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Organoids are in vitro self-assembling, organ-like, three-dimensional cellular structures
that stably retain key characteristics of the respective organs. Organoids can be
generated from healthy or pathological tissues derived from patients. Cancer organoid
culture platforms have several advantages, including conservation of the cellular
composition that captures the heterogeneity and pharmacotypic signatures of the
parental tumor. This platform has provided new opportunities to fill the gap between
cancer research and clinical outcomes. Clinical trials have been performed using patient-
derived organoids (PDO) as a tool for personalized medical decisions to predict patients’
responses to therapeutic regimens and potentially improve treatment outcomes. Living
organoid biobanks encompassing several cancer types have been established, providing
a representative collection of well-characterized models that will facilitate drug
development. In this review, we highlight recent developments in the generation of
organoid cultures and PDO biobanks, in preclinical drug discovery, and methods to
design a functional organoid-on-a-chip combined with microfluidic. In addition, we
discuss the advantages as well as limitations of human organoids in patient-specific
therapy and highlight possible future directions.

Keywords: organoids, patient-derived organoid, living biobanks, microfluidics, drug screening,
organoids-on-a-chip
INTRODUCTION

Cancer is a heterogeneous disease that includes a complex ecosystem of diverse cell types. Apart from
neoplastic cells, tumors include cancer-associated stromal cells, growth factors and metabolites in the
microenvironment, which have profound effects on tumor cell growth, invasion ability, and drug
response (1). Therefore, these microenvironmental elements are critical in the development of
pathologically relevant culture models to study cancer progression. For decades, preclinical cancer
research has relied on cell lines as in vitro representations of tumor heterogeneity. Traditional drug
development is carried out via two-dimensional (2D) tumor cell line cultures and transplantation of
patient-derived tumor xenografts in animals (2). However, there are several drawbacks in these
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approaches. For instance, 2D cell line cultures poorly reflect the
native microenvironment of tumor tissue, and after many
passages in culture, cancer cell lines lose the genetic heterogeneity
of parental tumors because of clonal selection (3, 4). This
contributes to the low success rate of newly developed drugs in
clinical trials (5, 6). Organoids are self-organizing, three-
dimensional (3D) structures that are grown in vitro from stem
cells, and resemble the organ from which the cells were derived
(2, 7). The starting cells could be adult stem cells, cancer stem
cell, or cancer tissue-derived spheroids. Organoids preserve many
structural and functional features such as cell composition and
tissue architecture of their corresponding in vivo organs.

Clevers et al. developed crypt-villus organoids from a single
Lgr5+ stem cell using the WENR (Wnt3a+EGF+Noggin+R-
spondin-1) protocol that allowed long-term culture and
differentiation of primary epithelial cells isolated from
intestinal tissue (7–9). The key components of the culture
medium included the ligand of LGR5 R-spondin-1, the Wnt
pathway agonist, epidermal growth factor (EGF), and bone
morphogenetic protein pathway inhibitor Noggin. In addition,
the anoikis antagonist Rho-kinase inhibitor Y-27632 is a key
factor for improving the success rate of organoid culture. The
genotype and genetics of organoids derived from adult stem cells
are consistent with those of their parental tissues and remain
stable for a long time (10, 11). Another strategy involving the use
of pluripotent stem cells (PSCs) has been applied to generate
organoids resembling the brain (12), intestine (13), kidney
(14, 15) and retina (16, 17).

From 2009 to 2021, use of organoid technology has been
rapidly increasing in cancer research, especially for therapeutic
screening and precision medicine (18–20). 3D organoid culture
systems provide efficient preclinical cancer models of patient-
derived organoids (PDOs), can better mimic the components of
a tumor tissue, and can be efficiently established from patient
specimens (18, 21, 22). The intratumor diversity in PDOs
captures tumor heterogeneity at the single cell level and
provides a valuable resource for cancer research. PDO cultures
can be used to expanded over time while still retaining the
mutational profiles of the parental tumors (23). On the contrary,
traditional long-term 2D cultures have very high genomic
instability. The highly conserved genomic landscape of PDOs
is crucial to perform genotype-phenotype correlation analysis
and to assess patient’s sensitivity to treatment. Although 2D
culture is cheaper and relatively easy to maintain, the success rate
of drug screening using 2D cultured tumor cells is very low, and
the results are often conflicting. This may be because the 2D
model cannot accurately reflect and maintain the tumor
characteristics and complex cell-extracellular matrix
interactions. Newly developed organoid culture platforms
enable routine primary culture of resected human tumor
tissues (24, 25).Numerous PDOs have been established from
tissues derived from patients’ tumors, including colon (9), liver
(25), gastric (26), lung (27), bladder (28), breast (29), and
pancreatic cancers (30, 31) and head and neck squamous cell
carcinoma (32). PDOs can be used to generate a well-annotated
living cancer biobank as a resource for drug discovery and
Frontiers in Oncology | www.frontiersin.org 2
personalized therapy (33, 34). Although there are established
PDOs generated from epithelial tissues, PDOs generated from
non-epithelial cells are still rare. Sarcomas, malignant neoplasms
originating from mesenchymal cells, have a high level of
histopathological heterogeneity (35). Currently, several 3D
sarcoma models with or without scaffold have been established
from osteosarcoma, chondrosarcoma, Ewing sarcoma and soft
tissue sarcoma (36–38). However, a standard protocol to
generate sarcoma-derived organoid models has not yet been
established. Therefore, we expect more advanced innovations to
break through the bottleneck of developing sarcoma organoid
culture and applications in the future, such as capturing the
biological characteristics of native sarcomas in drug screening.

The tumor microenvironment (TME) includes vascular
structures, extracellular matrix, and immune cell components,
including lymphocytes, macrophages, myeloid-derived
suppressor cells, dendritic cells, and natural killer cells (24).
Cellular interactions in TME often determine drug response and
the fate of the tumor. Functionally, the TME provides conditions
for tumor progression and metastasis (39, 40). The recently
developed PDO cultures provide an outstanding system to
model patient-specific tumor-immune interactions. For
instance, the co-culture of patient-derived cancer-associated
fibroblasts and peripheral blood lymphocytes with pancreatic
cancer organoids has been used to assess lymphocyte migration
towards organoids in Matrigel and the activation status of
myofibroblast-like cancer-associated fibroblasts (41). Co-
culture of non-small-cell lung cancer and colorectal cancer
organoids with autologous peripheral blood lymphocytes
generates tumor-reactive T cells, and these T cells have the
ability to kill tumor cells derived from the parental tumor
tissue (20). In addition, culturing patient-derived organotypic
tumor spheroids in microfluidic devices preserve endogenous
immune cells, and this approach can model the tumor’s response
to PD-1 blockade.

