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Epithelial-mesenchymal transition (EMT) is a physiological program during which
polarised, immobile epithelial cells lose connection with their neighbours and are
converted to migratory mesenchymal phenotype. Mechanistically, EMT occurs via a
series of genetic and cellular events leading to the repression of epithelial-associated
markers and upregulation of mesenchymal-associated markers. EMT is very crucial for
many biological processes such as embryogenesis and ontogenesis during human
development, and again it plays a significant role in wound healing during a
programmed replacement of the damaged tissues. However, this process is often
hijacked in pathological conditions such as tumour metastasis, which constitutes the
most significant drawback in the fight against cancer, accounting for about 90% of
cancer-associated mortality globally. Worse still, metastatic tumours are not only
challenging to treat with the available conventional radiotherapy and surgical
interventions but also resistant to several cytotoxic agents during treatment, owing to
their anatomically diffuse localisation in the body system. As the quest to find an effective
method of addressing metastasis in cancer intervention heightens, understanding the
molecular interplay involving the signalling pathways, downstream effectors, and their
interactions with the EMT would be an important requisite while the challenges of
metastasis continue to punctuate. Unfortunately, the molecular underpinnings that
govern this process remain to be completely illuminated. However, it is becoming
increasingly clear that EMT, which initiates every episode of metastasis, significantly
requires some master regulators called EMT transcription factors (EMT-TFs). Thus, this
review critically examines the roles of TFs as drivers of molecular rewiring that lead to
tumour initiation, progression, EMT, metastasis, and colonisation. In addition, it discusses
the interaction of various signalling molecules and effector proteins with these factors.
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It also provides insight into promising therapeutic targets that may inhibit the metastatic
process to overcome the limitation of “undruggable” cancer targets in therapeutic design
and upturn the current spate of drug resistance. More so, it extends the discussion from
the basic understanding of the EMT binary switch model, and ultimately unveiling the E/M
cellular plasticity along a phenotypic spectrum via multiple trans-differentiations. It wraps
up on how this knowledge update shapes the diagnostic and clinical approaches that may
demand a potential shift in investigative paradigm using novel technologies such as single-
cell analyses to improve overall patient survival.
Keywords: EMT, embryogenesis, ontogenesis, tumour, metastasis, microenvironment, transcription factors
INTRODUCTION

Embryological evidence of human development shows that the
humanbody is derived froma single cell type, a totipotent cell, from
which many other specialised cell types are generated in a bid to
expand, differentiate, and grow to accommodate functional
diversity. It is based on this understanding that the need for cell
transition from one type to another is physiologically justified even
though, understanding of similar cell transition in pathological
situations, particularly in tumour metastasis, has recently emerged.
Importantly, a phenomenon that facilitates such a cellular diversity
during tissue/organ development and in adulthood is an epithelial-
mesenchymal transition (EMT), characterised by reversible gradual
loss of epithelial characteristics and the resultant development of
mesenchymal features. As the knowledge of EMT roles in various
tissue/organ development surges, three types of EMT have been
recognised to occur in biological systems. Each type occurs in
response to different biological signals andwith different functional
consequences (1).

Type 1 represents a physiological process that occurs in
implantation, embryo formation, and organ development. Type 2
occurs in association with wound healing, tissue regeneration, and
organ fibrosis. This type begins with the initial step of a repair-
associated process that generatesfibroblasts to regenerate tissue due
to trauma and inflammatory damage. In contrast to type 1, type 2
does not continue indefinitely; it stops once the inflammatory
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process is attenuated (1, 2). In organ fibrosis, however, the EMT
process has a propensity for persistent response to recurring
inflammatory reactions with the possibility of leading to organ
damage. Type 3 predominantly occurs in the neoplastic
environment following initial genetic and epigenetic changes
affecting oncogenes and tumour suppressor genes that conspire
with normal EMT regulatory mechanisms to produce outcomes
that are far distinct from the other two types of EMT. The cell
phenotypes produced in this EMT typemay invade andmetastasise
to distant organs via systemic circulation. In an attempt to decipher
the molecular interplay of cell transition mechanisms—both in
physiological and pathological states—a lot has been elucidated on
the signalling pathways in type 1 and type 2 EMT (2); however, the
specific cues that orchestrate type 3 EMT in epithelial carcinoma
cells are yet to be completely understood.

In the past few decades, scientists have invested a lot of effort
to unravel the pathogenesis of tumour metastasis. This has led to
the conviction that a successful tumour spread requires several
steps. These include the EMT process, tumour cell invasion,
intravasation into the vascular system, transition through the
circulatory system, extravasation out of the vasculature,
seeding at the premetastatic niche, and, finally, survival and
growth at the secondary metastatic site (3, 4). In addition,
studies have established that tumour metastasis requires
intimate interaction and collaboration between cancer cells and
other stromal components of the tumour microenvironment (5),
including the inflammatory signals (6), which significantly
dictate several aspects of the metastatic cascade.

In this article, we review our current understanding of the
multiplex interplays between the master regulators that
orchestrate tumour progression in consideration of cellular
plasticity along a phenotypic spectrum and beyond the concept
of the binary switch model. In particular, we discuss the roles of
TFs in EMT programming and potentially attractive therapeutic
targets that could help mitigate tumour metastasis. We finally
call into attention how this development could be better explored
using the state-of-the-art therapeutic design during cancer
control interventions.
EMT AND METASTASIS

The propensity of carcinoma to populate immediate tissues and
migrate to remote organs has long been recognised as a
November 2021 | Volume 11 | Article 762817
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dominant feature of tumour metastasis. This composite
phenomenon results when tumour cells disconnect from the
initial epithelial layer within the primary malignancies, invade
the neighbouring microenvironment, intravasate into the
vascular system, and ultimately permeate distant organs (7).

Scientists have proven beyond doubt that the local
microenvironment provides necessary signals that determine the
fate of the disseminated cells at the peripheral metastatic site,
whether to proliferate and revert to a more epithelial phenotype or
remain dormant for an extended period (8). In either case,
metastasis results. Recent studies have signalled that these events
may be supported by the acquisition of EMT features, which is
characterised by the loss of apical-lateral polarity (9), even though
the complex molecular interplay in this event remains a puzzle.
Understanding the molecular mechanism in the EMT program for
initiation of tumour invasion and metastasis is key to improved
therapeutic interventions.

Molecular Reprogramming in EMT
Despite the seemingly simple definition, EMT is an extremely
complex process, activated by pleiotropic intrinsic and extrinsic
factors and finely regulated temporally and spatially (10). It
involves several molecular re-engineering that instigates
polarised epithelial cells, which ordinarily interact with
basement membrane through its basal surface to ultimately
gain mesenchymal features. Consequently, loss of apical-basal
polarity, enhanced motility, invasiveness, immunosuppression,
and increased resistance to cell death and therapy result owing to
the acquisition of stem cell-like properties (11). Meanwhile, the
hallmark of EMT is the inhibition of E-cadherin. Suppression of
E-cadherin results in reduced cell adhesion and imposition of
migratory mesenchymal cells. This process is not a snap
approach. Even though it was previously believed that the
Frontiers in Oncology | www.frontiersin.org 3
transition of tumour cells from pure epithelial to pure
mesenchymal state followed a binary-switch model, the
emerging knowledge shows that E!M transition is involved
with a complex dynamic process through a phenotypic spectrum.
Again, the EMT is a highly conserved phenomenon involving
corporations among TFs, effector proteins, and signalling
molecules that rely on the activity of TFs as effector molecules.

