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Cancer is a devastating disease that takes the lives of millions of people globally every
year. Precision cancer therapy is based on a patient’s tumor histopathology, expression
analyses, and/or tumor RNA or DNA analysis. Only 2%–20% of patients with solid tumors
benefit from genomics-based precision oncology. Therefore, functional diagnostics and
patient-derived cancer models are needed for precision cancer therapy. In this review, we
will summarize the potential use of conditional cell reprogramming (CR) and robotic high-
throughput screening in precision cancer medicine. Briefly, the CR method includes the
co-culturing of irradiated Swiss-3T3-J2 mouse fibroblast cells alongside digested primary
non-pathogenic or pathogenic cells with the existence of Rho-associated serine–
threonine protein kinase inhibitor called Y-27632, creating an exterior culture
environment, allowing the cells to have the ability to gain partial properties of stem cells.
On the other hand, quantitative high-throughput screening (qHTS) assays screen
thousands of compounds that use cells in a short period of time. The combination of
both technologies has the potential to become a driving force for precision
cancer therapy.

Keywords: conditional reprogramming, robotic HTS, in vitro assay, cancer, precision medicine
INTRODUCTION

Cancer is considered the first or second cause of death in more than 100 countries around the world
in 2019 for people younger than 70 years (1). There are more than 10 million cancer deaths and
more than 19 million newly diagnosed cancer cases in 2020 (2). Clinical guidelines for treating
different diseases such as hypertension, diabetes, and cancer have been established by panels of
experts in health organizations such as the European Society for Medical Oncology (ESMO) and the
American Society of Clinical Oncology (ASCO) (3). The reasons why experts make these guidelines
are the large number and confusion in some of the medical studies toward what is the best
Abbreviations: CR, conditional reprogramming; qHTS, quantitative high-throughput screening; NSCLC, non-small cell lung
cancer; NSG mice, NOD scid gamma mouse; NCATS, National Center for Advancing Translational Sciences.
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treatment; some cancers are rare, which makes their treatment by
inexperienced physicians difficult and makes bias by physicians
unavoidable, which is intrinsic in medical practice. These
guidelines for cancer management should be backed up with
clinical trials. However, these are often lacking, and therefore
some cancer guidelines represent only a “pattern of practice,”
often that of large medical institutions with a large expertise and
experience in those cancers (3).

However, it has become increasingly clear over the past
decade that no two patients’ cancers are exactly the same and,
therefore, may have different responses to generic treatments
such as radiation and chemotherapy (4). This classical model for
cancer therapy is overly simplified; it results in expensive
treatments and ineffectiveness and causes patients to suffer
from unnecessary side effects (5).
GENOMIC MEDICINE FOR PRECISION
MEDICINE

The basic strategy in genomic medicine is to identify somatic
genetic changes such as quantitat ive chromosomal
abnormalities, amplifications, translocations, and point
mutation and match it with medications targeting these defects
for a patient’s advantages. Within certain conditions, a large
number of patients who have specific types of tumors carrying a
specific mutation have been treated with a single medication
successfully (6). The utilization of imatinib to treat patients with
chronic myeloid leukemia (CML) carrying the t(9;22)
translocation that produces the BCR-ABL fusion kinase was
the first example (7). Another example is using epidermal
growth factor receptor (EGFR) inhibitors successfully to treat
lung cancers that harbor mutant EGFR, also using BRAF
inhibitors to treat the melanomas carrying mutated BRAF (8–
11). Recently, a significant chance for an immune checkpoint
inhibitor was specified in Hodgkin’s lymphoma by genetic mode
(12, 13). For every patient who has lung cancer sheltering a
targetable mutation in ALk or EGFR, there are four who lack any
targetable mutation (14).