With the advancement of technology, many highly
reproducible and controllable approaches have been developed
to generate the microenvironment of human cancer
bioengineered 3D organoid platforms that closely mimic in
vivo tumor conditions (42). These platforms, such as organ-
on-a-chip, can offer individual empirical data to better determine
a patient’s drug response (43). Organ-on-a-chip is a multi-
channel microfluidic cell culture device that includes multiple
cell types to model the structure and function of the parental
tissue (42, 44). Organoids develop from self-organizing stem cells
to recapitulate the key physiological and pathological
characteristics of their parental tissues. By integrating living
human self-organizing organoids with organ-on-a-chip
engineering, physiologically relevant microenvironments can
be generated, and the resulting organoids-on-a-chip platform
can combine the best features of both approaches to provide a
model truly representing the complex characteristics of cancer
progression (45). As a strategic integration, organoid-on-a-chip
technology provides a superior in vitro platform for preclinical
screening of chemotherapy drugs and predicting outcomes of
radiotherapy and chemotherapy regimens.
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In this review, we introduce the experimental approach of
deriving organoids from adult stem cells, which can be generated
directly from the epithelium of organs and explore how organoid
cultures serve as a basis for developing a variety of microfluidic
organ-on-a-chip platforms for clinical applications. In addition,
we focus on patient-derived tumor organoids (PDTOs) in
individualized cancer treatment and illustrate the advantages
and limitations of PDTO biobanks as a resource for preclinical
models and in enabling precision medicine (Figure 1).
FRONTIER APPLICATION OF PDOs

PDOs in Precision Medicine
Currently, patients with similar cancer types receive cognate
treatments, but these treatments do not always achieve a uniform
outcome across patient populations. Moreover, regardless of
whether patients have undergone neoadjuvant chemoradiation
or surgical treatment, individual drug response cannot be tested
prior to treatment. In addition, recurring tumors may differ from
the initial surgically resected tumors. Despite obvious
interpatient heterogeneity, most clinical drugs are not
developed using molecular biomarkers, except for some that
target specific pathway mutations. To personalize cancer
treatment, individual drug sensitivity assays with PDOs are
progressively improving by recapitulating more physiological
and pathological characteristics of tumors. Therefore, PDOs
should be applied to drug screening and guide clinical
treatment to improve prognosis. Traditionally, precision
therapies have been performed by using mutational
biomarkers; however, these biomarkers often lack a
considerable tumor mass due to intratumor heterogeneity. As a
result, treatments targeting these markers do not always elicit
desirable patient responses. PDO models have been utilized in
drug discovery (21) to explore the cytotoxicity of therapeutic
candidates (46–49) and to enable personalized cancer treatments
(18, 50). Recent studies on the generation and use of PDOs are
summarized in Table 1 (18, 21, 27–29, 33, 51–62). Using 19
colorectal cancer organoid lines, Van de Wetering et al. screened
83 drugs, including targeted inhibitors (18). Ooft et al. used
PDOs to predict the response to chemotherapy in patients with
metastatic colorectal cancer, and these results offer a chance to
assess the reproducibility and applicability of organoid-based
drug screening (63). Sachs et al. tested the response of six drugs
targeting the human EGF receptor signaling pathway in 28
organoid lines and confirmed that breast cancer organoids
serve as a superior physiologically relevant model for in vitro
drug screening (29). Similarly, Yan et al. performed large-scale
drug sensitivity screening using 37 anticancer compounds in
nine gastric cancer organoids derived from seven patients (33).
Vlachogiannis et al. applied patient-derived cancer organoids to
predict the clinical outcomes of gastrointestinal cancer patients
undergoing chemotherapy, targeted drug therapy and
immunotherapy (64). By comparative analysis of the drug
sensitivity of patients with metastatic gastrointestinal cancers
and that of corresponding PDO models, they showed that the
PDO model had a very high accuracy in predicting drug
Frontiers in Oncology | www.frontiersin.org 3
responses (64). Lee et al. screened 50 drugs in organoid models
of bladder cancer, expressing the fibroblast growth factor (FGF)
receptor, mitogen-activated protein kinase, and the mechanistic
target of rapamycin inhibitors (28). Using 27 liver cancer
organoid lines from five patients, Li et al. screened 129 cancer
drugs and demonstrated that a subset of drugs induced a uniform
toxic response across patient samples while the response to other
drugs was heterogeneous (60). Pauli et al. performed a complete
genomic analysis of four patients and high-throughput screening
of 160 drugs using cancer organoids, and showed that 3D
cultures are better than 2D cultures in identifying suitable
individual or combination drugs for individual patients (21).
These cancer organoids were derived from patients with
metastatic and primary tumors, including prostate, bladder/
ureter, kidney, colon/rectum, brain, pancreas, breast, stomach
and esophagus, soft tissue, small intestine, lung, liver, adrenal
gland, uterus, ovary, appendix and thyroid cancer. Brandenberg
et al. reported an automated high-throughput screening system
based on organoid cultures that could analyze thousands of
individual gastrointestinal organoids within a polymer-
hydrogel substrate (65). This 3D culture system significantly
reduced the consumption of expansion reagents and was suitable
for large-scale drug screening. Kim et al. reported an effective
method for generating a living biobank of 80 lung cancer
organoids (27). The drug responses of these organoid lines
were consistent with interpatient and intratumor heterogeneity,
indicating that cancer organoids are physiologically relevant
drug screening platforms. Yao et al. established a living
FIGURE 1 | Potential applications of patient-derived organoids (PDOs).
Identification of PDOs was performed via next-generation sequencing and
comparison with the histology and pathology of the parental tumors. PDOs
are suitable for drug sensitivity testing and drug selection to predict patient
response and guide treatment at the individual level. In parallel, PDOs will be
preserved as a living cell biobank and the organoid model is accessible for
precision medicine.
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organoid biobank of locally advanced rectal cancer and showed
that PDOs could predict chemoradiation responses in patients
(66). Wang et al. reported a blinded study that found a PDTO
model to be accurate in predicting chemotherapy responses in
stage IV colorectal cancer (67).

Monoclonal antibodies that target immune checkpoints, such
as anti-CTLA4 and anti-PD-1, have been used to enhance anti-
tumor T cell responses, increasing the overall survival rate in
patients. Nigris et al. reported that PDOs were able to predict the
patient’s response to PD-1/PD-L1 inhibitor therapy in primary
chordoma (68). Jenkins et al. established a microfluidic culture of
an organoid tumor spheroid platform to test the response of
patient-derived tumors to immune checkpoint blockade
treatment (69). Using a PDO/immune cell co-culture model,
Zavros et al. demonstrated that rapamycin blocked the
transcriptional regulation of PD-L1 by GLI1 and GLI2, and
concluded that it is a valid model to assess immunosuppressive
myeloid-derived suppressor cell function (70). These results
show that gastric cancer organoids and immune cell co-culture
systems can be used to predict patient response to immune
checkpoint blockade and CAR-T cell infusion.

