing to resolve the complex situation that impedes
the therapeutic efficiency of endocrine therapy and radiotherapy.
The KRAS Signaling Up gene set incorporated the genes that were
upregulated by KRAS activation. KRAS mutations have been
linked to cellular and clinical radioresistance (114–119).
However, KRAS mutant tumors comprise a heterogeneous
group of cancers and reported mechanisms of cellular
radioresistance appear highly variable, consistent with the
notion of intertumoral heterogeneity (116, 120). In cervical
cancer, the presence of KRAS mutations was an independent
predictor of disease recurrence (121). Members of the TGF-b
family are key regulators of embryonic development, tissue
homeostasis, and regeneration, and their malfunction has been
implicated in cancer, fibrosis, immune diseases and many other
pathologies (122). TGF-b has been reported to be an endogenous,
radiation-inducible radioresistance factor in some cancer cells
while not affecting the radio-sensitivity in others. In addition,
TGF-b also regulates the transcription of various target genes
responsible for the pathological changes of late radiation damage
in the non-tumour-bearing tissues of previously irradiated
patients (123, 124). Only one gene set from the cellular
component category is associated with OS. Upregulation of the
Apical Junction gene set is associated with worse OS in CESC
patients (Figure 5G, p = 0.041). The apical junction complex is a
cell-cell adhesion system present at the upper portion of the
lateral membrane of epithelial cells integrated by the tight
junction and the adherens junction. Research is just starting to
understand the importance and therapeutic potential of apical
junction complex proteins and their role in the early and late
stages of cancer (125). Also in the pathway category is only one
gene set associated with OS for CESC patients. Upregulation of
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FIGURE 5 | Associations of gene sets of the Development, Signaling, Cellular Component and Pathway categories with patient overall survival times. Kaplan-Meier
plots of CESC patients associated with OS for (A) the Epithelial Mesenchymal Transition gene set, (B) the Pancreas Beta Cell gene set, (C) the Androgen Response
gene set, (D) the Estrogen Response Early gene set, (E) KRAS Signaling Up gene set, (F) TGF-b Signaling gene set, (G) Apical Junction gene set and (H) Protein
Secretion gene set. (I) Kaplan-Meier plot for the Epithelial Mensenchymal Transition gene set of HNSC patients associated with OS. (J) Kaplan-Meier plot for the
Adipogenesis gene set of BRCA patients associated with OS.
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the Protein secretion gene set is correlated with worse OS
(Figure 5H, p = 0.00074). The dysfunction of the secretory
pathway is the cause of a variety of systemic and developmental
diseases, like cancer, diabetes, Parkinson’s disease, and congenital
neurodegenerative disorders (126–129).

Only the upregulation of the EMT gene set was associated
with worse OS in HNSC patients (Figure 5I, p=0.042). For
BRCA cancer, the upregulation and downregulation of the
Adipogenesis gene set (from the Development category) was
associated with worse OS (Figure 5J, p = 0.018). It has already
been proven that abnormal adipocyte metabolism is linked with
radioresistance, mainly in BRCA (130, 131).
Frontiers in Oncology | www.frontiersin.org 12
Immune and Stromal Scores
In our analysis, none of the immune gene sets were associated
with better prognosis or survival. This was very unexpected,
especially since there is a known relationship between immune
cells and RT outcome (132, 133). Therefore, we opted to
investigate this further and correlated the infiltration of
immune cells (or other cells) with survival after radiotherapy.
Using the ESTIMATE algorithm (134), immune infiltration
scores were calculated and patients were divided into high or
low immune scores with the median as cut-off. Next, we
compared the survival of the two groups (Figures 6A, C, E). A
high immune infiltration was significantly associated with better
A B