Generally, EMT is characterised by the suppression of
epithelial markers particularly involving the intercellular
junction protein complex made up of gap junction proteins
(such as connexin) adherens junction proteins (particularly, E-
cadherin), tight junction proteins (occludin, claudin, and
junctional adhesion molecules), cytokeratins, and catenins, as
shown in Figure 1. Primarily, E-cadherin is the most notable
among all epithelial markers for its gatekeeping role to avert
EMT by acting in concert with the intercellular adhesion system
to maintain cellular polarity, differentiation, migration, and
signalling in proliferation pathways. Consequently, loss of E-
cadherin promotes the transformation of stationary epithelial
cells to a migratory mesenchymal phenotype through a cascade
process involving several intermediate E/M phenotypes. Apart
from mutation, loss of E-cadherin may also be orchestrated by
downregulation due to epigenetic or transcriptional silencing
(12, 13). All the same, mesenchymal markers such as vimentin,
N-cadherin, fibronectins, smooth muscle actin, and matrix
metalloproteases (MMP) also become upregulated and
function concurrently with the loss of E-cadherin during the
EMT program (14) (Figure 1). Altogether, these effector
proteins collaborate to induce rearrangement of cellular
architecture leading to destabilisation in cellular adhesion,
proteolytic degeneration of basement membrane, increased
motility (15), and generation of circulating tumour cells
(CTCs) (Figure 1).
FIGURE 1 | The metastatic cascade. Epithelial tumours may sometimes undergo EMT to generate mesenchymal cells with more motile and invasive properties that
penetrate the basal lamina (invasion [1]) and enter the bloodstream or lymphatic system, becoming circulating tumour cells (intravasation [2]), which are transported
via the systemic circulation (circulation [3]), migrate into distant tissues that have the favourable cellular cues (extravasation [4]). The microenvironmental signals then
induce an EMT reversal (also called MET) to establish secondary micrometastases (colonization [5]).
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Even though downregulation of E-cadherin has been shown to
induce EMT independently in some cancermodels (16, 17), a study
carried out by Vafaizadeh and her colleagues (18) suggests that
activeb-catenin is essential for invasion in culture and experimental
metastasis model attributed in part to detachment of adherens
junctions during earlyEMTand subsequentdegradation.Deducing
in tandem with their structural arrangement, the implication of
these findings is that b-catenin acts cooperatively with E-cadherin
to initiate EMT (Figure 2), suggesting that b-catenin may be an
important therapeutic target in certain types of cancer.

More so, various coordinated events that occur in EMT are
controlled by a set of TFs in a cell-specific and context-dependent
manner (19, 20). As illustrated in Figure 2, there is vast evidence
that these factors are themselves controlled by various signalling
pathways and microenvironment signals such as tumour growth
factor-beta (TGF-b), epidermal growth factor (EGF), oestrogen,
platelet-derived growth factor (PDGF), WNT, hedgehog (SHH),
Notch, and integrins (21–26). In addition to induction of EMT by
TFs and signallingmolecules, certain types of cellular effectors, such
as microRNAs, have also been implicated for their roles in
stimulating EMT through TFs. In essence, epithelial-
mesenchymal transition TFs (EMT-TFs) perform central roles
during the EMT program, which is fundamental to various
processes in tissue growth and organ development.

Before now, most experimental models have defined EMT as
a binary transition of tumour cells between EMT and MET as
mentioned above. However, this oversimplification has caused
some confusion, as it fails to explain the real phenomena of the
current knowledge, which may not address the limitations of
modern clinical settings. Several attempts have been made to
elucidate the mechanistic process of EMT through various
studies and town hall discussions. Recently, during the 2017
and 2019 meetings of The EMT International Association
(TEMTIA), the new concept of “epithelial-to-mesenchymal
plasticity” (EMP) was introduced (27), thus broadening the
traditional definition of EMT to accommodate the newly
discovered features such as the partial activation of EMT, and
the existence of a continuous spectrum of hybrid EMT/MET
phenotype. Presently, the construction of mathematical models
and EMT trajectory by single-cell transcriptomics has enhanced
our understanding of the existence of multiple intermediate steps
with various degrees of E or M states (28, 29) (Figure 3). This
intermediate E/M phase is characterised by various degrees of
molecular markers such as E-cadherin, vimentin, b-catenin, etc.,
depending on the level of EMT-TF expression or inhibition

Remarkably, emerging studies have suggested that the hybrid
E/M status can be further divided into several phases based on
the combination of different markers they display, as shown in
Figure 3. This proposal was supported by a genetically modified
skin squamous cell carcinoma model, showing that neoplastic
cells commit to spontaneous EMT and that the hybrid E/M
status was divided into early and late hybrid E/M states
according to the expression patterns of the surface markers
CD106, CD61, and CD51 (30). The emerging concept of
plasticity of EMT/MET through transitional states is further
discussed extensively later in this report.
Frontiers in Oncology | www.frontiersin.org 4
Roles of Transcription Factors in EMTProgram
The cornerstone of every EMT and its reverse, i.e., mesenchymal-
epithelial transition (MET) program, is the transcriptional
regulators that control the gene expression required for the
cellular transitions. The most widely studied among these
factors are zinc-finger proteins (SNAIL), zinc-finger E-box-
binding homeobox (ZEB), and Twist family of basic helix-
loop-helix (bHLH) transcription factors (TWIST) (31, 32)
which are altogether called EMT-TFs (Table 1).

EMT-TFs are gene expression regulators that direct selective
gene expression according to the demand of a cell. Their
activities are localized in the nucleus, where they have
immediate accessibility to the DNA. A common feature of all
EMT-TFs is their physiological roles in embryogenesis and
organismal development. However, studies have confirmed
their aberrant reappearance in cancer cells during tumour
development and progression (40, 41). They are activated in
the early events of EMT, and they could hence be said to play
cardinal roles in development, fibrosis, and tumour
aggressiveness. Sometimes, they control the expression of each
other and function synergistically at target genes (42).

The conventional feature of all TFs is the direct/indirect
inhibition of E-cadherin expression, resulting in the imposition
of mesenchymal state and loss of epithelial cell surface
biomarkers to gain effective change in phenotype (4). Barring
genetic mutations, the overall effect of EMT-TFs on the
degradation of E-cadherin to initiate EMT pathway
characterizes a structural transformation in the biological
properties of epithelial cells. While it is important to
understand the mechanisms involved in phenotypic changes
from one cellular architecture to another, the roles of
individual EMT-inducing TFs cannot be overemphasised as a
functional basis for loss of cellular configuration/polarity in
epithelial cells, which in turn influences invasion, cell
migration, and resistance to anoikis.

Snail Transcription Factors
All snail protein members encode transcriptional repressors with
a similar structural organisation. The C-terminal domain is
exceptionally conserved, containing four- to five-type zinc
fingers (C2H2) which oversee sequence-specific binding to the
E-box element (5′-CAG GTG-3′) of the target genes (43). The N-
terminal in humans contains the evolutionarily conserved SNAG
domain, which is important for the binding of various
transcriptional corepressor complexes to enforce repression of
the target genes (44). The central region of Snail is characterised
by a serine-rich domain (SRD) and a nuclear export sequence
(NES) that regulate protein stability and subcellular localisation
of Snail, respectively.