A search of ClinicalTrials.gov database from May 2015 to
June 2021 revealed organoid-related clinical trials with the
purpose of evaluating the probability of PDTO models to
accurately predict patients’ responses or resistance to existing
chemotherapeutic agents (Table 2). These clinical trials mainly
focused on the individualized treatment of patients with various
tumors and showed numerous advantages of using PDOs in
precisely testing the corresponding patient’s sensitivity to
chemotherapy and targeted therapy. In addition, an increasing
number of PDO-based clinical trials in recent years suggests a
trend towards an increasing reliance on PDOs for clinical
Frontiers in Oncology | www.frontiersin.org 4
decision making in personalized medicine. Nevertheless,
clinical trials based on PDO models are still focused on tumors
with relatively high morbidity and mortality, such as colorectal
cancer, lung cancer, glioma, breast cancer, liver cancer, and
pancreatic cancer. Moreover, PDOs are mainly derived from
epithelial cells, and organoid culture techniques of non-epithelial
cells are relatively immature and cannot be used in clinical trials.

Organoid culture can partially reveal interpatient heterogeneity
in terms of sensitivity to anti-cancer drugs (71). Thus, it is critical
to develop an organoid model system to predict drug sensitivity to
estimate diversification in drug responses and reduce misguided
selection of remedies in clinical trials. In addition, PDOs can be
generated from various cancer patients and exhibit the
intratumoral heterogeneity of the parental tumors. Herein, we
have emphasized that organoid culture systems, especially PDOs,
are suitable for precision medicine, including drug screening and
prediction of individual patient’s response. As described above,
colorectal cancer, breast cancer, gastric cancer, bladder cancer,
liver cancer, and lung cancer organoids have been reported for
drug screening and sensitivity. However, the application of
conventional PDO models in precision medicine has numerous
challenges. Although most tumor PDOs recapitulate the genetic
composition of the parental tumor at early passages, the extent of
genetic drift or the proportion of genetically stable cells in
organoids at later passages has not been fully characterized (21).
In addition, the lack of endogenous tumor-associated stromal
components remains another key limitation of current organoid
methods. Thus, the current PDO model is still unable to reflect all
the characteristics of an organ. Although we have many urgent
challenges to overcome, the continued development of PDOs
incorporating immune and other stromal components may
ultimately help actualize the promise of precision cancer therapies.
TABLE 1 | Application of drug screening with organoid culture platforms.

Cancer
Type

Organoid
Type

Library Compounds
Tested

Cases
Tested

Assay Conditions Refs

Bladder CSC-derived Target-known inhibitors + chemotherapy drugs 50 11 Matrigel (28)
Breast CSC-derived EGFR/AKT/mTORC pathway inhibitors 6 28 BME (29)
Breast CSC-derived CDK4/6 and BCL2 signaling pathway inhibitors 3 3 BME (51)
Breast CSC-derived Docetaxel, Doxorubicin P4HA inhibitor 3 1 BME (52)
Colorectal CSC-derived Target-known inhibitors + chemotherapy drugs 83 19 BME (18)
Colorectal CSC-derived Target-know inhibitor + chemotherapy drugs 8 19 Matrigel (53)
Colorectal CTOS Target-known inhibitors 71 1 W/O Matrix (54)
Colorectal CTOS

organoids
Target-known inhibitors + FDA-approved drugs 2427 2 W/O Matrix (55)

Endometrium CTOS
organoids

Target-known inhibitors 79 5 W/O Matrix (56)

Endometrium CSC-derived Menin-MLL complex inhibitor 1/276 4 Matrigel (57)
Gastric CSC-derived Approved anti-cancer drugs 37 7 Matirgel (33)
Glioblastoma CSC-derived EGFR/PDGFR/Topoisomerase-II inhibitors and p53 pathway

activator
4 3 Collagen–hyaluronic acid

bioink
(58)

Glioblastoma CSC-derived Target-known inhibitors 64 2 Matrigel (59)
Liver CSC-derived NCI-Approved Oncology Drugs Set VII 129 5 Matrigel (60)
Liver CSC-dervied Target-know inhibitor + chemotherapy drugs 29 5 BME (61)
Lung CSC-derived PARP /c-Met /EGFR inhibitor + Docetaxel 4 6 Matrigel (27)
Ovarian CSC-derived Target-known inhibitors + chemotherapy drugs 22 10 Matrigel (62)
Various CSC-derived chemotherapy drugs and targeted agents under clinical

development
160 + 120 4 Matrigel (21)
December 2
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TABLE 2 | Summary of Clinical Trials of drug sensitivity with organoid methods.

Tissue Type Source of Organoids Aim of study Estimated
Enrollment

First
Posted

Sponsors/
Collaborators

ClinicalTrails.gov
Identifier/Status

Astrocytoma iPSC from patients’ peripheral blood
mononuclear cell

To demonstrate that brain
organoids can be used to test
the impact of genetic
mutants.

20 June 3,
2019

Sponsors and
Collaborators:
Assistance Publique
Hopitaux De Marseille

NCT03971812/
Unknown

Breast cancer breast cancer organ platform Sensitivity Detection and Drug
Resistance Mechanism (29
compounds)

300 April 24,
2019

Sponsor and
Collaborators: Xijing
Hospital, Xi’an, China

NCT03925233/
Enrolling by
invitation

Breast cancer Biopsy of primary or metastatic tumors Drug Sensitivity Verification or
Prediction (Paclitaxel)

50 June 1,
2018

Sponsors and
Collaborators: Peking
Union Medical
College, Beijing, China

NCT03544047/
Unknown

Biliary Tract Cancer Tumor resection Multi-Platform Profiling with
Organoid Drug Sensitivity
Screening and ctDNA
Monitoring

20 September
23, 2020

Sponsor: University of
Washington
Collaborators: Natera,
Inc.
SEngine Precision
Medicine, Inc.

NCT04561453/
Recruiting

Colon Cancer biopsy of RAS/RAF wild-type
metastatic right colon cancer tumor
lesion

Test the sensitivity and clinical
consistency of cetuximab.

80 May 28,
2021

Sponsor: Danwang
Medical Technology
(Shanghai) Co., Ltd,
China
Collaborator: Fudan
University, China

NCT04906733/
Recruiting

Cholangitis/
Cholangiocarcinoma

Cholecystectomy (gallbladder removal);
bile and biliary brushings

Characterization of Biliary
Cell-derived Organoids

300 February
15, 2021

Sponsors and
Collaborators: Mayo
Clinic; National
Institute of Diabetes
and Digestive and
Kidney Diseases
(NIDDK)

NCT04753996/
Recruiting

Cystic Fibrosis Rectal Biopsy and Suction biopsy or
forceps biopsy (CF and R334W
mutation)

Investigate the response to
ivacaftor/tezacaftor in patients
with CF and a R334W
mutation.