C D

E F

FIGURE 6 | Associations of Stromal and Immune score with patient overall survival times. Kaplan-Meier plots of OS of HNSC patients with (A) Stromal Score and
(B) Immune Score. Kaplan-Meier plots of OS of CESC patients with (C) Stromal Score and (D) Immune Score. Kaplan-Meier plots of OS of BRCA patients with (E)
Stromal Score and (F) Immune Score.
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OS in HNSC patients (Figure 6A), however this was not the case
for CESC (Figure 6C) and BRCA (Figure 6E). Next to immune
score, the stromal score was calculated using the ESTIMATE
algorithm. This stromal score was developed to capture the
presence of stromal cells in the tumor tissue. Again, no
significant association of stromal score and OS was found for
any of the three cancer types (Figures 6B, D, F).
DISCUSSION

More than 50% of all cancer patients are treated with
radiotherapy at some point during their treatment. However,
there is a lot of heterogeneity in the clinical responses to
radiotherapy between different cancer types and even within
the same cancer type. Resistance to radiotherapy is polymodal
and associated with several biological alterations both within the
tumor and the surrounding microenvironment. Radiosensitizers
are needed to improve treatment response to radiation. Although
the research into radiosensitizers already started 60 years ago,
only a few radiosensitizers were implemented in the clinic. A
wide range of obstacles, such as cancer stem cells, tumor
heterogeneity, angiogenesis and vasculogenesis, metabolic
alterations, drug-related adverse events, … poses a significant
challenge in increasing the efficacy of RT by radiosensitizers (7,
135, 136). In this study, we attempted to unravel potential
radiosensitization targets in a more systematic and clinically
relevant way. Based on HNSC, CESC and BRCA patient cohorts
that underwent radiotherapy and their parallel mRNA data, we
investigated 50 hallmark gene sets that describe essential
processes and pathways and their impact on patient survival.

We anticipated four of the eight gene set categories to be
highly predictive with regard to OS in patients who underwent
RT, namely the Radiobiological, Metabolism, Proliferation and
Immune category. The six gene sets from the Radiobiological
category were chosen to represent known biological processes
that influence cancer cells’ radiosensitivity. Indeed, we observed
that Hypoxia, G2M checkpoint and ROS gene sets were
associated with OS in at least one of the three cancer types.
Surprisingly, the other three gene sets related to cancer cells
response to RT were overall not associated with OS. In recent
years, researchers discovered that the metabolism of the cells also
influences radiosensitivity and radioresistance. We observed that
both Glycolysis and OXPHOS were associated with OS for one of
the three cancer types. Extensive research has already been
performed in developing molecules or inhibitors for several
targets of glycolysis or OXPHOS and several clinical trials
underway (40, 47). An interesting finding was the upregulation
of the Cholesterol gene set associated with OS in CESC patients.
The Cholesterol pathway has been successfully targeted with
statins, however combinations with radiotherapy resulted in
conflicting results (64), which should be further unravelled.

We expected that the gene sets from the Proliferation category
would also be associated with OS in RT patients. These gene
sets are involved in the cell cycle progression, nutrient
signals necessary for proliferation, and cells’ proper function.
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We observed that downregulation of the E2F Targets was
associated with better OS in HNSC. E2Fs are a complex family
of transcriptional regulators and have not been investigated as a
potential target for radiosensitization. Downregulation of the
Mitotic Spindle gene set was associated with worse OS in BRCA.
Several drugs are under development that target the mitotic
spindle pathway. However, few have been tested in combination
with radiotherapy (91). MTORC1 is a master regulator of cell
growth and proliferation. Upregulation of the MTORC1
Signaling gene set was associated with worse OS in HNSC
patients. Upregulation of the MTORC1 pathway has already
been linked to enhanced RT resistance (96). MYC is a known
oncogene and overexpressed c-MYC has been shown to promote
radioresistance (101, 102). We observed that downregulation of
the MYC Targets V1 was associated with better OS in CESC
patients. Surprisingly, the P53 pathway was not correlated with
OS in any of the three cancer types. It would be interesting to
correlate outcomes of different gene sets with the expression of
ki67 on the biopsies of the different tumors; unfortunately, this
data is not available in the used databases. Ki67 is mainly
expressed in actively proliferating cells and is a proliferation-
related nuclear antigen (137). Ki67 has been widely investigated
as a potential prognostic maker of proliferation in retrospective
studies of malignant diseases (138–141).