Snail member proteins are the most widely studied modulators
of E-cadherin expression, including Snail, Slug, and Smuc. As
opposed to Snail and Slug, the involvement of Smuc in the EMT
process of human carcinomas is not yet established (45), according
to the availabledata at present.However, as the paradigmof tumour
metastasis keeps evolving, it may be worthwhile to investigate the
possible involvement of Smuc in different cancer models.
November 2021 | Volume 11 | Article 762817
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FIGURE 2 | Regulation of major EMT transcription factors by signalling pathways. Epithelial-mesenchymal transition (EMT) is driven by SNAIL, zinc-finger E-box-
binding (ZEB), and basic helix-loop-helix (bHLH) transcription factors that act as downstream effectors from several other signalling molecules. 1, Wnt signalling: WNT
inhibits glycogen synthase kinase-3b (GSK3b) to stabilize b-catenin, which translocates to the nucleus to recruit the transcription factors; lymphoid enhancer-binding
factor 1 (LEF) and T-cell factor (TCF) and promotes expression of SNAIL1 and SNAIL2. 2, Notch signalling: binding of a ligand (such as delta-like or jagged) with
Notch receptors initiates the Notch signalling through the proteolytic cleavage by g-secretase complex to release NICD. NICD then undergoes nuclear translocation
to regulate the expression of target genes, including SNAIL, ZEB, and bHLH families. 3, Transforming growth factor-b (TGFb) promotes EMT by acting at various
strata; SMAD-mediated and non-SMAD signalling (i) SMAD-mediated signalling: Activation of the TbRI and TbRII turns on SMAD2 and SMAD3, which then integrate
with SMAD4 to form a trimeric SMAD complex. This complex translocates into the nucleus to stimulate the expression of EMT transcription factors (ii) non-SMAD-
mediated signalling: TGFb also activates ERK through the RAS-MAKP pathway. Activated ERK can then stimulate the expression of SNAIL1 and SNAIL2
(unspecified in the image). 4–6, Growth factors (EGF, FGF, and HGF): various growth factors such as EGF, FGF, and PDGF activate receptor tyrosine kinases
(RTKs), triggering dimerization and autophosphorylation of the intracellular domain of these receptors, which allows them to activate other downstream signalling
molecules, including PI3K, PAK1, and STAT 3 and increase expression of SNAIL1 and SNAIL2. 7, Oestrogen; oestrogen is one of the few molecular candidates that
negatively regulate EMT. It does this through direct inhibition of Slug transcription by forming a co-repressor complex consisting of ligand-activated ERa, HDAC1,
and nuclear receptor co-repressor (NCoR) that binds to the oestrogen-response elements at the slug promoter sequence and inhibit its expression. 8, Hypoxia: in
normoxic conditions, prolyl hydroxylases are activated which causes hydroxylation of HIF-1a and thereby hindering their activities, whereas, hypoxia stabilizes the
enzymes, enabling their nuclear translocation and heterodimerization and binding to oversee stimulation of Twist and stabilization of SNAIL1/2. 9, Tumour necrotic
factor-alpha (TNF-a): TNF-a signal activates IKB kinase complex (IKK), which in turn phosphorylates NF-kB inhibitor. Consequently, NF-kB becomes active and
undergoes nuclear translocation to promote induction of Twist1 expression.
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Also, E-cadherin is the hallmark of EMT, and its suppression is
mainly attributed to the functions of Snail1 and Snail2 expressions
by binding directly to the E-box of the promoter region and
downregulate their expressions (8). EMT-TFs do not only inhibit
E-cadherin expression but also downregulate the transcription of
other genes encoding the epithelial junction proteins such as
claudin (46), ZO-1 (47), both of which serve to stabilise the tight
junctions. This implies that any biological process that tends to
upregulate Snail expressionwill encourageEMT. Inaddition, Snail1
has also been shown to enhance the expressions of matrix
degradation enzyme matrix metalloproteinases 9 (MMP9) (48),
leading to EMT cascade, as a consequence of proteolytic action of
MMP that reshapes the extracellular matrix and deconstructs the
epithelial membrane (49).

Snail has long been known as an effector molecule for various
signalling pathways that direct their functions. For instance,
because Snail is a vital regulator of E-cadherin, scientists have
asked whether the effects of the Notch on this process could be
Frontiers in Oncology | www.frontiersin.org 6
mediated through the Notch intracellular domain (NICD) via
regulation of Snail1. The answer to this is affirmative since Notch
has been shown to indirectly promote EMT through regulation
of Snail (Figure 2). In further agreement with this, Kar et al. (50)
reported that activation of Notch-1 promotes EMT via the
repression of E-cadherin by Slug. Similarly, a study carried out
by Niessen and his colleagues showed that activation of the
Notch in the context of TGF-b stimulation results in synergistic
upregulation of Snail in endothelial cells (51). From the above
study, it is clearly understood that TGF-b signalling plays a key
role in the pathogenesis of tumour metastasis and thus could
function as a potential target in controlling tumour progression.

As indicated earlier, TFs regulate the expression of one another.
For instance, when E-cadherin expression is suppressed, the
expression of Snail proteins (SNAI1/SNAI2) is amplified by an
autoactivation loop due to the inhibition of nuclear factor-kB (NF-
kB) (52). Therefore, the self-stimulation loop of Snail is engendered
by the downregulation of E-cadherin via SNAIL (Snail1/Snail2).
FIGURE 3 | EMT/MET intermediates. (A–E) Intermediate cells: hybrid/partial EMT (pEMT) cells. nth: The transition phase indicates the number of transitions that may
occur before M cells are formed, which is indeterminate but could be dictated by many factors including the tumour microenvironmental cues. Intermediate cells
possess dynamic characteristics that are central to increased metastatic potential. Hybrid/pEMT “C”: indicates an unspecific hypothetical stage. The time taken
(known as first arrival time (FAT) distribution) for E or M cells to transition to each other, or individual pMET/hybrid cell at the nth phase varies depending on (i)
epigenetic changes (histone modification or methylation), (ii) presence of anti-EMT/pro-MET factors (such as OVOL 1/2, GRHL-2, ESRP-1/2, and various microRNAs
(including miR20 family), among others. Generally, the stability of hybrid E/M is controlled by some factors known as phenotypic stability factors (PSFs) and their
metabolic, genomic, and morphologic states. However, as these intermediate cells possess some similar characteristics, they also have different phenotypic
behaviours. They possess identical properties such as tumour-initiating potential but are also significantly contrastive, based on (i) cellular plasticity, (ii) degree of
invasiveness, and (iii) metastatic potential. Among all the intermediate phenotypes, however, intermediate M possesses the highest migratory potential, the highest
degree of invasiveness, most primed to form spindle-shaped phenotype and the highest resistance to anoikis.
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This insinuates that Slug is not only a transcriptional repressor but
also a transcriptional activator. Intriguingly, Twist1 also binds
directly to E-box on the Slug promoter as a transcriptional
activator to induce Slug transcription (53). Likewise, Slug is
essential for Twist1 to induce EMT. Meanwhile, a knockdown of
Slug completely blocks the ability of Twist1 to suppress E-cadherin
transcription (54). By implication, Twist1 activity is insufficient to
induce cancer cell invasion and distant metastasis in the absence of
Slug, making it an attractive therapeutic target.

Apart from EMT modulation, Snail protein members also
block the cell cycle, promote cell survival, and inhibit apoptosis,
with additional roles in the induction of metastasis and
acquisition of cancer stem cell-like characteristics (55, 56).
These findings were further supported by separate reports
establishing Slug to increase the amount of CD44, a marker of
cancer stem cells (CSCs) (57, 58). By implication, the CSC
membrane marker could be a potential target for tumour
detection, metastatic prevention, selection of drug targets, and
other possible intervention strategies.

Zinc-Finger E-Box Binding Homeobox
Transcription Factor
Another important TF, known as zinc-finger E-box binding
homeobox, or ZEB, also modulates the transition of epithelial
cells to mesenchymal phenotype. Generally, homeobox genes are
conserved in plants, fungi and animals. In humans, the ZEB
family proteins are made up of two homologous proteins; ZEB1
(dEFI) and ZEB2 (SIP1) which constitute zinc-finger TFs (59).
Structurally, they include two ZnF domains, N-terminal ZnF and
Frontiers in Oncology | www.frontiersin.org 7
C-terminal ZnF. The homeodomain consists of three-alpha
helices. In this segment, the helix-loop-helix (or helix-turn-
helix (HTH)) motif functions as the E-box-binding site and
allows the protein to bind to the E-cadherin promoter region
(42), and thus regulates the transcription of the adjacent DNA.
Generally, the homeobox codes for a specific sequence that
functions as part of evolutionarily conserved signalling
pathways, which is particularly active in morphogenesis.

Currently, the roles of the proteins of ZEB have been further
implicated in tumorigenesis and metastasis as a resultant
disruption of morphogenesis. They function through
transcriptional inhibition of the E-cadherin gene (CDH1) by
binding the promoter site known as a consensus sequence in
addition to corepressor recruitment, histone deacetylase process,
and chromatin condensation ultimately initiating EMT (60).

In physiological states, however, the proteins of ZEB mainly
occur in the heart, CNS, skeletal muscle, and hematopoietic cells to
support organdevelopment. Particularly, ZEB1 is commonly found
in the thymusduringT-lymphocytedevelopment;whereas, ZEB2 is
chiefly found in the spleen during B-lymphocyte development (61),
suggesting specific functionality and expression.However, evidence
of ZEB1 upregulation has been reported in different cancer types
such as pancreatic, lung, liver, colon, and breast cancers (62–66). In
the same vein, Yilmaz and Christofori (67) demonstrated that
increased expression of ZEB1 decreased the response of cancer
cells to therapy. These studies predict that ZEB1 could be an
important target in anticancer drug resistance.

By interconnection, Snail1 and Twist1 mutually regulate the
expression of ZEB1 (68), while the activated ZEB1, in turn,
TABLE 1 | Signalling pathways regulate EMT-TFs.