30 February 5,
2020

Sponsor: Universitaire
Ziekenhuizen Leuven;
Collaborators: Vertex
Pharmaceuticals
Incorporated
KU Leuven
University of Lisbon

NCT04254705/
Not yet recruiting

Esophageal Cancer Biopsy by diagnostic EUS Prospective evaluation of
chemoradioresistance

100 September
14, 2017

Sponsors and
Collaborators:
University Medical
Center Groningen,
Netherlands

NCT03283527/
Unknown

Familial
adenomatous
polyposis, Crohn
and ulcerative colitis

intestinal biopsies (From Inflammatory
Bowel Disease and Intestinal Polyposis
Patients)

ISC and organoid
characterization

120 August 22,
2016

Sponsors and
Collaborators:
University Hospital,
Toulouse, France

NCT02874365/
Recruiting

Glioblastoma Tumor biopsy ('left-over' tumor tissue) Explore Resistance
Mechanisms

60 April 30,
2021

Sponsor and
Collaborators:
Maastricht Radiation
Oncology,
Netherlands

NCT04868396/
Active, not
recruiting

Glioma Tumor resection and blood sampling Establishing living biobank 50 April 29,
2021

Sponsor: Maastricht
Radiation Oncology
Collaborators:
Maastricht University
Medical Center
Zuyderland Medisch
Centrum
Ziekenhuis Oost-
Limburg

NCT04865315/
Active, not
recruiting

(Continued)
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TABLE 2 | Continued

Tissue Type Source of Organoids Aim of study Estimated
Enrollment

First
Posted

Sponsors/
Collaborators

ClinicalTrails.gov
Identifier/Status

Gut Biopsy specimens (patients with and
without hypertension who routinely
undergo colonoscopy)

Determine if there are
fundamental differences in the
gut epithelium in hypertension
compared to normotension.

50 August 4,
2020

Sponsor: University of
Florida, United State
Collaborator: National
Heart, Lung, and
Blood Institute
(NHLBI)

NCT04497727/
Not yet recruiting

Human Gut
Sensory Epithelial
Cells

Endoscopic and colonoscopic biopsies Study the biology of
innervated sensory epithelial
cells

50 September
5, 2016

Sponsor and
Collaborators: Duke
University

NCT02888587/
Recruiting

Head and Neck
Cancer

Constitution of tumor and blood
samples

Predicting the response to
patients' treatments

98 February 7,
2020

Sponsors and
Collaborators: Centre
Francois Baclesse,
France

NCT04261192/
Recruiting

Intestine Small intestinal biopsies (A. healthy
controls; B. patients with Food
intolerances or Food allergy, patients
with inflammatory bowel disease,
irritable bowel disease, gluten
sensitivity, short bowel syndrome)

The effect of nutrient antigens
or therapeutic agents

375 August 22,
2017

Sponsors and
Collaborators:
University of Erlangen-
Nürnberg Medical
School, Germany

NCT03256266/
Recruiting

Kidney Cancer Tumor resection, Blood and Urine
sample

Establish a reliable and
effective method to cultivate
kidney cancer cells

20 April 13,
2020

Sponsors and
Collaborators: Chinese
University of Hong
Kong

NCT04342286/
Recruiting

Lung Cancer Surgical specimens Establish long term culturing
and bio-banking conditions,
and Predict Treatment
Response

30 April 26,
2021

Sponsors and
Collaborators:
Maastricht Radiation
Oncology,
Netherlands

NCT04859166/
Recruiting

Lung cancer Resection of tumor tissue Drug response testing 50 June 7,
2019

Sponsors and
Collaborators:
University Hospital,
Geneva, Switzerland

NCT03979170/
Recruiting

Lung Neoplasm Lung Tumor Resection and Circulating
Tumor Cells

Creation a living biobank of
PDOs from Stage I-IV lung
cancer patients;
Treatment Response of
Organoids

150 August 31,
2018

Sponsors and
Collaborators: The
University of Texas
Health Science Center
at San Antonio, United
States

NCT03655015/
Recruiting

Liver and Pancreatic
Cancer

Tumor resection Develop in Vitro Models of
Liver, Biliary and Pancreatic
Cancer

75 May 7,
2015

Sponsor: Cambridge
University Hospitals
NHS Foundation Trust
Collaborators: The
Gurdon Institute
Ann McLaren
Laboratory of
Regenerative
Medicine, UK

NCT02436564/
Unknown

Meningioma Surgical specimens Establishment and
Characterization of
Meningioma PDOs

30 July 21,
2020

Sponsors and
Collaborators: Chinese
University of Hong
Kong

NCT04478877/
Recruiting

Multiple Myeloma Marrow aspirates Test chemosensitivity in
relapsed multiple myeloma

70 March 26,
2019

Sponsor: Wake Forest
University Health
Sciences
Collaborator: National
Cancer Institute (NCI),
United States

NCT03890614/
Recruiting

NSCLC Surgical specimens and whole blood High Throughput Screening
Device Based on 3D Nano-
matrices and 3D Tumors With
Functional Vascularization

100 April 1,
2021

Sponsors and
Collaborators:
University Hospital,
Strasbourg, France

NCT04826913/
Not yet recruiting

(Continued)
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TABLE 2 | Continued

Tissue Type Source of Organoids Aim of study Estimated
Enrollment

First
Posted

Sponsors/
Collaborators

ClinicalTrails.gov
Identifier/Status

NSCLC Resection tissue or biopsy tissue of
NSCLC

Drug Sensitivity Correlation
Between PDO Model and
Clinical Response

100 March 5,
2018

K2 Oncology, Inc,
China

NCT03453307/
Recruiting

NSCLC Surgical specimens Drug sensitivity test 100 March 5,
2018

Sponsors and
Collaborators: K2
Oncology, Inc., China

NCT03453307/
Recruiting

Neuroendocrine
neoplasm

Biopsy/surgical fresh tissue of
gastroenteropancreatic neuroendocrine
neoplasms and pancreatic ductal
adenocarcinoma.

To use single-cell sequencing
technology to explore
neuroendocrine neoplasm
molecular biological
characteristics, tumor
heterogeneity and cell
subtypes.

