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Esophageal cancer is an exceedingly aggressive and malignant cancer that imposes a
substantial burden on patients and their families. It is usually treated with surgery,
chemotherapy, radiotherapy, and molecular-targeted therapy. Immunotherapy is a
novel treatment modality for esophageal cancer wherein genetically engineered
adoptive cell therapy is utilized, which modifies immune cells to attack cancer cells.
Using chimeric antigen receptor (CAR) or T cell receptor (TCR) modified T cells yielded
demonstrably encouraging efficacy in patients. CAR-T cell therapy has shown robust
clinical results for malignant hematological diseases, particularly in B cell-derived
malignancies. Natural killer (NK) cells could serve as another reliable and safe CAR
engineering platform, and CAR-NK cell therapy could be a more generalized approach for
cancer immunotherapy because NK cells are histocompatibility-independent. TCR-T cells
can detect a broad range of targeted antigens within subcellular compartments and hold
great potential for use in cancer therapy. Numerous studies have been conducted to
evaluate the efficacy and feasibility of CAR and TCR based adoptive cell therapies (ACT). A
comprehensive understanding of genetically-modified T cell technologies can facilitate the
clinical translation of these adoptive cell-based immunotherapies. Here, we systematically
review the state-of-the-art knowledge on genetically-modified T-cell therapy and provide a
summary of preclinical and clinical trials of CAR and TCR-transgenic ACT.

Keywords: T cell receptor, chimeric antigen receptor, immunotherapy, engineered T cells, esophageal cancer
1 INTRODUCTION

Esophageal cancer is one of the most common cancers and a leading cause of cancer-related deaths,
with its incidence and mortality increasing worldwide. Esophageal cancer can be predominantly
categorized into two subtypes, esophageal adenocarcinoma, and esophageal squamous cell carcinoma
(ESCC), which accounts for nearly 90% of all diagnosed patients (1). For resectable esophageal cancer,
radical esophagectomy and lymph node dissection, are principal surgical treatments but also a key part
of multidisciplinary therapy (2). Multi-drug chemotherapy, such as CF regimen (cisplatin and
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5-fluorouracil), ECF regimen (epirubicin, cisplatin and 5-
fluorouracil) combined with radiotherapy are the conventional
therapies for advanced patients who cannot tolerate surgery or
adjuvant treatments of resectable tumors (3). The efficacy of most
molecular-targeted therapy available for esophageal cancer is
suboptimal, except for the anti-HER monoclonal antibodies,
trastuzumab (3). Immunotherapy is an emerging method for
enhancing the anti-tumor response in patients. At present,
immune checkpoint inhibitors, have demonstrated substantial
clinical anti-tumor effect and tumor vaccines are under active
investigation. Nivolumab alone or in combination with
ipilimumab have reinvigorated the anti-tumor immune
responses and increased the overall survival of esophagogastric
cancer (4). Despite tremendous improvements in therapeutic
modalities, the estimated overall five-year survival rate is still
approximately 15% (5). Therefore, it is particularly urgent to
explore effective and novel therapies to combat esophageal cancer.

CAR and TCR engineered T cell therapies, are effective and
rapidly evolving immunotherapy. Typically, these adoptive T cell
therapies require the patient’s own T cells to be extracted,
isolated, screened, modified, expanded ex vivo, following by
Frontiers in Oncology | www.frontiersin.org 2
re-infusion back into the patients. The technique utilizes
lentiviral or retroviral vector transduction to genetically modify
the autologous T cells so that they could express a unique CAR or
TCR with novel antigen specificity, thereby redirecting those
engineered T cells to eradicate the cancer cells (Figures 1 and
2) (6).
2 CAR-T CELL THERAPY:
A NOVEL APPROACH FOR
CANCER IMMUNOTHERAPY