Several other gene sets from the remaining categories
(Development, Signaling, Cellular Component and Pathway)
were also associated with OS. In CESC patients, the EMT, the
Pancreas Beta cell, Androgen Response, Estrogen Response
Early, KRAS Signaling UP, TGF-b Signaling, Apical Junction
and the Protein secretion gene set was associated with OS. It is
worth noting that the association of Androgen Response and
Estrogen Response Early with OS in CESC patients was to be
expected. Already in the 1970s, researchers linked sex hormones
to genital cancer (142, 143). Several epidemiological studies have
shown that multiple pregnancies and recent oral contraceptive
use are potential cofactors of CESC (144). In addition, it was
demonstrated that circulating levels of sex steroid hormone
testosterone and possibly estradiol were positively involved in
CESC (143, 145–147). Since androgens and estrogens are
biochemically closely related, it is difficult to obtain solid
evidence on whether they are separately or cooperatively
involved in cervical carcinogenesis (145). For HNSC patients,
only the upregulation of EMT gene set was associated with worse
OS. For BRCA the upregulation and downregulation of the
Adipogenesis gene set were associated with worse OS.

The most surprising results from this study occurred within the
Immune category, where none of the examined gene sets were
associated with better survival after RT. Merely a high immune
score, a score for infiltrating immune cells, within HNSC correlated
with better survival than a low immune score. The success of cancer
immunotherapy has demonstrated that immune cells can be
harnessed to eliminate tumor cells (148). It is becoming critical to
understand the immune infiltration in the TME in the
immunotherapy era to boost anti-tumor immunity further (131,
135). Furthermore, it has been shown that immune contexture (the
density, functional orientation and location of immune cells) of the
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tumors is import for prediction of clinical outcome (149–152).
Studies reported that HPV-related HNSC exhibited an increased
immune infiltration in general compared with HPV-unrelated
tumors (153). In CESC patients, tumor infiltration proved to be
a superior prognostic factor compared to stromal lesions (154–156).
Historically, BRCA has been regarded as an immunologically “cold”
phenotype, however recent studies suggest potential in
immunotherapeutic approaches to improve outcomes of specific
subsets of BRCA patients (148, 157). RT has long been hypothesized
to have actions complementary to those of immune checkpoint
blockade, and a growing body of evidence indicates that cancer
immunotherapymay also have radiosensitizing effects, which would
provide unique benefits for loco-regional treatments (132). As a side
note, we have to mention that no patient within our data set
received CLTA4 or PD-1/PD-L1 inhibitors. The recent clinical
success of these immunotherapies in different cancers suggest that
these results should be interpreted with caution (158). It is possible
that treating patients with immunotherapeutics could change the
immune TME and lead to a better correlation with outcome.
Nonetheless, in our study, we failed to show a survival benefit for
any immune-related pathways but did demonstrate a better survival
with a high immune score in HNSC.

Numerous research groups have used genomic-based
approaches for the prediction of tumor response after RT. Most
of these groups utilized high-throughput RNA expression
technologies to develop gene expression signatures prognostic of
low local recurrence risk or predictive of response to radiation
treatment in the adjuvant setting for patients with early-stage
disease. The initial studies where a correlation was described
between gene expression and radiosensitivity were conducted in
vitro on the NCI-60 panel of cancer cell lines. The best known are
the studies where signatures of radiation sensitivity were identified
using survival after 2Gy (SF2) or 8Gy (SF8) as a metric (159, 160).
The group using the SF2 later developed the radiosensitivity index
(RSI), which has been assessed in the clinic in various disease types,
with varying levels of utility identified (161–165). Similar
approaches were applied to identify radiosensitivity signatures
and test them in Omnibus datasets or TCGA to create signatures
for breast, head and neck, prostate, lung and glioma (166, 167).