200 June 16,
2021

Sponsors and
Collaborators: Fudan
University, China

NCT04927611/
Not yet recruiting

Ovarian Cancer Operative specimens Drug sensitivity (standard
regimens: chemotherapies
and targeted agents)

30 February
24, 2021

Sponsors and
Collaborators:
Chongqing University
Cancer Hospital

NCT04768270/
Recruiting

Ovarian Cancer Tumor biopsy Drug response testing 48 September
18, 2020

Sponsors and
Collaborators:
Fondazione Policlinico
Universitario Agostino
Gemelli IRCCS, Italy

NCT04555473/
Recruiting

Pancreatic Cancer EUS-FNA and EUS-FNB within the
pancreatic cancer diagnostic process;
Surgical specimens after neoadjuvant
chemotherapy

Check for the reactivity to
anti-cancer drugs used as
neoadjuvant chemotherapy

300 March 2,
2021

Sponsors and
Collaborators:
Samsung Medical
Center, Korea

NCT04777604/
Not yet recruiting
NCT04736043/
Recruiting

Pancreatic Cancer FNA and FNB Evaluation and Comparison of
the Growth Rate of Pancreatic
Cancer Patient-derived
Organoids to improve
diagnostics and therapeutics

50 June 19,
2019

Sponsors and
Collaborators:
Technische Universität
München

NCT03990675/
Recruiting

Pancreatic Cancer EUS-FNA Assess the responses of
FDA-approved anti-cancer
drugs

50 June 1,
2018

Sponsors and
Collaborators: Ying Lv,
China

NCT03544255/
Recruiting

Pancreatic
adenocarcinoma

Biopsies of metastases or primary
tumour tissue of pancreatic cancer

Establishing organoids 30 April 17,
2018

Sponsor: AMC-UvA
Collaborator: Erasmus
Medical Center

NCT03500068/
Recruiting

Prostate Cancer Extended biopsy (metastatic prostate
cancer)

Development of the organoid
culture technique from
metastases from patients with
advanced form of prostate
cancer

20 May 16,
2019

Sponsor: Centre
Antoine Lacassagne,
France
Collaborator: Centre
Meıd́iterraneıén de
Meıd́ecine Moleıćulaire
UMR_S-1065

NCT03952793/
Recruiting

Rectal Cancer Tumor biopsies Establish a biospecimen
collection protocol

20 May 1,
2020

Sponsors and
Collaborators: Duke
University

NCT04371198/
Recruiting

Rectal cancer Pre-treatment biopsies Predicting neoadjuvant
chemoradiation sensitivity

80 July 5,
2018

Sponsors and
Collaborators: Zhen
Zhang, Fudan
University, China

NCT03577808/
Unknown

Refractory Solid
Tumours

Biopsy of HNSCC, Epithelial Ovarian,
colorectal, breast cancer.

15-drug panel screening 35 May 29,
2019

Sponsors and
Collaborators: National
University Hospital,
Singapore

NCT04279509/
Recruiting

Vaginal Cancer/
Cervical Dysplasia/
Cervical Cancer

Vaginal Biopsy Primary Organoid Models for
Anti-HPV Treatments

50 February
20, 2020

Sponsor: Centre
Hospitalier Régional
d'Orléans
Collaborators: CNRS -
Pr Chantal PICHON

NCT04278326/
Recruiting
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Combination of PDOs and CRISPR/Cas9
Gene Editing
CRISPR/Cas9 genome editing in PDOs is used to establish
transformation models, and eventually, for drug testing in the
future. The use of CRISPR/Cas9 gene editing in PDOs has
contributed to uncovering the functional basis of diverse
oncogene mutations while also helping to correct the causing
mutation in human cancers. Kuo et al. established the first
human forward genetic modeling of a commonly mutated
tumor suppressor gene, ARID1A, using CRISPR/Cas9 genome
editing (72). Using this model, they obtained insights into early
transformation mechanisms of ARID1A-deficient gastric
cancers. Visvader et al. knocked out breast cancer-associated
tumor suppressor genes using CRISPR/Cas9 editing to generate
PDO model, and showed that the breast cancer organoid can be
used for long-term growth (73). Meltzer et al. generated a novel
PDOmodel to recapitulate aberrantly activated Wnt signaling by
combining organoids and CRISPR/Cas9 genome editing (74).
Using this model, they investigated the effect of an individual
signaling alteration to human Barrett epithelial neoplastic
transformation. Their research showed that the application of
CRISPR/Cas9 genome editing creates an ideal Barrett epithelial
PDO model to study ‘driver’ pathway alterations and improve
our understanding of human tumorigenesis.
ORGANOIDS-ON-A-CHIP AND 3D
BIOPRINTING

Microfluidic Engineering Organoid
Culture System
Recent studies of organoids have applied microfluidics and organ-
on-a-chip technology in drug screening (75), in an attempt to
overcome the shortcomings of organoid culture. Microfluidic cell
culture technology has generated 3D culture devices that are now
adapted to spheroid-based organotypic cultures and have been
used to model organ microenvironments in vitro (76). This
technology provides the possibility of precisely controlling the
microscale to model physiological conditions and high-
throughput approaches. Patient-derived organotypic tumor
spheroids can be generated and evaluated within one to two
weeks (69, 77, 78). Li et al. reported that the application of an
air-liquid interface (ALI) provides sufficient oxygen supply to
sustain organoid growth, which supports the generation of
epithelial/mesenchymal hybrids without supplementation of
exogenous growth factors (79, 80). The long-term 3D culture is
a collagen-based ALI tumor organoid culture system that enables
to expand the primary gastrointestinal cells as organoids for
months (80). The ALI organoid method has been exploited to
culture PDOs from normal and tumor specimens, including
melanoma, renal cell carcinoma and non-small cell lung cancer
(24). ALI PDOs preserves the heterogeneity of the parental tumor
as well as the complex cellular network of the TME. Pavesi et al.
developed a microfluidic device that could measure the changes in
the antitumor efficacy of adoptive T cells in a 3D collagen
Frontiers in Oncology | www.frontiersin.org 8
microenvironment (81). Jung et al. devised a clinically relevant
microphysiological microfluidic-based platform for drug
sensitivity testing that could form tumor organoids with
preserved morphological and genetic characteristics of the
primary lung cancer (82) . Torabi e t a l . des igned
micropatterned surfaces that integrated 3D cell culture with
microfluidics through a hydrogel solution (83). Using the Cassie-
Baxter mode, they created a diffusion and transfer pathway
between the hydrogel and bulk fluid, providing an excellent
option for PDO culture. The microfluidic 3D culture device
could help PDOs retain the parenchyma and stroma, and
enabled further assessment of new therapeutic modalities and
elucidated the mechanism of chemotherapy resistance (24, 82,
84). Nikolaev et al. established a biomaterial microfluidic
platform using tissue engineering and cell self-organizing
approaches, which induced intestinal stem cells to establish a
tube-shaped epithelium. Moreover, they demonstrated that
this device could achieve a spatial arrangement similar to
the crypt- and villus-like domains of the intestine in vivo (75).
Interestingly, the mini-intestine specialized cell type, which is
rarely found in conventional organoids and the luminal
capability of the bioengineered system was sufficient to
maintain long-term host-microorganism symbiosis (Figure 2A).