Pathways Main
EMT-FTs
regulated

Changes in
expression

Mechanism of modulation Effects References

TGF-b
signalling

SNAIL1/2,
ZEB1/2

Upregulation TGF activates SMAD complex (SMAD-dependent pathway) and ERK (non-SMAD-dependent
pathway), which transcriptionally stimulate the expression of SNAIL1/2 and ZEB1/2

Promotes
EMT

(33, 34)

TGF-b regulates SNAIL by inducing sumoylation at the Lys234 residue of SNAIL, which is critical
for its ability to induce an EMT

Promotes
EMT

(35)

TGF-b also activate Notch and Wnt pathways, to promote the expression of SNAIL1/2 Promotes
EMT

(33)

NOTCH
signalling

SNAIL1/2,
ZEB1/2

Upregulation Direct effect: activation of Notch results in cleavage of the Notch intracellular domain (NICD), which
undergoes nuclear translocation, binds to SNAIL promoter, and upregulate the mRNA level of
SNAIL1/2 and ZEB1/2

Promotes
EMT

(36)

Indirect effect: indirectly activates b-catenin (Snail1/2, ZEB1/2 and TWIST1/2) to promote and
regulate EMT

Promotes
EMT

(33)

WNT
signalling

SNAIL1/2,
TWIST1

Upregulation Wnt stabilizes b-catenin to recruit lymphoid enhancer-binding factor 1 (LEF) and T-cell factor (TCF),
which promotes expression of SNAIL1 and SNAIL 2.

Promotes
EMT

(23)

Recombinant canonical WNT3A induces the expression of TWIST and SNAIL2 and N-cadherin and
represses the expression of E-cadherin in HER2 (also known as ERBB2)-expressing breast cancer
cells in vitro

Promotes
EMT

(37)

Hedgehog
(Hh)
signalling

SNAIL,
ZEB, and
TWIST

Upregulation Direct regulation: binding of Hh ligands activate patched homologs (PTCH1 and PTCH2), resulting
in the release of smo proteins and initiate intracellular cascades that later activates Gli family
transcription factors, which bind to the promoter region of SNAIL1 to stimulate their expressions

Promotes
EMT

(38)

Indirect regulations: Hh signalling activates TGF and wnt to execute their downstream regulations
on SNAIL, ZEB, and TWIST

Promotes
EMT

Tumour
necrotic
factor-alpha
(TNF-a)

TWIST1 Upregulation TNF-a signal activates the IKB kinase complex (IKK), which in turn phosphorylates NF-kB inhibitor.
Consequently, NF-kB becomes active and undergoes nuclear translocation to promote induction of
TWIST and SNAIL family members

Promotes
EMT

(39)
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downregulates multiple genes that enforce epithelial
characteristics (69), which is the main event in tumour
metastasis. In other words, these proteins could be implicated
as markers of poor clinical outcomes in patients with a solid
tumour, most especially in the metastatic drive. Akin to the Snail
family, various signalling molecules modulate ZEB1 and ZEB2
expression. For instance, TGF-b, Wnt/b-catenin, PI3K/Akt, and
Ras/Erk signalling induce ZEB1 (70) (Figure 2), whereas micro-
RNAs negatively regulate the expression.

Furthermore, posttranscriptional phosphorylation of ZEB1
also has the propensity to modulate their expression levels,
the functional role that was not immediately understood.
Although, recent findings have proposed an inhibitory effect
on ZEB1 function. For instance, Llorens et al. (71) reported
that phosphorylation of ZEB proteins within C-terminal
ZnF inhibits the ZEB binding to DNA and its transcriptional
activity. This study shows that ZEB1 phosphorylation could
perform many functions particularly in crosslinking the TGF-b
signalling with many other pathways involving signalling
molecules (cytokines and growth factors) within the
cellular microenvironment.

Basic Helix-Loop-Helix
Transcription Factors
In mammals, two bHLH TFs have been identified, Twist1 and
Twist2. These two factors share structural similarities and, as
such, bind to the same E-box of DNA response elements of the
target genes to regulate their expression (72). They are the most
characterized indirect transcriptional repressors of the CDH1
promoter, and they play an essential role in embryo formation,
wound healing, and tissue fibrosis (73, 74). In adulthood, they are
either deficient or expressed at extremely low levels (75), making
their molecular underpinning a striking phenomenon for further
study, especially in pathogenesis.

Unsurprisingly, scientific studies have shown that Twist
proteins are upregulated in carcinogenesis (76, 77) and
metastasis (77). Apart from inhibiting the expression of the
epithelial marker, Twist1 also increases the expression of
mesenchymal markers, including vimentin, N-cadherin, and
fibronectin, reducing cellular adhesion and promoting cellular
motility (77, 78). In addition, Twist proteins generally promote
cancer stem cell phenotype (79), which explains its association
with poor prognosis.

By regulation, posttranslational modification of Twist
proteins can impact their functions both positively and
negatively; for instance, phosphorylation of Twist1 by MAP
enhances its stability, promoting invasiveness and EMT in
breast cancer cells (80). Contrastingly, IKKb-mediated
phosphorylation promotes the degradation of Twist proteins
(81), providing an insight into possible regulation of EMT,
which could further prevent tumour cell motility, invasion, and
accordingly, cancer metastasis. Understanding the accumulation
of Twist protein as a precursor for cancer metastasis, the “brake
system” of this molecular purview renders IKKb a potential
novel target for future therapeutic design in the fight against
cancer metastasis.
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Roles of Other EMT Transcription Factors
in EMT Program
Apart from the TFs that have been studied extensively, previous
studies have indicated other nonconventional TFs in the EMT
process. For instance, goosecoid (GSC) represses E-cadherin
expression indirectly (82) and has been found in various
metastatic breast cancer (83). Also, Krüppel-like factor 8
(KLF8) enhances EMT induction through direct suppression of
E-cadherin by regulating its promoter (84), resulting in
improved motility and altered cell morphology, which has
been implicated in breast, ovarian, and gastric cancer cell lines
(84–87).

Additionally, another less-reported TF known as paired-related
homeobox 1 (PRRX1) also plays important role in tumorigenesis
and promotes tumour invasion. PRRX1 with two isoforms—
PRRX1a and PRRX1b—exerts distinct functions in EMT. A
report from recent studies shows crucial roles of PRRX1 via
isoform switching during MET, tumour invasion, and metastasis
of pancreatic malignancy (88). The study further suggests that
PRRX1b isoform stimulates cellular de-differentiation, EMT
initiation, and tumour invasiveness while the PRRX1a isoform
could induce cell differentiation and the MET (88). Encoded in
humans by the PRRX1 gene, the PRRX1 protein functions
primarily act as a transcription coactivator, which enhances the
DNA-binding activity of serum response factor that induces many
genes by growth and differentiation factors.

Similarly, another superfamily of transcriptional regulators
named forkhead box (FOX) proteins is emerging as important
regulatory players in various gene expressions associated with
cell growth, proliferation, and differentiation. Akin to the
common TFs, some FOX proteins are also important drivers in
embryonic development and biological shift in cellular
phenotypes, which may be linked with maintenance of
epithelial polarity via E-cadherin function.

In particular, a report in the literature shows that forkhead
box C2 (FOXC2) induces EMT by indirect suppression of
E-cadherin (89). In effect, FOXC2 plays a crucial role in
embryogenesis and angiogenesis, among other physiological
processes (90, 91). More importantly, FOXC2 contributes to
the metastatic process via EMT activation in many cancer
growths and developments involving cancers of the breast,
prostate, and ovary (92–94). Furthermore, using human
tumour cell lines, the investigation also reveals that
suppression of FOXC2 by short hairpin RNA (shRNA) in an
aggressive metastatic breast cancer model could halt the
metastatic tendency (92) suggesting that FOCX2 is not only a
promising molecular marker for cancer detection but also a
potential therapeutic target. Currently, very few TFs remain
“druggable.” Worse still, the existence of many TFs outside the
nuclear receptor family poses difficulty in targeting those
recognisable TFs with small molecule therapeutics, partly due
to paucity of data. Therefore, it might be worthwhile to try out
targeting the less-exploitable TFs such as GSC, KLF8, PRRX1,
FOCX2, GRHL2, and other poorly investigated similar molecules
considering their potential regulatory roles within various
signalling pathways.
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ANTI-EMT FACTORS

Despite being two clear-cut cellular states, epithelial and
mesenchymal states can trans-differentiate into each other
through EMT and its reverse, MET. This fluidity suggests that
the regulatory loops among the transcription factors (TFs)
involve complex interplays between EMT inducers and EMT
suppressors. Several EMT promoters have been identified and
elucidated earlier in this study; however, it is also important to
discuss the roles of other factors with antimetastatic attributes.