Although clinical trials did not evaluate the utilities, it still has
gained us an assessment tool for patients to target therapies
through genomic techniques. In May 2016, a release of interim
analysis from the molecular analysis for therapy choice (NCI-
MATCH) stated that there was good analytical achievement in
their genetic screening technique, while testing was done in 87%
of the 739 samples. Nonetheless, 9% of the patients of whom
their testing was accomplished had tumors that harbored a
mutation that may guide them to any of the 10 targeted
therapy arms, and a slight percentage around 2.5% has
managed to get in a treatment arm (6). The University of
Texas MD Anderson Cancer Center conducted a study where
2,000 tumors from 2,000 patients were investigated with
platforms containing 11, 46, or 50 genes. From these tumors,
789 (39%) had possibly targetable alterations; however, only 83
(4.2%) of the patients were included in a genotype-matched trial
(15). Unfortunately, the clinical effect was not reported. A recent
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report by the Dana-Farber Cancer Institute where they use
massively parallel sequencing assay including 282 genes for
3,727 patient tumors stated that 73% of these tumors contain
an “actionable or informative alteration” (16). There are
individual cases where clinical benefits appear to be clear, but
still no full evaluation of the clinical benefit is reported. Marquart
et al. evaluated 31 drugs with 38 Food and Drug Administration
(FDA)-approved indications between 2006 and 2018. In 2006,
the percentage of metastatic cancer patients who were evaluated
and found to have a positive clinical outcome from the genome-
targeted therapy was 0.70%. However, the percentage had risen
to 4.90% in 2018 (17). The author concluded that genome-driven
drugs had benefited only a small number of patients with
advanced cancer (fewer than 7%) even though an increased
number of patients became eligible (yet fewer than 16%) (17).
IN VITRO DRUG SENSITIVITY ASSAY FOR
PRECISION MEDICINE

During the course of treating cancer, initially, cancer cells may
respond to medications; however, after a period of time, tumor
cells change to become resistant as a result of mutation of cellular
genes (18). The genetic and molecular profiles of the pathological
tissues such as the cancer tissues need to be adopted and
analyzed prior to the interference with the new medications.
Nevertheless, in some rare cases, there are unsolved genetic
alterations that may be hard for medication to target (18).
Ideally, prior to the start of certain treatment, it is propitious
to carry out an in vitro drug sensitivity assay to investigate
whether they show an inhibitory effect on the primary cancer
cells from the cancer lesion itself (19).

With the acknowledgement of the limitations of existing
cancer models, numerous patient-derived models of cancer
(PDMCs) are in development. Recently, PDMCs like induced
pluripotent stem cells (iPSCs), conditionally reprogrammed cell
cultures (CR), patient-derived xenografts (PDXs), organoids,
spheroids, and others have been established (Table 1) (20).
And in any other prototypes or model system, every single
platform has its own pros and cons when it comes to their
usefulness and also their illustration of tumor structure,
microenvironment, stem-differentiation states, cellular
conformation, growth patterns, heterogeneity, and responses to
therapeutics; all of these advantages and disadvantages are
mostly dependent on the samples and specimens drawn from
the patient (20). These approaches are under assessment for
further use in the future in hope to understand the basic biology
that lays behind cancer and the benefits in translational cancer
research, specifically for target identification, drug screening, and
the discovery of biomarkers that are key for detecting cancer at
early stages (5).

Induced Pluripotent Stem Cells
iPSCs can be used to identify a link between drug responses and
genotype and to recognize biomarkers to guide patient selection
for clinical trial enrollment (21, 22). For instance, Cao et al.
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established iPSC-derived sensory neurons from patients with
inherited erythromelalgia (IEM); the reversal of hyperexcitability
in these cells using a selective sodium-channel blocker did
correlate with the specific mutations and the clinical response
in those patients (22).

Circulating Tumor Cells
Over the past few years, protocols for isolation and downstream
application of circulating tumor cells (CTCs) from cancer
patient’s blood have significantly improved. Preceding methods
needed immediate grafting of CTCs into immunocompromised
mice for propagation or had low success rates (23–25). Lately,
CTC microfluidic chips were used to isolate CTCs from breast
cancer patients; these chips were shown to enrich tumor cells for
additional manipulation (26). Supporting the growth of these
isolated cells needs unique culture conditions; interestingly,
growth of CTC in culture was only achievable when the cells
were grown as a suspension, not as adherent cultures, which is in
agreement with their circulating phenotype. Drug screening
showed that the CTC cells were consistent with the patient’s
clinical response when they maintained functional responses to
chemotherapies and moreover proposed novel drug
combinations (26). Given the simple access to patient blood
for isolation of CTCs and their use for drug screening, they
represent a captivating source for patient tumor cells for ultimate
downstream functional testing. However, propagation of CTCs
from the typically <100 cells isolated from patients’ blood do
require months (sometimes no cells can be isolated) to secure
enough cells for any type of testing such as drug screening,
during which the primary tumor in the patient may no longer be
represented by the propagated CTC population (27).