CAR-T cell therapy is an emerging curative approach against
hematological tumors and has shown a satisfactory clinical
response. CD19 targeted CAR-T cells have become a leading
therapy against relapsed or refractory hematological
malignancies, such as lymphocytic leukemia and B-cell
lymphoma (7, 8). The FDA has approved four autologous
CD19 targeted CAR-T cell therapy products, Tisagenlecleucel
(Kymriah), Axicabtagene ciloleucel (Yescarta), Brexucabtagene
FIGURE 1 | Manufacturing procedures of CAR-NK and TCR-T cells. The established NK cells principally come from PBMC, UCB, NK cell lines, ESCs, and iPSCs.
The NK92 cell line after irradiation has been widely used as the main source of CAR-NK cells. In addition, primary NK cells could be extracted from peripheral blood
(PB) or umbilical cord blood (UCB). The above NK cells are engineered with CAR structure to produce CAR-NK cells. Antigen reactive T cells are isolated from
excised tumor tissues or PB of the patients. Subsequently, the antigen-specific TCR sequences are cloned and transfected into T cells via retroviral or lentivirus
vector to construct TCR-engineered T cells.
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autoleucel (Tecartus), Lisocabtagene maraleucel (Breyanzi) for
relapsed/refractory B-cell lymphoma or acute lymphocytic
leukemia, and one autologous BCMA targeted CAR-T cell
therapy product, Idecabtagene vicleucel (Abecma) for multiple
myeloma (7–11). The tremendous achievements of CAR-T cell
therapy in treating hematological malignancies have promoted
the application of this therapy to solid tumors.

2.1 The Design of CAR-T Structure
CARs are synthetic receptors that mainly consist of four
components, extracellular domain, hinge region, transmembrane
domain and intracellular signaling domain (6). Every part of the
CAR structure has unique properties, and has evolved to improve
the safety and optimize the cytotoxic effect of the CAR-T cells. The
single chain variable fragment (scFv), is the main portion of the
extracellular domain and could recognize and bind the targeted
tumor specific antigens in a major histocompatibility complex
(MHC)-independent manner (12). Therefore, CAR-T cells could
avert the tumor immune evasion elicited by downregulation of
MHC molecules. Hinge region functions to adjust the steric
distance between the CAR-T cells and antigen epitopes, and the
transmembrane domain can transduce extracellular antigen
recognition signals into the intracellular signaling domain (13).

The intracellular signaling domains of different generations
are distinct from each other. First- generation CARs only contain
a single signaling molecule CD3z, while second- and third-
generation CARs have incorporated one and two costimulatory
molecules respectively (Figure 3). The costimulatory domains of
Frontiers in Oncology | www.frontiersin.org 3
CAR-T cells, primarily include 4-1BB, CD28, OX40, ICOS,
CD27, MYD88, CD40, DAP12A, among which, 4-1BB and
CD28 are most widely studied and have been approved for use
by FDA (14). CAR-T cells with CD28 costimulatory molecule,
demonstrated a rapid antitumor activity but a decreased
persistence, compared to 4-1BB (15). The remaining
costimulatory molecules have only been validated to be
efficacious in preclinical evaluation, whereas have not been
clinically evaluated. More recently, the next generation of
CAR-T cells is ongoing active investigation in order to better
support the anti-tumor effect of CAR-T cells. Armored CAR-T
cells are being modified to generate cytokines, chemokines, or
co-expressing immunomodulatory ligands to overcome the
immunosuppressive tumor microenvironment (TME) and
sustain the function of CAR-T cells (14). CAR-T cells that
secrete immunomodulatory cytokines, which is also known as
T cells that redirect general cytokine-mediated killing, are an
example of armored CAR-T cells. CAR-T cells with inducible
proinflammatory cytokines IL-12 or IL18 secreting, could alter
the immunosuppressive milieu by redirecting more immunes
cells into tumor sites, which have showed an enhanced
cytotoxicity in solid tumors (16). Additionally, IL-7 and
CCL19 expressing CAR-T cells have exhibited an augmented
infiltration and proliferative competence in vitro and in vivo,
compared with convention CAR-T cells (17). Gene editing
technology could mediate the knockdown of TCR a/b chains,
to generate the next generation universal CAR-T cells with
higher safety, thereby averting graft-versus-host disease
FIGURE 2 | A concise workflow of genetically modified T cell therapy in clinical practice. The peripheral blood is initially collected to isolated T/NK cells. The purified
T/NK cells are activated and amplified ex vivo and genetically modified to express specific CAR or TCR. Following expansion and quality control ex vivo, CAR-T/NK
cells or TCR-T cells are infused back into the patients’ body to eliminate cancer cells.
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(GVHD) (18, 19). Tandem CAR-T cells, equipped with two
scFvs, simultaneously target two tumor antigens and therefore,
could overcome the anti-tumor immune escape. For example,
CD70 and B7-H3 targeted tandem CAR-T cells have
demonstrated efficacious against esophageal cancers in
preclinical models (20).