Proepithelial Factors/Anti-EMT Factors
In contrast to the EMT-inducing transcription factors, molecular
mechanisms inhibiting EMT are inadequately characterised as of
now. Meanwhile, as scientific efforts are intensifying to decipher
the batteries of factors that regulate EMT, there seems to be some
cheering news as emerging studies continue to provide evidence
of possible spontaneous inhibition of EMT through some special
transcription factors. These factors could be referred to as
proepithelial factors or anti-EMT factors. Some of these factors
include OVO-like transcriptional repressor (OVOL1, OVOL2),
grainyhead-like transcription factor 2 (GRHL2), CCAAT-
enhancer-binding protein alpha (C/EBPa), oestrogen receptor
(ER), and p53. Their major role is to counterbalance the EMT-
TFs thereby safeguarding the continued residence of cells in an
epithelial state (93).

OVO-Like Transcriptional Factor
OVOL protein family, including OVOL1 and OVOL2, are the
vertebrate homologs of Drosophila OVO and have been regarded
as critical regulators of cellular transformation both in
physiological and diseased states. Even though they are also
members of the zinc-finger protein family, they are known as the
anti-EMT transcription factors that promote the epithelial status.
They are functionally important in the embryogenesis of
vertebrates and for the maintenance of an epithelial state and
terminal differentiation during tissue homeostasis (94).
Mechanistically, OVOL1/2 can suppress EMT by direct
inhibition of EMT-TFs, such as ZEB1, ZEB2, and TWIST. In
addition, it promotes the reverse of EMT, that is, MET (95, 96),
thereby inducing the expression of the cell-cell adhesion
molecule called E-cadherin.

However, the extent of the reversal remains a conundrum and
requires further investigations since the generation of hybrid
EMT will amount to more aggressive malignancy and may
portray OVOL proteins as spurious anti-EMT factors.
Although the existence of varying hybrid EMT intermediates
(as depicted in Figure 3) could explain different levels of
invasiveness, plasticity, and migratory potential, a deeper
understanding of how OVOL1 and OVOL2 promote epithelial
differentiation and inhibit EMT in the context of different
metastatic models, maybe rewarding to reliably label OVOL
factors as useful therapeutic candidates. A report that seems to
partially address this concern from Wu and colleagues revealed
that OVOL2 thwarts TGF-b signalling and blocks EMT during
breast tumour metastasis by repressing SMAD4 expression and
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interfering with SMAD4 and SMAD2/3 complex formation (97).
More recently, Xu et al. proposed that OVOL1 coordinates the
suppression of proliferation, invasion, and migration in oral
squamous cell carcinoma cells by inhibiting ZEB1 expression
via direct binding to its promoter (98). This further endorses the
OVOL2/ZEB1 feedback loop as the controller of the epithelial-
mesenchymal plasticity across several carcinomas.

Recently, mathematical modelling of the feedback circuit
between ZEB1 and OVOL2 has revealed that in addition to
epithelial and mesenchymal states, cells can acquire one or
more hybrid epithelial/mesenchymal states (99). In other words,
this has been considered the most plastic and aggressive state
(99), hence reinforcing the concern about how beneficial
OVOL could be as a novel therapeutic signature for overcoming
tumour progression. While OVOL1 and OVOL2 have been
described as gatekeepers that prevent mesenchymal trans-
differentiation and maintain epithelial identity, their regulation
is poorly understood.

OVOL1 or OVOL2 knockdown has been shown to
significantly increase the mRNA levels of both vimentin and
ZEB1. This led to an extensive functional study of OVOL
proteins by Maho et al. (100). The study employed two
precancerous conditions, actinic keratosis (AK) and cutaneous
squamous cell carcinoma (cSCC) and showed that OVOL1 and
OVOL2 were upregulated in AK and significantly downregulated
in cSCC. While ZEB1 and vimentin were upregulated in cSCC,
most AK cells were negative or faintly express the proteins,
suggesting that downregulation of OVOL1/2 and upregulation of
ZEB1 and vimentin may be associated with the progression of
AK to cSCC. Taken together, this study provides abundant
evidence to support the pro-MET features of OVOL factors
and the importance of the OVOL2/ZEB1 axis in the maintenance
of epithelial status. Thus, the OVOL1/2-ZEB1 axis can form an
important axis of regulation of EMT in cancer progression.

Grainyhead-Like-2 Transcription Factors
The grainyhead-like (GRHL) family of transcription factors
consist of three members, GRHL1, GRHL2, and GRHL3,
which were first discovered in Drosophila melanogaster (101).
Out of these, GRHL2 has been widely associated with neoplastic
diseases. The roles of GRHL2 in tumour pathogenesis seem to be
complex and controversial, varying with cancer type (102).
Recently, the signalling pathways between EMT and GRHL2
have attracted considerable attention from researchers. In
different cancer models, upregulation of GRHL2 expression has
been directly correlated with lower EMT scores; whereas, cancers
with mesenchymal features have reduced GRHL2 expression. In
cultured human colorectal cancer cells, GRHL2 upregulation
promotes epithelial states by reversing the epithelial-like shape
from a spindle-like shape and increases E-cadherin, b-catenin,
and ZO-1, while vimentin is significantly downregulated (103).

A recent study discovered that TGF-b-induced EMT is
inhibited by GRHL2, preventing invasion and migration of
gastric cancer. In turn, inhibition of TGF-b signalling pathways
increased GRHL2 expression (104). Similarly, GRHL2
significantly inhibits TGF-b-induced, Twist-induced, and
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spontaneous EMT in breast cancer (105). Further mechanistic
studies reveal that GRHL2 is directly inhibited by ZEB1, which in
itself, a direct target for repression by GRHL2 (106), suggesting
that GRHL2 and ZEB1 form a double-negative regulatory
feedback loop in breast cancer cells.

p53 Tumour Suppressor
The p53 tumour suppressor, also known as the “genome
guardian,” plays a dominant role in maintaining genome
stability and protects the DNA against mutagenesis (107). p53
plays diverse tissue regulatory roles through several mechanisms.
It can be regarded as a transcription factor that acts in response
to various stress cues, causing cell cycle arrest, cell ageing, and
apoptosis. In addition, p53 plays a vital role in controlling the
metabolism and antioxidant status of cells (108). Beyond this,
p53 has been associated with anti-EMT roles, by restricting the
plasticity of epithelial cells during EMT.

Essentially, p53 indirectly promotes M!E by attenuating
EMT-TFs (109) via the upregulation of EMT-suppressing
miRNAs. Thus, p53 has the potential to avert EMT and the
associated stem cell-like phenotype across multiple cancers.
Categorically, p53 induces the expression of miR-200c, miR-
183, and miR-34, which target ZEB, SNAIL, and TWIST families
of transcription factors (110). In other words, apart from
maintaining genome integrity, a functioning p53 gene would
also be crucial for the maintenance of epithelial integrity.
CCAAT/Enhancer-Binding Protein Alpha
Transcription Factor
The transcription factor CCAAT enhancer-binding protein a
(C/EBPa) is a widely expressed basic leucine zipper transcription
factor that plays a critical role in cellular differentiation (111). It
plays a pivotal role in the regulation of the cell cycle and the
expression of several lineage-specific genes (112). Recent findings
provided persuasive proof that C/EBPa is an important
transcription factor required to sustain epithelial architecture
of human mammary cells, preventing epithelial-to-mesenchymal
transition and thereby acting as a repressor of breast cancer
progression in vivo (113). C/EBPa factor can activate and
represses several target genes, and its roles in the maintenance
of epithelial traits have been attributed to its direct transcriptional
activation of epithelial markers, such as CDH1 (E-cadherin) and
suppression of EMT-TFs such as ZEB1 (114). This is consistent
with previous data on hepatocellular carcinoma, where C/EBPa is
shown to be a critical negative regulator of TGF-b-induced EMT,
promoting inhibition of N-cadherin and maintenance of E-
cadherin expression (114).