The combination of microfluidics and cell biology has led to
the development of the organ-on-a-chip platform, which is a
miniaturized biomimetic system that represents many
physiological characteristics of living tissue, such as the 3D
microarchitecture composed of multiple tissue types, dynamic
mechanical and biomechanical forces, and functional multiple
tissue integrations. Microfluidic organ-on-a-chip technology
provides the possibility of easily controlling spatiotemporal
flow thereby recreating a microenvironment for developing
and maintaining the organoid model. Additionally, nutrient
supply, shear stress and geometry can be easily controlled in
an organ-on-a-chip platform, so that it is important to choose a
critical function for this platform which can be achieved by
designing a constructible simplified version of the real system.
Achberger et al. presented a novel microphysiological model of
the human retina, retina-on-a-chip, which included at least seven
different essential retinal cell types derived from hiPSCs (85).
The platform provided vasculature-like perfusion by microflow
control technology and recapitulated the interaction of mature
photoreceptor segments in vitro. In addition, they applied the
anti-malaria drug chloroquine and the antibiotic gentamicin to
reproduce retinopathic side effects and demonstrated the
potential of retina-on-a-chip in drug development. Skardal
et al. established a single and integrated multi-organoid body-
on-a-chip system with a single recirculating perfusion system to
maintain the viability and function of organoids derived from
human tissue (86). These integrated systems could support six
distinct tissue organoid types for at least 28 days, including the
liver, cardiac, vascular, lung, testis, and either colon or brain.
Interestingly, the six-organoid integrated platform was used to
screen the toxicity of drug compounds at clinically relevant
doses, and it was demonstrated that the functionality of one
organoid influences the response of other organoids (Figure 2B).
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Kasendra et al. established a human duodenum intestine chip
using organoids and organ-on-chips technology that mimicked
intestinal tissue structure and functions and could be used for
preclinical drug evaluation (87).

3D Bioprinting of PDOs
The construction of organoids still faces several challenges,
including incorporation of vascular structures and immune
system, precise architecture in space, and breakthrough in scale
size. These vascular structures and immune systems can affect
PDOs to predict the response of drug. The advantages of 3D
bioprinting in biological reconstruction accelerates the process of
organoid construction. Daly et al. developed a bioprinting
approach to transfer spheroids into self-healing support
hydrogels at high resolution, which achieves the precise
manipulation of single spheroids and organoids (88). Ayan
et al. discovered an “aspiration-assisted bioprinting” approach
to improve the precise of biofabrication and bioprinted different
biologics, including tissue spheroids, tissue strands, or single cells
(89). In addition, Brassard et al. pursued an approach by printing
organoid-forming stem cells to form centimeter-scale tissues that
comprise self-organized features (90). The combination of 3D
bioprinting and PDOs has successfully recapitulated part of the
real structure and function of organoids, and achieved long-term
expansion and improved drug testing. Kinsella et al. established
bioprinting tumor models to maintain PDO sphere culture of
gastric adenocarcinoma using hydrogels with alginate and gelatin
(91). Bioprinted brain PDOs can be used for individual drug
screening in neurological diseases. Using embedded 3D
Frontiers in Oncology | www.frontiersin.org 9
bioprinting and photocrosslinkable bioink, Shin et al. exploited
a 3D brain-like co-culture construct that was composed of
heterogenous neural populations with neurospheroids and glia
(92). The study showed that the engineered brain organoid
exhibited the capability to differentiate into neuronal cells, and
the platform may be used to model neurological disease and drug
discovery. The use of 3D bioprinting platforms to generate and
culture organoids can improve reproducibility to a certain extent
and promote the standardization of protocols. Although 3D
bioprinting has been used in many organoid platforms, it still
has numerous challenges, such as precise construction, printing
speed, and suitable biomaterials. First, there is a gap in scale
between organoids and actual organs: organoids are only up to a
few cubic millimeters in size, which is a million times smaller
than actual organs. Second, the long duration of the current
manufacturing process may lead to hypoxia related damage by
interrupting the continuous supply of nutrients and oxygen
levels in the culture system. In addition, a single vasculature is
insufficient for organoid development in the later stages of 3D
printing organoid culture. Third, although bioprinting
technology can effectively control the precise arrangement of
cells, a precise construct is still difficult to achieve. Although
challenges remain in the bioprinting organoid field, printable
bioink and bioprinting strategies will be further developed in the
future. Biomaterials, cell and matrix components of organoids,
and the scale of organoids is the same as that of an organ. With
breakthroughs in bioprinting organoid technologies and
microfluidic culture systems, these challenges will be overcome
and 3D organ bioprinting will eventually be realized.
A B

FIGURE 2 | (A) A “mini-gut” organoid model is established in a microdevice containing 3D hydrogel. This microdevice guides self-organizing intestinal stem cells into
functional organoids-on-a-chip. [Cited from (75)]. (B) A bioengineered six-organoid integrated platform is generated by microfluidically linked chambers, each
containing liver, cardiac, lung, endothelial, testis, and brain organoids. Capecitabine treatment of a system containing liver, results in cytotoxicity in cardiac and lung
organoids. Expectedly, this platform without liver organoids does not show significant toxicity. Green, Calcein AM-stained viable cells; Red, Ethidium homodimer-
stained dead cells. PMMA, poly (methyl methacrylate); DST, double sided tape. Scale bars, 100 mm. [Adapted from (86)].
December 2021 | Volume 11 | Article 762184

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. Patient-Derived Organoids in Precision Medicine
ORGANOID BIOBANKING AND ETHICAL
CONCERNS