Organoid Cultures
The labs of Kuo, Cleversand, and others were the first to use
mouse tissue to establish organoid cultures (28–33). These
results have been widened to tumor and normal tissues from
human samples as well. Organoid cultures come up with
principles to explore and understand the biology of premature
phase cancer to investigate drug resistance and identify drug
targets (32, 34–41). Contrary to the monolayer cell lines that are
developed in the flask on plastic, organoid cultures are
established by growing epithelial cells in matrigel in a three-
dimensional manner. These cultures have many advantages; for
instance, they capture the original tumor heterogeneity, are
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genetically stable, and can be grown for many passages and for
a long time, which allow us to conduct many experiments. Both
normal and cancer organoids can be achieved from the exact
patient samples, which provides an opportunity for precision
therapy. Since the organoid culture system grows both cancer
and normal cells, error-free tumor tissue sampling is highly
important and critical. Moreover, these cultures are more
convenient for low-throughput drug screening rather than the
high-throughput one (40, 41). Generally, organoids consume 4–6
weeks to get enough cells for the screening (42).

Patient-Derived Xenografts
In the past few years, PDXs have arisen as a beneficial system for in
vitro modeling of human tumors (43, 44). Dissimilar to cell lines
that have many disadvantages such as absence of stromal
components, genetic drift because of the extended period of
culturing condition, and clonal selection, the PDX model
preserves the cross-talk between the epithelial tumor cells and the
stromal components, maintain the cellular and molecular
heterogeneity of the primary tumor, and have high genetic
stability mainly in the first few passages. Additionally, PDX
model seems to anticipate the potential of metastasis to occur and
the response to treatment (45). At this time, PDXs are highly
identified as more relevant preclinical models from a
physiologically point of view compared with classic cell lines (45).
PDX models successfully recapitulate the tissue histology and the
gene expression profile of the original tumor. In contempt of their
benefit, the absence of growth in vitro and lower throughput limit
and narrow the use of PDX models. Nevertheless, ex vivo genetic
manipulation, high-throughput chemosensitivity screens, and the
development of novel orthotropic models can be accomplished by
developing cell lines fromthePDXs.However, establishingcell lines
from PDXs is still an obstacle because of the outgrowth of murine
stromal fibroblasts, narrowed differentiation capacity, and lineage
commitment. Comprehensively, it takes 2–5 months at
proportionately high cost for PDX expansion (46).

Conditionally Reprogrammed Cells
Until the CR method development, it was difficult to make a fast
and easy-to-perform method that has a high success rate in a
single model system. The CR method that was developed at
Georgetown University satisfies the above criteria by being fast
and easy and having a high success rate (47). Basically, the
culture process does change the condition of normal and tumor
TABLE 1 | Comparison of patient-derived cancer models CR, organoids, iPSCs, and PDX.

Conditional reprogramming Organoids Tumor-derived iPSCs PDX

Success rate of initiation High Moderate–high Moderate Moderate
Derivation time Days Weeks Weeks Months
Expansion Very fast Moderate–fast Moderate–fast slow
Ease of maintenance High Moderate Moderate Low
Representation of heterogeneity Moderate Moderate Moderate High
High-throughput screens capability High Moderate High Not applicable
Microenvironment Possible with co-culture High Possible with co-culture Very high
Representation of tumor High High High Very high
Cost Low–medium High High Very high
October 2021 | Volume 11 |
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cells to a condition of “reprogrammed stem-like,” which makes
cells highly proliferative and maintain the original karyotypes of
the cells. Also, when the conditions that reprogrammed the cells
are taken out, these cells restore the capacity to differentiate (47–
49). Hence, the name “conditional reprogramming” was given to
the method. CR method is a process that starts by taking a biopsy
sample from the patient and then evaluated by the pathologist
histologically to define the biopsy components (i.e., define the
percentage of cells that are tumor cells). Then we digest the
biopsy enzymatically and mechanically, plate it in a medium
consisting of irradiated Swiss-3T3-2J mouse fibroblasts (feeder
cells) and 10 mM in Y-27632, and use the media with the sample
after dispersing into a single cell (Figure 1) (47). CR method is
available to many epithelial tissues including skin, prostate, lung,
and many tissues. Also, its use is not limited to humans; it can be
used on many mammals such as rats, dogs, cows, mice, and
horses (50–54). One of the most important features of CR
cultures that can be used for generating xenograft (47, 48) and
PDX cell lines (55) also may be used to establish cell cultures
from PDX and organic cultures. Lastly, CR cells keep cell lineage
commitment and retain heterogeneity of cells present in a biopsy
(47, 48, 56–59).