2.2 Esophageal Cancer−Associated
Antigens for CAR−T Cell Therapy in
Preclinical Studies
One hurdle in applying CAR−T cell therapy against solid cancers
is the paucity of targeted antigens. Since a mature manufacturing
process of CAR-T cell therapy is already available, the
Frontiers in Oncology | www.frontiersin.org 4
identification of specific antigens for optimal targeting is
imperative for expanding its application.

The ideal antigens for CAR-T cell therapy should have high
specificity and high coverage of tumor cells to ensure both safety
and efficacy (21). Indeed, several surface antigens have already
been identified in preclinical studies as potential targets for CAR-
T cell therapy against esophageal cancer as described below.

2.2.1 Human Epidermal Growth Factor Receptor 2
HER2 belongs to HER/ErbB family of receptor tyrosine kinases,
which represents a crucial therapeutic strategy in HER2-postive
Esophageal cancer (22). In recent studies, HER2-based CAR-T
cells have been established and their effectiveness in esophageal
FIGURE 3 | Blueprint of CAR/TCR structure. Left to right: the designs of TCR-T cell, CAR-T cells, and CAR-NK cells. CAR-T cells and CAR-NK cells share a similar
CAR structure, which is composed of extracellular tumor antigen binding domain (scFv), hinge region, transmembrane region and intracellular signaling domain. The
update of CAR structures is primarily reflected in the incorporation of costimulatory molecules. CD28, 4-1BB, OX40 and ICOS are the common costimulatory
molecules in CAR-T cells while DAP10, DAP12, NKG2D and 2B4 are widely used costimulatory domains in CAR-NK cells. The TCR complex is a heterodimer is
constituted of TCRa and TCRb chains, noncovalently connected to the three CD3 dimers (CD3gϵ, CD3dϵ, and CD3zz). Antigen peptides from tumor cells bind to
MHC molecules to form pMHC, and subsequently TCR recognizes and binds to the antigens presented by pMHC. The extracellular antigen signaling is transduced
by TCR-CD3 complex into intracellular signaling, and mediates the elimination and killing of tumor cells.
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cancer treatment has been investigated both in vitro and in vivo.
These cells can recognize and eliminate the HER2-amplied ESCC
cell l ines, ECA109 and TE-1, elevate the levels of
proinflammatory cytokines and moreover, intratumor
administration of those modified T cells significantly inhibited
the tumor growth in ECA109 xenografts (23).

2.2.2 Erythropoietin-Producing Hepatocellular
Receptor A2
EphA2 is a member of the Eph family, which serves as a surface
antigen for its carcinogenic effects. EphA2 is highly expressed in
tumor cells, while at relatively low levels in most normal adult
tissues, which suggested its potential use in cancer
immunotherapy (24). The second generation of EphA2
targeted CAR-T cells exhibited an obviously inhibitory effect
on ESCC cells in a dose-dependent manner (25). Moreover,
similar researches have been conducted on other solid tumors,
such as central nervous system tumors (26). Thus, further
investigation to evaluate the efficacy of EphA2 targeted CAR-T
cell therapy against esophageal cancer is warranted.