Since CEBPA mRNA levels were instantly suppressed upon
TGF-b treatment, Ana et al. (113) proposed that SMAD3 may be
responsible for the repression of CEBPA transcription. This
sounds logical since SMAD3 was found to occupy the CEBPA
locus upon TGF-b treatment. Depletion of SMAD3, owing to
impaired TGF-b-mediated repression of CEBPA, supports a
downstream regulatory role for SMAD3 as a transcriptional
repressor of C/EBPa expression during TGF-b-induced EMT.
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Oestrogen Receptor
The oestrogen receptor, especially the alpha class, (ERa) plays a
cardinal role in blocking the EMT process (Figure 2). For
example, metastasis-associated protein 3 (MTA3), directly
activated by ERa, downregulates Snail expression (115). Also,
ERa directly inhibits Slug transcription by forming a corepressor
complex consisting of ligand-activated ERa, histone deacetylase
1 (HDAC1), and nuclear receptor corepressor (NCoR) that binds
to the oestrogen-response elements at the Slug promoter
sequence (115, 116).

Therefore, the absence of ER or MTA3 results in abnormal
expression of Snail and Slug diminishing the ER activity to
promote metastasis, chemoresistance, and recurrence after
treatment (117, 118). These findings justify why ER is regarded
as a marker of poor clinical outcomes and an important
therapeutic target in breast cancer (119). Thus, through many
significant molecular mediations in connection with
tumorigenesis, EMT, and metastatic cascade, it might be
possible to develop a novel drug targeting the associated ER-
signalling components in women breast cancer intervention.
Regulation of TFs by Signalling Pathways
As stated earlier, EMT-TFs are regulated by various intracellular
signalling networks (Figure 2). It starts with the extracellular
molecules binding to its particular membrane receptor to initiate
intracellular signal transduction. The transforming growth
factor, wnt, oestrogen, fibroblast growth factor (FGF), PDGF,
and the Jagged family bind to TGF-b receptor (TGFbR), Frizzled,
oestrogen receptor (ER), fibroblast growth factor receptor
(FGFR), platelet-derived growth factor receptor (PDGF-R), and
Notch, respectively (120–122). The ligand-bound receptors
transduce intracellular signals via the pathways, such as
MAPK, phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt), nuclear factor-kB (NF-kB), b-catenin, or the Smad
signalling, which regulate the expression and stability of EMT-
TFs (121) (Figure 2).

Previous findings have shown that these networks of
signalling interface at various strata and numerous feedback
activation and inhibition mechanisms have been illustrated in
different EMT contexts, with the possibility of showing
overlapping and context-specific results (123, 124). This
highlights the importance of delineating the induction of these
pathways in various subpopulations of cancer cells following
EMT activation to understand possible therapeutic targets in
various human carcinomas.

Notably, the dominant roles of TGF-b in EMT must be
acknowledged. It is a well-elucidated molecule that induces
EMT in various cellular contexts, cancer inclusive. The functions
of TGF-b in cancer vary from one biological setting to another,
deciphering its dual relevance in tumour pathogenesis, which has
been called the “TGF-b paradox” (125). In the early tumour stage,
TGF-b supports apoptosis and inhibits the proliferation of tumour
cells. Conversely, it plays a tumour-promoting role in the later
stage by stimulating EMT, genomic instability, angiogenesis, cell
motility, and metastasis.
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Following successful binding to its receptor (TGF-bR), it
activates several signalling cascades, including Ras-MAPK and
SMAD-dependent signalling. Activation of the RAS-MAPK
induces expression of Snail1 and Snail2, ultimately leading to
the repression of E-cadherin (103). TGF-b can also initiate gene
expression through activation of the Notch, and Wnt pathways,
which then lead to activation of Snail1 and Snail2, expression of
mesenchymal markers, and EMT induction via degradation of
intracellular catenins (33) (Figure 2).

In addition to ligand-receptor interactions, environmental
signals such as oxygen reduction in the cellular environment can
as well directly activate TGF-b through hypoxia-inducible factor
1 alpha (HIF-1a) (126) which in turn leads to gene transcription.
More so, HIF-1a can initiate epigenetic modulation of EMT by
targeting the transcription of histone deacetylase 3 genes
(HDAC3), cooperating with Snail and ZEB expressions to
suppress epithelial expression (127), with the imposition of
mesenchymal characteristics.

Furthermore, there is compelling evidence in recent years to
support the significant role of Notch in the EMT process (128–
130). This is not surprising because the pathway is the nexus of
an adaptable signalling network that controls various cellular
mechanisms in different biological contexts—determined by the
tissue microenvironment (131, 132). Notch signalling explores
two discrete channels to synergistically regulate the expression of
EMT-TFs (133). Firstly, direct activation of TFs by mobilising
the Notch intracellular domain (NICD) to their promoter and
secondly, by potentiating HIF-1a recruitment to the lysyl
oxidase (LOX) promoter to aid the hypoxia-induced
upregulation of LOX, which stabilises Snail and safeguarding it
from protein degradation (134). Importantly, the signals
generated from this pathway usually stimulate transcriptional
repressors (Snail1/2, ZEB1/2, and TWIST1/2) to promote and
regulate EMT.

Fortunately, studies have proven that inhibition of Notch
signalling by the small interfering RNA (siRNA) system promotes
reversal of the EMT phenotype, resulting in the MET by inhibiting
ZEB1, Slug, Snail, and NF-kB (135). These data present molecular
evidence connecting Notch signalling with neoplastic drug
resistance validated by EMT phenotype. This suggests that
inactivation of Notch signalling with a novel targeted therapeutic
approach could be conceived to subdue chemoresistance toward
preventing tumour progression, for which present traditional
therapeutic strategies are grossly dissatisfying.

Interestingly, Snail could also regulate the Notch expression.
Kuphal et al. (136), for example, found downregulation of
Notch-4 by antisense Snail cDNA transfection of melanoma
cells, and the results are convincing in support of the complex
crosstalk between Notch and Snail during the acquisition of
EMT. These findings indicate the complex contribution of
different TGF-b to EMT in carcinoma cells and, therefore,
represent an intimidating obstacle in formulating a therapeutic
model to control the EMT in human tumours.

Regulation of EMT by MicroRNAs
MicroRNAs (miRNAs) are a small class of noncoding RNAs that
modulate gene expression by RNA silencing, translational
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suppression, and mRNA degradation (137). They are involved
in many biological processes involving cell differentiation,
proliferation, cell death, and tumour invasion (138). Another
report shows that miR-200 and miR-205 members can mediate
EMT suppression by direct inhibition of ZEB1 and ZEB2, thus
enhancing the tumour sensitivity to therapeutic interventions
(139). In addition, the expression of miR-204/miR-29b
demonstrates the blockage of metastasis and cancer invasion
considerably in gastric cancer cell lines via Snail1-induced EMT
suppression (140). Unsurprisingly, however, the low expression
level of the miR-200 family in breast cancer enhances ZEB1/
ZEB2 transcriptions, inducing TGF-b/BMP signalling to sustain
EMT (141). Also, Kim et al. (110) reported that p53 negatively
modulates EMT in cancer of the liver upregulating the miR-200
and miR-192 expression by targeting inhibition of ZEB1/
ZEB2 expression.

Activation of p53 targets many microRNAs—miR-200c, miR-
183, and miR-34—by inducing their expressions. This process, in
turn, downregulates some EMT-TFs such as ZEB and Snail.
Consequently, the chain reaction in the signalling cascade
directly results in EMT suppression and thus MET activation.
In essence, induction of TGF-b, mutations, or epigenetic
silencing which may cause loss of p53 could ultimately
stimulate the EMT process (142).
HYBRID TUMOUR CELL
SUBPOPULATIONS: PLASTICITY
THROUGH EMT

As mentioned earlier in this review, EMT was traditionally
considered a binary model and that any intermediate state is
just a transient snapshot acquired during the EMT process (143).
However, our understanding has recently evolved through a
plethora of scientific studies, revealing that cancer cells can
acquire metastable intermediate transition, with a concoction
of cells displaying the features of E or M phenotype or both (E/
M) at the molecular and/or morphological level. While several
authors have referred to these intermediary states as partial/
hybrid EMT (pEMT) (144), some set of scholars (145) have
consistently used “quasi-mesenchymal cells” because those cells
express CDH1 gene (which encodes E-cadherin) at the transcript
level without displaying E-cadherin at the cell surface (146), in
addition to stem-like features and coexpression of certain
epithelial and mesenchymal genes.