The first use of CR for precision medicine was by Yuan et al.
when they reported a case of a patient with progressive recurrent
respiratory papillomatosis (RRP), a condition caused by human
papillomavirus (HPV), which is resistant to chemotherapy. Yuan
acquired both normal and tumor tissues from the patient and
used conditional reprogramming technology to create paired cell
Frontiers in Oncology | www.frontiersin.org 4
lines to be used for identifying possible novel treatment strategies
(60). As an outcome, vorinostat revealed a significant and
differential cytotoxic effect on conditional reprogrammed tumor
cells incomparisonwithnormal cells. Thepatient started a3-month
course of therapy with vorinostat that led to a stable disease. That
was the first “proof of concept” that conditional reprogramming
excellently assists in fast propagation of the cancer cells without
changing their genetic profile, which makes it a precious tool for in
vitro sensitivity assays that help physicians to choose the right
medication for each patient (60).

Conditional reprogramming culture of various other main types
of cancer such as salivary gland cancer, breast cancer, bladder cancer,
and lung cancer have also been established and utilized for
examination of drug sensitivity (47). Li et al. generated and
characterized 14 conditional reprogrammed lung cancer cells, with
six cases tested for vinorelbine, cisplatin, carboplatin, and nedaplatin
exhibiting congruity with clinical scenario (61). Comparably, other
reports showed that conditionally reprogrammed cells from the
primary tumor allowed for fast screening of candidate medications
and promoted precision therapy (Table 2) (50, 56, 57, 64, 65).
Additionally, in a recent research, Mimoto et al. worked on
luminal-B breast cancer, which has poor prognosis due to lack of
appropriate targeted treatment. The authors used the primary tumor
as sources for CR cells to establish a xenograft model where both the
cells and the xenograft were used for drug sensitivity evaluation (66).
Furthermore, conditional reprogramming helped to recognize and
explore new treatment strategies. By using patient-derived
conditionally reprogrammed prostate cancer cells, it was
FIGURE 1 | Lung cancer cells grown by CR method. (A) Red arrow is assigned to epithelial cancer cells, while a white arrow is assigned to irradiated fibroblasts.
(B) Lung cancer cells grown in matrigel and forming spheres. (C) Lung cancer cells grown in ultra-low-attachment dishes and forming 3D multicellular tumor
spheroids (MCTS).
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discovered that LA-12 improves cell death caused by TRAIL, a
member of tumor necrosis factor (TNF) family 168, and
combinatorial therapy of TRAIL with LA-12/cisplatin killed
prostate cancer cells more successfully (67), which provides
implications for new combinations of medications for prostate
cancer. In addition, Crystal et al. established cells using CR
technology from a non-small cell lung cancer (NSCLC) that are
resistant to tyrosine kinase inhibitors; such cells allowed the screen of
totally new active and novel drug combinations. For instance, in an
EGFR mutation-driven resistant cancer that was exhibiting a novel
mutant, FGFR combined suppression of FGFR and EGFR was
effective in inhibiting cancer growth (68). To investigate the
mechanism of nab-paclitaxel-resistant in pancreatic ductal
adenocarcinoma (PDAC), Parasido et al. used CR technology to
generate nab-paclitaxel-resistant (n-PTX-R) cells and then
determined that sustained induction of c-MYC in the n-PTX-R
cells is driving nab-paclitaxel resistance in PDAC (69).