2.2.3 Mucin-1
MUC1 is a glycoprotein whose expression levels are aberrantly
upregulated in various carcinomas, such as esophageal cancer
(27). MUC1 targeted CAR-T cells were verified to exert
substantial cytotoxicity effects on solid malignancies, including
triple-negative breast cancer and pancreatic cancer (28, 29).
However, the efficacy of CAR-T cell therapy against solid
tumor was less satisfactory, which could be partially attributed
to the immune suppression of TME and loss of CAR-T cell
antitumor function. To address this issue, enhanced CAR-T cells
that contain a JAK-STAT signaling domain has been developed.
The engineered MUC1 targeted CAR-T cells activated the JAK-
STAT pathway, secreted higher level of cytokines, showed
superior proliferative capacity and persistence, and mediated
greater antitumor activity both in subcutaneous xenograft
tumors and a PDX mouse model of esophageal cancer (30).
In summary, directly integrating the cytokine receptor domain
Frontiers in Oncology | www.frontiersin.org 5
into CARs could be a potential strategy to improve the efficacy of
CAR-T cell therapy.

2.2.4 CD276 (B7-H3)
CD276 (also named B7-H3), belongs to B7 superfamily
molecules. It is an immune checkpoint and could elicit similar
inhibitory activity as PD-1 on T cells (31). It is overexpressed in a
wide range of cancers and associated with poor prognosis of
human patients, which makes it an appealing target for CAR-T
cell therapy (31). CD276 specific CAR-T cells efficiently
eliminated ESCC cells both in vitro and in vivo (32). Tandem
CAR-T cells targeting CD276 and CD70 also exerted enhanced
tumoricidal activity against multiple solid tumors (20). These
findings indicated that CD276-targeting CAR-T cells merit
further testing in ESCC clinical trials.

2.3 Clinical Trials
CAR-T cell therapy has revolutionized the treatment of B cell-
derived hematological malignancies, although the responses and
results are less favorable in solid cancers. The high heterogeneity
of solid tumor cells, paucity of targeted antigens, on-target, off-
tumor toxicity, immunosuppressive TME, inefficient trafficking
and transient persistence of CAR-T cells make it more complex
to treat the solid tumors with CAR-T cell therapy (33). Currently,
substantial effort is being invested in enhancing the efficacy of
CAR-T cell therapy against solid cancers, hopefully to rejuvenate
the landscape of immunotherapy. Some targeted antigens are
being investigated and evaluated in clinical trials of CAR-T cell
therapy against esophageal cancer (Table 1).
3 CAR-NK CELL THERAPY: A
PROFESSIONAL KILLER IN NEXT-
GENERATION IMMUNOTHERAPY

With the unprecedented advances in CAR-T cell therapy, there is
also an increasing interest in constructing CAR-natural killer
(CAR-NK) cells for cancer therapy. Natural cytotoxicity
TABLE 1 | Summary of ongoing clinical trials of gene-modified T-cell therapy in the treatment of esophageal cancer.

Immunotherapeutic strategy Targeting antigen Clinical Trial Sponsor Estimated
Enrollment

Phases Status

CAR-T cell therapy MUC1 NCT03706326 The First Affiliated Hospital of Guangdong
Pharmaceutical University

20 Phase I Recruiting

CAR-T cell therapy HER2 NCT03740256 Baylor College of Medicine 45 Phase I Recruiting
CAR-T cell therapy EpCAM NCT03013712 First Affiliated Hospital of Chengdu Medical