Living Organoid Biobanks
For individualized cancer treatment, a bridge between clinical
practice and translational research is urgently needed.
Personalized therapies are based on the molecular and
histopathological features of each patient’s tumor. In addition
to traditional tissue and biomolecular-based biobanks, the
establishment of a “living organism biobank” is receiving
increasing attention, and one of its representatives is organoid
biobanks. PDTOs can be passaged and cryopreserved, providing
a chance to establish living biobanks with higher clinical
relevance to the patients. PDO libraries allow in-depth
investigation of tumor characteristics in vitro. Organoid
biobanks, combined with drug sensitivity testing and next-
generation sequencing, now support clinical decision-making
and clinical trial performance analysis (Figure 3). Van de
Wetering et al. first established a living colorectal cancer
organoid biobank and described that the organoid culture
platform can be exploited for genomic and functional research
at the level of the individual patient (18). They provided detailed
characterizations of a colorectal cancer biobank, including
whole-exome sequencing, copy number analysis, histology and
drug screening. Meanwhile, Geurts et al. described a cystic
fibrosis intestinal organoid biobank, representing 664 patients
(93). In addition, Fujii et al. generated a colorectal cancer
organoid biobank that included 52 tumor subtypes and
discovered that several organoids obtained new genetic
mutations during passage, indicating that current research has
not completely avoided the genetic instability of cancer
organoids during long-term passage (94). These experimental
results show the enormous potential of large-scale PDO biobanks
Frontiers in Oncology | www.frontiersin.org 10
that represent hereditary diseases. Sachs et al. established a living
biobank of over 100 breast cancer organoid lines from a wide
variety of primary and metastatic tumors (29). Moreover, they
analyzed breast cancer organoids to characterize various profiles
by large-scale sequencing and drug screening and generated a
well-defined living biobank. These analyses ensured that the
characteristics of breast cancer organoids were consistent with
those of normal and tumor tissues from patients. These results
indicated that PDO biobanks are more suitable for rare human
cancer subtypes that are difficult to establish as immortalized cell
lines. Yan et al. generated a gastric cancer organoid biobank
derived from normal, dysplastic, cancer, and lymph node
metastatic patients, and it retained different molecular subtypes
(33). This biobank preserved features such paired tumor tissue
germline DNA information, which is critical for future reference
and prediction of patient responsiveness and sensitivity to anti-
tumor treatments. Amieva et al. proposed a protocol to rapidly
establish apical-out polarity and maintain the integrity and
secretory function of epithelium (95). This protocol provides a
tool for establishing a living gastrointestinal organoid biobank
that can be used to study the impact of host-microbe interactions
on epithelial function. Beato et al. established a living biobank
of organoids from 15 patients with intraductal papillary
mucinous neoplasms (IPMN) of the pancreas (96). These
PDOs recapitulated the molecular and histopathological
characteristics of the parental IPMN tumors, and the success
rates for organoid generation from IPMN tumors and normal
pancreatic tissues were similar to those of previous reports
wherein the success rates were up to 80% and 87%, respectively
(30, 31, 97–99). Jacob et al. reported the generation of patient-
derived glioblastoma organoids that were suitable for constructing
a biobank and modeling immunotherapy responses. With the
complexity of cancer types dictates the outcome, the key
December 2021 | Volume 11 | Article 762184
FIGURE 3 | Combination of living organoid biobank and databases improves cancer research and precision medicine. Patient-related data are available through the
hospital information system and contain sensitive patient information that external researchers cannot access. Researchers who have obtained ethics committee
approval can collect sample-related anonymous information from the biobank data management system, and obtain the organoid model and fresh frozen tissue from
the biobanking infrastructure. Therefore, researchers can use organoid models for drug screening and testing chemotherapy response at the individual patient level.
PDOX models, Patient-derived organoid xenograft models.
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advantage of these biobanks is that they provide cancer organoid
cultures representing the complexity of different tumor subtypes.
These cancer and normal organoids accurately reflect patient’s
sensitivity to drugs and their tolerance to drug toxicity. An
increasing number of cancer biobanks has been reported, but
most of the existing organoid culture protocols are only suitable
for epithelial carcinomas.

As we have described, only a few living tumor biobanks have
been established by PDO technology, including colorectal cancer,
breast cancer, gastric cancer and glioblastoma. In addition, fewer
non-epithelial cancer-derived organoids have been established,
such as glioblastoma (100) and childhood kidney cancers (34).
Therefore, the generation of more organoid cultures from non-
epithelial cancers should be promoted in the future. Based on the
current status, more exploration should be performed to obtain
living biobanks of rare tumor organoids. In addition,
standardization of organoid production is needed to control
the quality of PDOs, to improve the reproducibility and
scalability, and to avoid the diversity of organoids. Based on
the current research status, PDOs cannot fully recapitulate the
natural characteristic of the parental tumor, which results in
many uncertainties for the promotion of innovative clinical
applications of living biobanks in the future.

Ethical Concerns of PDO Research
Although advances in 3D models allow for more complex
products to be generated from human tissues, the progress of
human organoids may be hindered by ethical concerns. Vasiliki
Mollaki analyzed several serious challenges posed by organoid
use and biobanking and provided many unique and profound
insights to promote the healthy development of organoid
research and application (101). He provided an in-depth
discussion on ethical challenges in organoid use, which
includes the source of stem cells, informed consent of cell
donors, issues specific to brain organoids and multi-organoid
complexes, gene editing, creation of chimeras, organoid
transplantation, commercialization of organoids, patentability
of organoids, treatment costs, issues of equity, misuse and dual
use of organoids, and organoid biobanking (101). His main
suggestion is the four-step approach to help increase the
biomedical and social benefits of organoids: the first is related
to existing regulations and guidelines, the second is related to
special regulatory provisions, the third is public engagement and
the fourth is continuous monitoring of rapid advancements.

Organoid biobanking and issues specific to brain organoids
are our main concerns. As mentioned above, living organoid
biobanking provides an important source for promoting the
development of translational research. PDOs have an inevitable
connection with the donor’s body, identity, and privacy, among
others, which involves human rights issues of the donor, and
should differ from the tissues and organs directly derived from
the human body. However, there are no binding principles or
legal norms defining the rights and duties of donors and
biobankers. Organoids are also a technology and a tool; hence,
with the increasing commercialization of human organoid-
related products, more and more ethical challenges have begun
Frontiers in Oncology | www.frontiersin.org 11
to emerge, especially in drug development, preclinical prediction
of patient drug responses, and toxicology testing (102). The
conventional frameworks are inapt to capture the practical and
ethical complexity of human organoid products. Lensink et al.
indicates that commercialization of PDO biobanks raise
challenges associated with commercial involvement, trust, and
ownership (103). By conducting 21 semi-structured qualitative
interviews, they indicated that academia, clinical care, biobanks
and industry stakeholders do not belong to distinct domains, and
suggest that participants should be regarded as “partner” rather
than passive tissue or service providers. These efforts are aimed at
establishing an ecosystem that maintains a sound balance
between ongoing cooperation and a feasible and sustainable
research climate, while making governance more responsible
and fair. In addition, living organoid samples can be stored for a
long time after being collected and cultivated, even longer than
the lifespan of the donor, and follow-up research often fails to
provide informed consent. At the current stage of organoid
biobanking, there are no standardized and individualized
informed consents that can cover all the specific concerns of
donors, such as personal values and beliefs. Therefore, opt-out
options should be available to allow donors to object to certain
uses. In any case, the consent procedure is the central tenet of
organoid biobank management to ensure the implementation of
the principle of a voluntary and well-informed donation (101).