In the latter cancer type, all patients receive radiotherapy as part
of their treatment plan. As a consequence, the impact of
radiotherapy on gene signatures has been extensively studied.
Transcriptomic, methylation, mutational and mesenchymal
signatures following radiotherapy all have been reported to
correlate with patient’s prognosis in glioblastoma (GBM) (168–
172). For example, gene signatures focusing on mesenchymal traits,
which can be induced by radiation, distinctively correlate with
worse prognosis (173). Within this present study, upregulation of
the Epithelia Mesenchymal Transition gene set was only correlated
with a worse prognosis in CESC patients, highlighting the
importance of distinct approaches for each tumor type, and even
tumor subtype. Additionally, GSEA was performed in an Omnibus
GBM cohort and several cancer related pathways, such as p53
signaling pathway were enriched in the group with low OS (172).

The best-known genetic signature to predict radiation
sensitivity across several different types of cancer is the panel
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of Torres-Roca et al. (174), which is based on the RSI. His team
developed a calculation, called GARD (genomic-adjusted
radiation dose), that uses the ten-gene panel to work out the
biological dose based on an individual’s radiation sensitivity.
Other groups have used genomic studies to compare patient-
matched pre-RT and post-RT tumors to obtain insight into
clonal evolution in response to treatment and understand
radioresistance mechanisms (175). For example, whole-exome
sequencing before and after chemoradiotherapy showed that co-
occurring KRAS/TP53 mutations in rectal cancers conferred a
poor response, confirming the radioresistance associated with
this genotype (116, 176, 177). However, none of these signatures
have been implemented into standard clinical settings and only
give limited inside into the biological processes that
underline radioresistance.

Our study contained several limitations. First, our research
was based on gene expression of a single time-point. Gene
expression analyses provide only a snapshot in time of the
overall growth and treatment of the cancer. Keeping this in
mind, the association between a particular gene set and survival
can serve as a prognostic biomarker, even if this association
neglects the influence of radiotherapy. A second limitation
consists of a potential bias from variation in follow-up
information in the TCGA database due to the retrospective
nature of the TCGA cohort. Furthermore, in large public
databases, such as TCGA, many sequenced disease states and
settings do not include patients who received RT or offer
adequate details concerning delivered RT schedules. Thirdly,
is it possible that some gene expression profiles such as the
metabolism or proliferation category not only correlate with
radioresponse but also with the aggressiveness of the tumor.
For example , i t i s wel l-establ ished that metabol ic
reprogramming is linked with accelerated growth and
proliferation of cancer cells (39, 178). Additionally, tumor
aggressiveness between the three cancer types varies
immensely. BRCA cancer patients, on average, display a more
positive prognosis than HNSC or CESC patients. Better survival
leads to fewer statistical events, which can influence the
correlation with the investigated gene sets. Fourthly, all data
is derived from patients receiving radiotherapy in an adjuvant
setting post-surgery, potentially influencing the reported
prognostic associations. Ideally, inclusion of data on
neoadjuvant radiotherapy would be of great interest to
complete this study. Sadly, many genomics studies lack
radiation therapy treatment and outcome data, especially
from neoadjuvant treatment, seriously limiting the data’s
clinical utility (179). Lastly, we studied all genes separately. It
can be expected that interactions between the different gene sets
may play a role as well. We are currently developing a dedicated
random subspace decision forest analyses. This supervised
learning algorithm would be able to select individual genes
and specific interactions and thereby improve the prediction
accuracy (180). Our study found that none of the 50 hallmark
gene sets were associated with OS for all three cancer types
simultaneously. We believe that part of this heterogeneity can
be explained by the above-described limitations.
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However, our study’s heterogeneity across the three tumor
types also highlights the necessity to invest in more personalized
treatment. The old paradigm of one-size-fits-all cannot apply
across and intra-cancer types in this era. The need for a diverse
array of diagnostic and therapeutic options employed in
oncology reflects cancer heterogeneity in general. To optimize
personalized precision medicine, it is essential to understand the
complexity of the underlying interactions between biological
tissue and RT. On the one hand, clinical studies including RT
that pro-actively investigate different omics (molecular,
metabolic and imaging data) are needed to capture relevant
data. On the other hand, more advanced modelling techniques
become necessary to predict radiotherapy responses in order to
understand the underlying trends across populations. Coupling
the relevant data with novel modeling techniques such as
machine learning will enhance our capabilities to establish a
tailored precision treatment scheme per patient, where drug –
radiotherapy combinations are put central.