College
60 Phase I/II Unknown

CAR-T cell therapy Claudin18.2 NCT04581473 Carsgen Therapeutics, Ltd. 102 Phase I/II Recruiting
CAR-T/TCR-T cell therapy NY-ESO-1 NCT03941626 Shenzhen BinDeBio Ltd. 50 Phase I/II Recruiting
CAR-T/TCR-T cell therapy NY-ESO-1 NCT03638206 Shenzhen BinDeBio Ltd. 73 Phase I/II Recruiting
TCR-T cell therapy NY-ESO-1 NCT03159585 Zhujiang Hospital 6 Phase I Completed
TCR-T cell therapy NY-ESO-1 NCT02869217 University Health Network, Toronto 22 Phase I Recruiting
TCR-T cell therapy NY-ESO-1 NCT02366546 Mie University 9 Phase I Unknown
TCR-T cell therapy MAGE-A3 NCT01273181 National Cancer Institute (NCI) 1 Phase I/II Terminated
TCR-T cell therapy MAGE-A4 NCT03132922 Adaptimmune 52 Phase I Recruiting
TCR-T cell therapy MAGE-A4 NCT02096614 Mie University 18 Phase I Completed
CAR-NK cell therapy PD-L1 NCT04847466 National Cancer Institute (NCI) 55 Phase II Not yet Recruiting
N
ovember 2021
 | Volume 1
1 | Article 763806

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhu et al. Genetically Modified T-Cells for Immunotherapy
receptors on NK cells (NKp30, NKp44 and NKp46), and other
receptors such as NKG2D and DNAM-1, can recognize and
interact with specific ligands on tumor cells, so that NK cells
could directly exert a cytotoxic effect without MHC presentation
(34). CAR engineering enhances the specificity of NK cells by
equipping them with more effective weapons to fight cancer cells.
The combination of intrinsic and engineered killing potency
gives CAR-NK cell therapy great promise for enhancing
cancer immunotherapy.

Although CAR-T cell therapy has achieved impressive
antitumor efficacy, it still has several limitations, including on-
target/off-tumor toxicity, severe cytokine storm and
neurotoxicity (35). CAR-NK cells have aroused considerable
interest in cancer treatment, primarily attributable to their
potential to circumvent these obstacles, while exhibiting a
potent antitumor effect (36). Specifically, due to the transient
lifespan of CAR-NK cells, they have relatively low impact on
normal tissues, and CAR-NK cells will not induce on-target/
extra-tumor damage like CAR-T cells. Furthermore, the
administration of CAR-NK cells is less likely to cause serious
cytokine release syndrome or neurotoxicity, as significantly
elevated serum proinflammatory cytokines (such as IL-6) were
not observed in patients (37). Although this is conducive for
improving safety, it does restrain the efficacy of CAR-NK cell
therapy, since they are susceptible to exhaustion due to lack of
cytokine support. In addition, the challenges, which impede the
application of CAR-T cell therapy, also hinder the development
of CAR-NK cell therapy, such as low infiltration into tumor sites
and the immunosuppressive effect of TME.

3.1 The Design of CAR-NK Cell Structure
A comprehensive understanding of the immunological function
of NK cells and potential mechanisms has prospered the
development of CAR-NK therapy. The CAR-NK cells share a
similar CAR structure with CAR-T cells, which consist of an
extracellular antigen recognition and binding domain (scFv), an
extracellular hinge region, a transmembrane domain and
an intracellular signaling domain. The targeted antigen
recognition of CAR-NK cells is MHC-independent, making it
possible to establish NK cell banks, rather than constructing
individualized CAR-NK cells (38).