By studying the plasticity of EMT/MET through transitional
states, investigations show a range of pEMT intermediates (30).
Indeed, EMT is beyond the binary state; that EMT trans-
differentiation phases exist as a spectrum of various intermediate
hybrid states raise a big concern for cancer cell stemness and failure
in many therapeutics. Although, there is a strong evidence to
support that hybrid EMT/pEMT state is associated with increased
metastatic tendency, hitherto, it is not understood whether each
pEMT intermediate subpopulations have different cellular
properties that may dictate their relative responses to treatment
with immunotherapy, radiotherapy, and/or chemotherapy. Also,
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the precise mechanism that drives each transitional state through
many intermediate phases is yet unknown. More so, the actual
number of phases (here termed “n”, representing a definite number
of transitional phases; Figure 3) each cancer phenotype undergoes
from pure epithelial to mesenchymal state is still beyond the
current understanding of EMT. By implication, tumours with
pEMT may exhibit increased intratumour heterogeneity.

Although, all EMT-induced states possess aggressive features,
those carcinoma cells in the pEMT state have demonstrated
greater tumour-initiating and apoptotic potential as well as
therapeutic resistance than purely epithelial or mesenchymal
cells (147). Similar observations were made in a mouse model of
prostate cancer, where both hybrid epithelial/mesenchymal and
fully mesenchymal carcinoma cells were shown to initiate
primary tumours, but the fully mesenchymal cells were unable
to generate macroscopic metastases, while the hybrid cells were
capable of doing so (148). Corroborating this finding, another
study by Cornelia et al. (149) employed expression vectors and
gene knockout models to establish that malignant cells that exist
in the hybrid E/M state have highly tumorigenic features but lack
plasticity. Instead, they were locked in the E/M state and thereby
unable to transit into more E or more M states spontaneously,
suggesting that residence in a hybrid E/M state is enough for the
preservation of stem cell properties and the associated stemness
is thus exhibited regardless of phenotypic plasticity.

More also, cells in pEMT state exhibit loss of apical-basal
polarity and have better motility, while retaining adhesive
features with the nearby cells and acquiring mesenchymal-like
characteristics (144); hence, they can form cell clusters and move
together. If these cell bundles are lucky to successfully emigrate
to the bloodstream intact, they form clusters of CTCs that can
migrate collectively.

Interestingly, hybrid cells coexpressing epithelial and
mesenchymal markers have been detected among CTC clusters
in the bloodstream of patients with different tumour types,
including breast, lung, colon, and prostate cancer (150),
thereby complicating our quest to understand the composite
milieu of EMT spectrum. Tayoun and his colleagues reported
that clustered CTCs have advanced plasticity, possess CSC
characteristics and the ability to initiate tumours and form new
lesions and are fatal in tumour patients (151). While a few factors
that promote CTC cluster formation have been identified (152),
the key mechanisms that allow CTC clusters to survive in the
vascular system and allow them to metastasise effortlessly than
freely circulating CTCs remain contestable.

However, it is convincing to predict that malignant cells that
occupy pEMT locus along the EMT spectrum may be the most
suitable for metastasis because CTCs that migrate collectively
rather than singly may offer superior resistance against the
onslaught of the protective machinery within the blood
circulations, conforming with the axiom “united we stand,
divided we fall!” Interestingly, an earlier study demonstrated
that CTC clusters contribute to 50% of the total cells at the
secondary metastatic niche despite only constituting 3% of the
total CTCs (153). Reinforcing this discovery, Joosse et al. predicted
that CTC aggregates have a high probability of being trapped in
narrow blood vessels, hence facilitating extravasation (154).
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In essence, the fact that neoplastic cells that occupy the pEMT
state circulate in clusters, with a greater tendency to become CSC
(155), make them behave more aggressively than their
corresponding mesenchymal or epithelial counterparts. The
mechanism by which pEMT regulates stemness in squamous
cell carcinoma (SCC) is still largely unknown, although a study
has proposed that clustered CTCs display binding sites for
stemness-associated factors such as OCT4, NANOG, and
SOX2 are more hypomethylated (155).
FUTURE PERSPECTIVE

There is overwhelming evidence connecting EMT with tumour
progression and metastasis and sometimes drug resistance, with
transcription factors as the key players. Currently, emerging
knowledge of cellular plasticity and the continuous spectrum
of EMT transitional phases in metastasis establish the presence of
multiple tumour cell subpopulations. Importantly, the
translational significance of the interrelated events poses huge
implications in the orbit of cancer treatment and other important
intervention strategies. Here, we bring to the limelight some
important approaches to circumvent the drawbacks facing the
current cancer management, and further, provide how advancing
the understanding of EMT transition beyond the binary model
could shape the diagnostic and therapeutic strategies with a novel
approach, as follows:

• Reversing the EMT to its opposite state, i.e., MET.
• Inhibiting the EMT initiation.
• Unveiling the prospect of single-cell analysis in EMT.
REVERSING THE EMT TO ITS OPPOSITE
STATE (MET)

Reversing the EMT is a potential therapeutic approach involving
a forced stimulation of MET, which in principle should be an
exquisite way to prevent EMT [121]. However, the molecular
basis of this process is only beginning to gain recognition in
recent time compared with the EMT pathway, and therefore it
may take a more extended period for a rational design of
modulators of this direction to be explored. Mechanistically
speaking, interfering EMT transition is crucial to the
prevention of metastasis. Importantly, to achieve EMT!MET
reversion, tumour staging may be a central point to consider. For
instance, at early metastatic stages, Twist1 contributes to tumour
invasion and vascular intravasation through repression of E-
cadherin expression. Interestingly, however, epithelial cells that
predominate metastatic lesions suggest that EMT!MET
reversal is also fundamental to circulating tumour cells (CTCs)
in colonising a new metastatic niche at distal organs, attributable
to loss of Twist1 signal—the same signal that orchestrates
tumour invasion and vascular intravasation at early metastatic
stages. Without mincing words, the molecular mechanisms that
dictate on-and-off switches of EMT-TFs as observable in Twist1
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signal at different metastatic phases have received low attention.
Thus, the connecting pathway involving Twist1 expression
should be further explored, understanding that Twist1 and
other associated downstream regulators could be exploitable in
therapeutic designs for EMT!MET reversion, particularly at an
early stage of tumour development.

Similar to the spatiotemporal signal programming in Twist1
expression in different metastatic phases, microRNAs equally
regulate MET transition via down-regulation of many EMT-TFs
such as ZEB1 and ZEB2 and Snail2 (Slug). In reverse, many EMT-
TFs inhibit the transcription of microRNAs. In addition,
microRNAs function in concert with the p53 to modulate the
EMT pathway. Importantly, some molecular interactions involving
the inactivation of p53 have connections with the downregulation
of microRNAs. Inquisitively, the interconnections of p53,
microRNA transcriptions, epigenetic mutation, and other
associated factors remain an enticing area for further exploration
as a possible target for induction of the EMT!MET pathway and
potential therapeutic manipulations.

Inhibiting the EMT Initiation
Inhibition of EMT in the early steps of invasion and metastasis,
which perhaps promises to be the most cost-effective approach,
has been the talking point in the scientific community of late. As
earlier highlighted, the interplay and crosstalk between TFs and
other signalling molecules orchestrate and mandate adjacent
epithelial tumour cells to undergo EMT, leading to tumour
progression, invasiveness, metastasis, and therapeutic resistance
in some cancers. These TFs act as downstream effector molecules
for the cascade. Thus, breaking the crosstalk between TFs and
these pathways is a reasonable option for arresting tumour cells
from metastasising and limiting drug resistance. Although these
factors were for a long time considered “undruggable” targets
(156), a deeper understanding of their specific expression pattern,
degradation, mode of binding, protein/protein interaction, as well
as interaction with other signalling pathways has changed this
narrative. Additionally, it has also opened new possibilities to
affect transcription factors as therapeutic targets for cancer
treatment. Furthering the exploits through another perspective,
signalling crosstalk, understanding that molecular modulators in
one pathway are enzymatic (transcriptional) targets of another
that sometimes compete with the original modulators, the
undruggable bottleneck could end in a breakthrough.