To conclude, we have set up a clinically relevant approach
using OS of HNSC, CESC and BRCA patients that underwent
radiotherapy to associate with upregulation or downregulation of
biological relevant hallmark gene sets. We established that 3 of
the eight gene set categories, namely the Radiobiological,
Metabolism and Proliferation, had predictive associations
between several gene sets and OS. Surprisingly, we did not
observe any associations between immune gene sets and OS in
these patients cohorts. Interesting to note was the high
heterogeneity across the three cancer types, which partly can
be explained by the limitations of this study. However, this
heterogeneity demonstrates that we need to opt for a tailored
precision treatment scheme based on omics data. We believe that
our study is the first step in this direction by using biologically
relevant gene sets instead of single genes. However, there is a
need for more databases or prospective studies that collect data
from patients undergoing RT in a neo-adjuvant setting and
capture RT outcome instead of survival. These databases or
studies should go hand in hand with more complex modelling
efforts to capture the complexity and interactions between the
tumor and RT. Although we realise that a lot of work is still
necessary, we believe this work can contribute to personalization
of cancer treatment with regards to RT.
MATERIALS AND METHODS

Gene Expression and Clinical Data
mRNA expression (RNA Seq V2 RSEM) and associated clinical
data were obtained from cBioPortal (181, 182) of all the HNSC
(523), CESC (297) and BRCA (1084) patients of the TCGA
PanCancer Atlas. The mRNA expression data were downloaded
in the form of z-score-transformed data. We extracted patients
who underwent radiotherapy using the R package “dplyr” and
“stringr” from the clinical data. In total 294 HNSC, 166 CESC
and 549 BRCA patients underwent radiotherapy. All patients
underwent surgery followed with adjuvant (chemo)radiotherapy.
Data on radiation scheme and dose were downloaded from the
PanCancer Atlas website (183).
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MsigDB Hallmark Collection
The molecular signature database (MsigDB) hallmark collection
exists out of 50 hallmark gene sets. Hallmark gene sets
summarize and represent specific, well-defined biological states
or processes and display coherent expression. These gene sets
were generated by a computational methodology based on
identifying gene set overlaps and retaining genes that display
coordinate expression. The hallmarks reduce noise and
redundancy and provide a better delineated biological space for
GSEA. Originally these 50 hallmark gene sets were divided into
eight process categories: Cellular Component, Development,
DNA damage, Immune, Metabolic, Pathway, Proliferation and
Signaling. These were reordered into: Radiobiological, Metabolic,
Proliferation, Development, Signaling, Cellular component,
Pathway and Immune (Supplementary Table 1).

Gene Set Expression Subtype
Classification
We used the algorithm developed by Peng et al. (13) to classify
individual tumors given the gene sets of the MsigDB Hallmark
collection (9). For a specific patient, the classification was based
on the deviation extent of the expression level of genes in a
hallmark gene set from the cohort’s average values relative to
other genes. GSE pre-ranked analysis was used to determine
whether the genes from a hallmark gene set were enriched at the
top or bottom of each sample’s z-ranked gene list. The GSEA
algorithm (14, 15) was used from the publically available
software (GSEA version 4.1.0). For a specific gene set, a tumor
sample was classified into one of three distinct groups at FDR >
0.25: “upregulated”, “downregulated,” or “neutral”.