Taken together, conditional reprogramming offers new
advantages in clinical precision therapy, especially for some
cases that showed unsolved genetic profile, medication
resistance, and no successful therapeutic options.
QUANTITATIVE HIGH-THROUGHPUT
SCREENING

Since the emergence of high-throughput screening (HTS) in drug
discovery, itwent through fast strides and established itself as one of
themany premises of the present research in biology and chemistry
(70). In 2006, Inglese et al. cameupwith a quantitativeHTS (qHTS)
strategy in order to enhance screening precision and accuracy; in a
manner, the assays are conducted with numerous compounds’
concentrations in a magnitude ranging at more than four orders to
create dose–response curves, which are in all of the tested
compounds (71). This method of qHTS has led to an increase in
the accuracy of screening compared with the old traditional HTS,
since there is no longer a need for the primary single-concentration
screening step thatwas known for its possibility of producing a high
rate of false negatives and false positives (72).

During the past 10 years, the HTS technique has been
advancing thanks to improvements in many technologies such
as the establishment of innovative platforms, automation of
liquid handling, and the improvement of tools that are capable
of analyzing big sets of data. Hence, the HTS has become
critically essential for all phases in the drug discovery journey
from bench to bedside, starting from the target detection to the
toxicity assessment. Miniaturization and automation help to
Frontiers in Oncology | www.frontiersin.org 5
decrease the use of reagents and the time required for analysis
and also to reduce the need for labor-intensive steps, therefore
resulting in decreasing the total assay cost by a large margin and
making it economically and timely suitable.

The qHTS screening using numerous concentrations of
thousands of different compounds constitutes a spectacular
progress of success by decreasing the false-negative outcome
when compared with single concentrations in the classical HTS
(71). In drug discovery and toxicological studies, the generated
data from qHTS have a leading role in advancing these two fields
(73–75). For example, the concentration or dose-dependent
response data are now being created and published for
hundreds of toxicologically relevant endpoints in the second
phase of the tox21 alliance between the FDA, the Environmental
Protection Agency (EPA), National Center for Advancing
Translational Sciences (NCATS), and the National Toxicology
Program (NTP) (76). The results obtained from these qHTS tests
could be applied for many other different purposes, such as
screening of phenotypes, prediction modeling, and genome-wide
association mapping (77–79).
CR TECHNOLOGY AND ROBOTIC
QUANTITATIVE HIGH-THROUGHPUT
SCREENING

Alkhilaiwi et al. conducted the first proof-of-concept study to
merge the CR technology and robotic qHTS. In the study, we
were able to propagate millions of cells from a lung tumor biopsy
in 21 days and send the cells to the NCATS where they screened
the cells using two libraries. The rapid expansion of 35 million
cells of the RRP CR cells met the demand for a large number of
testing cells.

Testing of 4,700 drugs with seven to 11 concentrations each
was performed in in a week to identify the potential treatments
for the patients who were alive during the study. Three
medications have been identified as effective and were
validated in 2D culture and 3D sphere cultures. Lowering the
number of the medications tested using specific libraries based
on the type of the cancer will shorten the time needed to get the
result since less cells are needed (Figure 2) (80).
DISCUSSION

In spite of the clear fact that patient physiology differs considerably
from one person to another, patient care and drug development
TABLE 2 | Applications of conditional reprogramming in precision medicine.

Tissue Tumor types Therapy type Finding Reference

Airway (laryngeal) Recurrent respiratory papillomatosis
(RRP)

Chemotherapy In vitro culture identifies vorinostat as a treatment and showed positive
clinical response

(60)

Lung or pleural
effusions

Non-small cell lung cancer (NSCLC) Targeted
therapy

In vitro sensitivities reflect the clinical response (62)

Colon Colorectal cancer (CRC) Chemotherapy In vitro sensitivities reflect the clinical response (63)
October 2021 | Volume 11 | Art
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dependmainlyon the administrationof the exact treatment options
to diverse populations (19). This created a huge unmet need leading
to an act that was signed into law in the United States at the end of
2016 (The 21st Century Cures Act). The act provides funding and
resource to the FDA to establish new initiatives and programs that
will increase its ability for fast approval of precision medicine
products such as medical devices (breakthrough devices) and
cell therapies.