Among the promising opportunities to indirectly or directly
target a transcription factor are inhibition (or activation) at the
expression level; inhibition through physical degradation;
inhibition (or activation) at the protein interaction level; and
inhibition (or activation) through the binding of a ligand-based
molecule in an activation/inhibition pocket and inhibition (or
activation) at the protein/DNA binding level. For example, when
Snail was blocked in a high-grade serous ovarian cancer cell line
(HGSOC), cancer stemness was reversed by decreasing CSC
markers (CD117 and CD133) (157).

Similarly, Zhang et al. demonstrated that Snail knockout in
MCF-7 breast cancer cells initially resistant to 5-FU resulted in
reversal of EMT declined cell invasion and improved sensitivity
to 5-FU (158). Consequent to the various studies about Snail and
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the correlation with chemoresistance and cancer stem cells,
targeting Snail is a fascinating approach to overcome EMT and
cancer resistance, which suggests that Snail inhibitors could
prevent tumour recurrence. Inactivation of Twist1 expression
by linolenic acid (ALA) treatment markedly reduces cell
migration (159). Recently, a small molecule, CYD19, was
identified to bind strongly with Snail and inhibited its
interaction with CREB-binding protein (160). The altered
interaction leads to impairment of CBP/p300-mediated Snail
acetylation and rapid degeneration of Snail via the
proteasomal pathway.

Furthermore, studies have shown that inhibition of g-
secretase would prevent the cleavage of the Notch receptor,
thereby blocking Notch signal transduction (161, 162). In this
way, the expression of Snail and ZEB proteins are kept in check
so that E-cadherin retains its function to maintain epithelial
characteristics. Thus, g-secretase inhibitors can be clinically tried
for treating human malignancies. Disappointingly, however,
despite the repeated promising preclinical results on the
control of tumour progression, gamma-secretase inhibitors
(GSIs) have failed to demonstrate clinical benefit in most solid
tumours. The poor clinical performance to date calls for
important questions that are yet to be answered. Perhaps,
refinement of tumour Notch expression profiles and further
mechanistic understanding of GSIs will necessarily assist
appropriate patient selection.

Also, more innovative approachesmay include the rational design
of combinatorial strategies to maximise the potential of these agents
by sensitising tumours to traditional chemotherapeutics while also
compromising tumour ability to engage treatment resistance
programs. However, it is worthy of note here that caution should
be applied while designing GSIs to eliminate undesired toxicity
associated with the g-secretase inhibitors, as they are involved in a
wide array of cellular functions.

Even though, as earlier suggested, interfering EMT transition
might be a step forward in the prevention of cancer metastasis,
intratumour heterogeneity poses several hurdles against
successful therapeutic design. As a result, understanding the
E/M cellular transitional plasticity along a phenotypic spectrum
would be central to more precise diagnoses and increasing the
susceptibility of cancer cells to therapeutic manipulations, thus
overcoming the current spate of drug resistance.

Prospect of Single-Cell Analysis in the
Composite Milieu of EMT
Several studies dispute the role of EMT in cancer metastasis as a
result of their failure to detect EMT in the process, thus
suggesting a striking controversy in cancer biology. Worse still,
the use of individual EMT biomarkers from the bulk-tissue
approach has repeatedly failed to answer the question of where
gene upregulation or downregulation arises among the
heterogeneous components involving malignant cells, the
surrounding stroma and immune infiltrate. Thus, a method
that can offer a direct and unbiased characterisation of
individual cell’s (gene) expression to unveil intratumoural
heterogeneity would therefore provide clarity over the age-old
questions, and perhaps, paves way for targeted therapy.
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Therefore, the roles of novel technologies such as single-cell
analysis would be invaluable to improve understanding of the
underlying molecular mechanisms of tumour heterogeneity and
investigation of diverse intermediates of E/M cells during EMT.

Intriguingly, it is now widely established that trans-
differentiation of E/M cells and their intermediates are the
main cause of intratumour heterogeneity and that the
disseminated cancer cells need to revert towards a more
epithelial phenotype to increase the sensitivity of neoplastic
cells to therapeutic interventions. To therapeutically target
EMT and indeed, the metastable pEMT state, it is essential to
extensively evaluate the duplex modulations that shuttle cells
towards or away from E and M states. Presumably, the
bidirectional inhibitions that targets both EMT and MET
might be an effective strategy to destabilise the M or hybrid
states, while avoiding an escape route to a different resistant state.
With this in mind, we anticipate the next few decades will
represent a major acceleration in our knowledge of EMT and
its entire spectrum of states. This is expected to aid in the
stratification of patients into low- and high-risk cohorts while
opening up entirely new avenues in the treatment of
epithelial tumours.

Given the considerable heterogeneity of the tumour ecosystem,
it is essential to analyse the molecular and genetic characteristics of
each cell (163), rather than employing the bulk-tissue approaches.
Fortunately, the emergence of single-cell sequencing technology
has come to the rescue, enabling cells undergoing a transition to be
inspected as single cell instead of collective cell populations. To
simply put, with single-cell analysis, it would be possible to obtain
complete genomic information of the entire cells concerning EMT
gene regulatory circuits along the EMT continuum and compare
them with the corresponding primary tumours. Through this,
several clinically relevant genomic alterations could be discovered
to provide valuable information for promising diagnostic and
therapeutic opportunities. Specifically, single-cell RNA sequencing
(ScRNA-seq), which provides high-throughput and high-
resolution transcriptomic analyses of individual cells has been
used to eliminate much of the background noise within a mixed
population of cells. With a temporal profile, it will allow
investigators to probe the genomic, transcriptomic, epigenomic,
or other multiomics dynamics of heterogeneous cell populations
because it can measure the distribution of genes and gene products
(mRNA and proteins) from individual cells. With scRNA, one can
encapsulate cell trajectories and developmental processes such as
EMT by applying a scRNA-seq time course to assemble a cell
trajectory map (164). Generating an EMT time-course to capture
transient cell states at single-cell resolution informs the
investigator with information on how this dynamic process
occurs over time, thereby providing an elegant resource that is
not available in any other known way. ScRNA-seq method is a
recently developed technology with a promising prospect at
providing a transcriptomic analysis of individual cells to address
the inherent complexity of EMT milieu in tumour metastasis and
its tumour environment. Despite the promising prospect of this
novel method, some technical barriers have been identified.

Firstly, both cellular integrity and viability largely determines
the success or otherwise of the subsequent single-cell analyses. It
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means that distinct cells need to be isolated from each other
promptly while avoiding mechanical damage to the cells during
the single-cell isolation process. However, this cellular
segregation may impair cell integrity and enzymatic treatment
using trypsin, collagenase, and/or papain to isolate single cells
from tissues. In other words, it may affect cell viability or alter the
transcriptional products. Hence, this necessitates the need for
improve approaches to enable the efficient “gentle” extraction
and capture of living cells and avoid the potential damage to
single cells caused by enzymatic treatment.

Again, researchers have used scRNA-seq to analyse the
association between therapeutic response and specific infiltrated
immune cells in the tumour environment (165). At this point,
another gap to be filled by ScRNA-seq is to enable rationale
strategies that can identify drug-resistant cell populations
associated with poor prognosis to achieve long-term treatment
efficacy and combinatorial therapeutics that can aid in cotargeting
multiple activated pathways.
CONCLUSION

There is overwhelming evidence that the dynamic EMT program,
which oversees the transformation of polarised epithelial cells to a
mesenchymal phenotype in embryogenesis, is also operational in
the development of the secondary metastatic niche. Hitherto, the
molecular event is understood as a consequent disruption of the
tight regulation inmorphogenesis, where transcription factors play
significant roles. Unfortunately, the EMT program, primarily
driven by transcriptional repressors, is not only involved in
tumour metastasis but has now been discovered as a molecular
driver in drug resistance. To date, the problems of drug resistance
and pharmacological limitation of tumour targeted therapy remain
a significant challenge in cancer control interventions. Meanwhile,
in recent times, several EMT transcriptional repressors have been
inculpated in the metastatic cascade. As research begins to gain
momentum, it is becoming increasingly clear that these factors
would play considerable roles in targeted therapeutic strategies in
the fight against cancer metastasis as well as cancer resistance to
therapies. Thus, while it is currently clear that the EMT program is
beyond the binary switch concept, we believe that a deeper
understanding of the emerging roles of cellular plasticity which
adapts tumour cell phenotypes through a metastable spectrum
would also require a paradigm shift in investigational approach to
upscale the common bulk-tissuemethods to novel techniques such
as single-cell analysis to address the lingering challenges in
cancer management.
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