Immune and Stromal Score
Stromal and immune scores were calculated with the ESTIMATE
(estimation of stromal and immune cells in malignant tumor
tissues using expression data) algorithm (134). ESTIMATE is an
algorithm that uses gene expression signatures to infer the
fraction of stromal and immune cells in the tumor samples.
The stromal and immune scores predict the level of infiltrating
stromal and immune cells in tumor tissue. We downloaded the
Stromal and immune scores from the ESTIMATE website (184)
of the HNSC, CESC and BRCA patients studied in our research.
According to stromal and immune score, all the samples were
divided into high and low groups separately.

Survival Analysis
We evaluated whether the different gene set expression subtypes
were associated with the patient’s overall survival time. Survival
distributions were visualized using Kaplan-Meier curves and
univariate Cox PH model plotted on a forest plot. The
significance of the difference between the survival curves was
assessed using a log-rank test. Significance for the Cox PH
regression was determined using Wald’s test. Groups with five
or fewer patients were excluded from the survival analysis.
Survival analysis was performed using the computer program
R (185) and the packages “survival”, “survminer”, “ggforestplot”,
“tidyverse” and “ggplot2”.
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125. González-Mariscal L, Miranda J, Gallego-Gutiérrez H, Cano-Cortina M,
Amaya E. Relationship Between Apical Junction Proteins, Gene Expression
and Cancer. Biochim Biophys Acta Biomembranes (2020) 1862:183278.
doi: 10.1016/j.bbamem.2020.183278

126. Feizi A, Gatto F, Uhlen M, Nielsen J. Human Protein Secretory Pathway Genes
are Expressed in a Tissue-Specific Pattern to Match Processing Demands of the
Secretome. NPJ Syst Biol Appl (2017) 3:22. doi: 10.1038/s41540-017-0021-4

127. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu
A, et al. Proteomics. Tissue-Based Map of the Human Proteome. Sci (New
York N.Y.) (2015) 347:1260419. doi: 10.1126/science.1260419

128. Pohlschröder M, Hartmann E, Hand NJ, Dilks K, Haddad A. Diversity and
Evolution of Protein Translocation. Annu Rev Microbiol (2005) 59:91–111.
doi: 10.1146/annurev.micro.59.030804.121353

129. Wang M, Kaufman RJ. Protein Misfolding in the Endoplasmic Reticulum as
a Conduit to Human Disease. Nature (2016) 529:326–35. doi: 10.1038/
nature17041

130. Bochet L, Meulle A, Imbert S, Salles B, Valet P, Muller C. Cancer-Associated
Adipocytes Promotes Breast Tumor Radioresistance. Biochem Biophys Res
Commun (2011) 411:102–6. doi: 10.1016/j.bbrc.2011.06.101

131. Zhang F, Liu S. Mechanistic Insights of Adipocyte Metabolism in Regulating
Breast Cancer Progression. Pharmacol Res (2020) 155:104741. doi: 10.1016/
j.phrs.2020.104741

132. Wang Y, Liu ZG, Yuan H, Deng W, Li J, Huang Y, et al. The Reciprocity
Between Radiotherapy and Cancer Immunotherapy. Clin Cancer Res an Off J
Am Assoc Cancer Res (2019) 25:1709–17. doi: 10.1158/1078-0432.CCR-18-2581

133. Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK.
Immunomodulation of the Tumor Microenvironment: Turn Foe Into
Friend. Front Immunol (2018) 9:2909. doi: 10.3389/fimmu.2018.02909
Frontiers in Oncology | www.frontiersin.org 19
134. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-
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