The ethical issues of special living biobank samples, such as
brain organoids, should also draw our attention. The human
brain organoid system has already been applied to modeling
neurological diseases, including microcephaly, macrocephaly,
autism, Miller-Dieker syndrome, Rett syndrome, Sandhoff
disease, prenatal drug exposure, ZIKA virus infection, and
neurodegenerative diseases (104). Trujillo et al. developed
human cortical organoids to model early human brain network
development and achieved complex oscillatory waves (105).
Reardon et al. discussed the sentient states of brain organoids,
and pointed out that a conscious brain should display a much
more complex, unpredictable electrical activity than an
unconscious one, which responds in simple and regular
patterns (106, 107). Although brain organoids do not have
neurological functions, these miniature organs constitute
neural entities of human origin. Currently, most scientists and
ethicists agree that consciousness has not been created; however,
with the continuous advance of technologies, brain organoids
may be induced to develop consciousness, sensation, and
cognition, thus possessing characteristics related to human
morality. Therefore, ethical stakes are much more complex
than those of other organs. Hyun et al. provided their opinions
on the ethics of brain organoids (108). They indicated that brain
organoids lack the sensory inputs and a complex network
structure and, thus, declared that peoples’ concerns about the
moral status might be excessive. At the current stage of
development, the degree at which brain organoids exhibit
human consciousness is difficult to determine, and
neuroscientists have not reached a consensus on the definition
and measurement of consciousness. However, if the brain
organoids could feel pain, the principles of animal welfare
December 2021 | Volume 11 | Article 762184
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would be imposed at least. In addition, the informed consent still
should be modified to prepare for the day when brain organoids
will be conscious, because the existing informed consent does not
reflect all possible connections between the cell donor and brain
organoids. Boers et al. proposed a “consent for governance”
model that includes privacy by design, participant engagement,
benefit sharing and ethical oversight, which contributes to
responsible innovation and clinical translation (102). Overall,
conventional bioethical frames are inept in addressing the
practical and ethical complexities of PDOs. Therefore, it is
essential to develop binding legal norms that overcome most of
the ethical dilemmas in this exciting field.
DISCUSSION

Models of 3D tumor spheroids preserve cell-cell contact and cell-
matrix interaction, present a more clinically relevant resistome and
improve the success rate of drug screening (109). Studies have
shown that the gene expression profiles of 3D cancer spheroids are
different from 2D cultures, recapitulating various features in genes
associated with proliferation, survival and drug sensitivity (110).
Tumor spheroids embedded in ECM preserve most characteristics
of cell biology associated with cell-matrix interrelations, including
interaction with basement membranes and interstitial matrix (111,
112). Therefore, despite higher cost compared to 2D cell culture
models, 3D tumor spheroids are popular for drug screening and
response testing. Current 3D culture tumor models include
organotypic multicellular spheroids (from tumor tissues), tumor-
derived organoids (from dissociated tumor tissues) and
multicellular tumor spheroids (from cancer cell lines) (113).
Traditional spheroid culture models involve supplementation
with B27, EGF, and FGFs. Organoid culture supplements depend
on the type of tissue, and major supplements include the Wnt
pathway agonist, RSPO1, nicotinamide, N-acetylcysteine, FGFs,
noggin andmolecule inhibitors (9, 66, 114–116). PDOs recapitulate
the intercellular interactions and the characterizations of histology
and enable long-term cultivation and stable passage (117).
Therefore, PDOs mimic the genotype and phenotype of parental
tumor and effectively retain patient-specific tumor heterogeneity,
which make them superior to traditional spheroid models for drug
screening. However, there are several disadvantages with PDO
models that need to be overcome, including high cost and the
potential effect of matrix on therapeutic responses. In addition, one
main concern in cancer treatment is intra- and intertumoral
heterogeneity (118), which can result in inaccurate decision-
making and partial treatment benefits. Organoids derived from a
portion of a tumor just match the genomic portrait of that
particular tumor region, and may not represent the genome map
of the entire tumor. Therefore, organoid assays of tumors in vitro
should take the spatial tumor heterogeneity into consideration. In
addition, owing to patient diversity and varying spheroid culture
protocols, the outcome may vary by the laboratory. Culture
protocols should be formulated that are specific and standardized
for organoids derived from individual organs.

Although PDO models mimic some key aspects of human
tumorigenesis, they cannot fully recapitulate the complicated
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structure of the TME. Tumorigenesis and drug resistance are
not only driven by gene alterations in the tumor cells but are also
affected by the components of the TME, such as blood vessels,
neurons, fibroblasts and immune cells. First, immune system
could be polarized to contribute to tumor development during
progressive growth phase. Therefore, effort has been made to
rejuvenate the anti-tumor immune response in organoid culture
systems. Intestinal epithelial organoids have been co-cultured with
lymphocytes and macrophages, and showed a significant dynamic
movement and continued proliferation activity (75, 119).

As presented in the previous section, PDTOs can predict the
response of cancer patients to chemotherapy. However, these
studies have several limitations. First, owing to the lack of an
integral microenvironment, organoid models cannot mimic
immunotherapy and antiangiogenic therapy. Second major
limitation of the current protocols for organoid culture is the
inability to part with animal-derived Matrigel or collagens. These
extracellular matrices contain undetermined extracellular
components, which may unexpectedly modify biological cell
behavior. Third, organ-on-a-chip organoids are suitable for
studying the mechanism of tumor metastasis. However,
multiorgan metastasis has not yet been achieved in organoid
models. Additionally, current cancer organoid cultures do not
replicate accurate mechanical control and physical manipulations
that occur in vivo. Engineered extracellular matrix has been
reported, which, however, still cannot meet the requirements of
fully functional organoids (120).

Organoids are less expensive than mouse models, but they are
relatively expensive compared to traditional cell line models. The
time required to establish an organoid model is a few weeks which
is less than that in animal models but is still longer than in cell line
models. High-throughput assays are required to decrease the time
and cost of organoid generation as well as the input material
needed to establish the culture. In this regard, microfluidic 3D
culture has generated spheroid-based organotypic culture devices.
Organoid-on-a-chip is also a microfabricated microfluidic culture
platform that combines extracellular matrix and microstructures to
simulate one part of the cytoarchitecture and tissue function (42).
However, the microfluidic system cannot replicate the interactions
between the tumor and the immune network that occurs in situ
and is required for an accurate prediction of immunotherapy
response ex vivo. Moreover, although intestinal organoid
fragments on hydrogel have been applied to manufacture
organoid arrays (65, 121, 122), they are not adequate to provide
fully automated organoid culture for high-throughput assays.
Finally, the generation of organoids and other human tissue
products leads to ethical challenges, including gift versus market
systems especially during the commercialized exchange of
organoids, and the awakening of consciousness in brain organoids.
CONCLUSION

Despite the remaining challenges, PDOs have a higher
physiological and pathological relevance than traditional
models, and human cancer organoid assays have great
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potential in guiding personalized therapies. Meanwhile, PDTOs
allow to reliably preserve the molecular, cellular, and
histopathological phenotypes of parental tumors and retain
patient-specific tumor heterogeneity. Furthermore, organ-on-a-
chip has been applied to organoids to accomplish physiological
or pathological model systems that are closer to the state of the
tissue in vivo. Future advancements in organoid technologies are
anticipated to achieve a comprehensive cancer model system that
recapitulates physiological conditions by integrating tumor
parenchyma cells, vascular and immune cellular networks, and
non-cellular TME. This robust model will provide a powerful
tool for biomarker research, drug screening, and a more accurate
prediction of therapeutic efficacy and eventually improve
human health.
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