Although there are very important features and uses of CR
technology in different areas, CR still has many challenges, and
the optimization of CR culture is needed when growing different
types of primary cells. The first challenge with CR is the inability
of maintaining a culture of certain malignant primary cells.
In 2017, Yu et al. hypothesized that CR preferentially
supported the outgrowth of non-malignant epithelial cells from
nasopharyngeal carcinoma biopsy (81). Another group has
observed similar results on primary culture of NSCLC tumor
specimens (82, 83). In the study of Hynds et al., CR culture was
able to establish tumor cell culture from one out of 10 primary
NSCLC tumors. They advised that outgrowth of cancer epithelial
cells by normal epithelial ones in late passages and cancer cells
was seen at early passage only (passage 2) (84). Remarkably,
these CR tumor cultures were able to form xenograft when
injected in immunodeficient laboratory mice (NSG mice), and
the cells that were re-cultured from tumor xenograft were found
to maintain the main features of primary tumor (84).
Nonetheless, many studies that have been published have
described culturing tumor cells from NSCLC (68, 85). On the
other hand, there were no reports for outgrowth of normal cells
in neuroendocrine cervical cancer and pancreatic cancer (69, 86).
The divergence in the results from the different studies could be
Frontiers in Oncology | www.frontiersin.org 6
contributed by different origins offibroblasts, which were used as
feeders in the CR culture, different methods of processing, and
acquiring the primary tissues and errors in the pathology
laboratory assessment.

The second challenge with the CR method is the inability to
discriminate tumor cells from normal populations, which is
problematic since some tumor tissues are mixed with normal
tissues (47, 85). Such a problem manifests when normal cells
grow with the cancer cells from the tumor/normal tissue and
occasionally normal cells outgrow the cancer cells as detailed
previously (47). To solve this problem, the pathologist needs to
assess and designate carefully the normal and tumor tissues (47).
Optimizing culture conditions can be performed to favor the
growth of prostate tumor cells by removing serum from the
medium, which leads to differentiating the normal cells, while
prostate tumor cells grow as a mesenchymal morphologic
phenotype and then reversed back to epithelial morphology in
CR condition (51). Lou’s group suggested to use 3D culture and
CR to reach the best results for the differentiation of normal cells
to occur and therefore allowing for discrimination between
normal and tumor cells (87). Another modification in the
culturing condition could be the use of human fibroblasts as
feeder cells rather than mouse fibroblasts since the human
fibroblasts do not support the in vitro proliferation of normal
epithelial cells in the long term, which will lead to selecting
tumor cells to grow (62, 68, 88). Technologies such as tumor-
specific antibody and next-generation DNA sequencing can be
performed to differentiate between normal and cancer cells as
well. One of the main advantages of CR culture is the ability to
form 3D culture, allowing for imitating and recapitulating the in
vivo condition and the ability to add more cells from the
FIGURE 2 | Workflow of conditional reprogramming (CR) technology and robotic quantitative high-throughput screening (qHTS) for precision medicine.
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microenvironment of cancer such as immune cells or fibroblasts.
Transwell dish-based 3D models from prostate CR cancer cells,
organoid culture of prostate CR cancer cells, and multicellular
spheroids of laryngeal, lung, and salivary cancer CR cells have
been generated (50, 51, 80, 89). Additionally, the CR technique
can be used for direct isolation of CTCs from the blood (90, 91).

Naeem et al. have used computational proteochemometric
platform (DrugGenEx-Net) to identify carfilzomib for prostate
cancer based on transcriptomic data from two matched pairs of
benign and tumor-derived CR cells; such system can be valuable
in building the library for each cancer in case the number of
medications tested needs to be decreased to save more time (92).
Moreover, the generated data from each screening will be fed
back into the system to help enhance the addition or removal of
drugs from the libraries of each disease. In conclusion, there is a
huge potential for combining CR and robotic qHTS toward
Frontiers in Oncology | www.frontiersin.org 7
precision medicine based on the patient cells and therefore
satisfy a huge unmet medical need.
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