As previously discussed, the updates in CAR design are
principally reflected in the inclusion of costimulatory
molecules. Among them, the immunoglobulin superfamily
member CD28, and TNF receptor superfamily member 4–1BB
have been the most explored. However, the role of costimulatory
molecules, CD28 in CAR-NK cell signaling remains unclear
since it is not typically expressed in NK cells, which
encourages the researchers to elucidate other costimulatory
domains with greater therapeutic specificity for NK cell
signaling, such as DAP10, DAP12 or 2B4 (Figure 3) (39). 2B4
is a specific costimulatory receptor activating the NK cells and a
member of signaling lymphocytic activation molecule family
(40). CAR-NK cells with an NKG2D transmembrane domain
and 2B4 costimulatory domain have exhibited extraordinary
anti-tumor activity in solid tumors as well as hematologic
malignancies (40, 41). As further research is conducted in the
Frontiers in Oncology | www.frontiersin.org 6
future, CAR-NK cell therapy may markedly change the
landscape of cancer immunotherapy.

3.2 Current Preclinical and Clinical Trials
of CAR-NK Therapy
Abundant preclinical and clinical evidence has confirmed the
feasibility of utilizing CAR-NK cells to combat lymphocytic
leukemia, lymphoma, and multiple myeloma (42, 43). For solid
malignancies, HER2 targeted CAR-NK-92 cells have been
reported to inhibit the growth of breast and ovarian cancer
cells (44). Moreover, ongoing clinical trials using targeted CAK-
NK cells on solid tumors are assessing the antitumor activity of
MUC1 (NCT02839954), mesothelin (NCT03692637), NKG2D
(NCT03415100), prostate specific membrane antigen
(NCT03692663), ROBO1(NCT03940820) and HER2
(NCT03383978). However, there are almost no reported
preclinical or clinical trials of CAR-NK therapy against
esophageal cancer, probably due to the lack of specific tumor-
targeted antigens for esophageal cancer. Moreover, the existing
animal models fail to simulate the TME that would accurately
assess the function of CAR-NK cells (39).
4 TCR-T: A PROMISING ALTERNATIVE TO
TRADITIONAL IMMUNOTHERAPIES

Considerable advances in genomics and next-generation
sequencing technologies have made it possible to identify the
sequences of tumor specific TCRs and establish specific
genetically modified T cells to fight cancers (45). One
successful example is the application of TCR-T therapy. The
emerging TCR-T cell therapy utilizes isolated TCR-encoding
genes from tumor reactive T cells, and subsequently, transduces
these TCR sequences into unmodified T cells to manufacture
specific TCR-T cells to eradicate targeted cancer cells. Essentially,
the engineered TCR-T cells are tumor antigen-specific T cells,
and therefore, these cells could recognize and bind to the targeted
tumor antigens, in a manner similar to unmodified T
cells (Figure 3).

TCR-T therapy is another innovative and effective genetically
modified T cell immunotherapy in addition to CAR-T cell
therapy and CAR-NK therapy. Even though CAR-T cell
therapy has achieved encouraging progress in treating
hematologic malignancies, it still fails to restrain the
progression of most solid tumors. In contrast, TCR-T cell
therapy has demonstrated remarkable potential in treating
solid tumors (46).

4.1 The Design of TCR-T Structure
TCR is the primarily antigen-recognition domain. It is a
heterodimer consisting of an a chain and a b chain, each of
which contain a variable region and a constant region. TCRs
must be matched with human leukocyte antigen (HLA) alleles
before they recognize and bind to specific antigens presented by
peptide-MHC (pMHC) to effectively eliminate or reduce tumor
cells, which is significantly distinct from the mechanism of CAR-
November 2021 | Volume 11 | Article 763806
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T cells (Table 2) (47). Antigens within any subcellular
compartment, once processed and presented by MHC
molecules, can be recognized by TCR-T cells. Therefore, TCR-
T cell therapy has a wider range of targeted antigens, whether
they are extracellular antigens or intracellular antigens.
Furthermore, genetic modification has increased the affinity for
cancer cells and TCRs, enabling TCR-T cells to better recognize
intracellular antigens (33). TCR antigen recognition signaling is
transduced via the TCR-CD3 complex, which is primarily
composed of a chain and b chain of the TCR, noncovalently
connected to the CD3 dimers CD3gϵ, CD3dϵ, and CD3zz
(Figure 3) (48).

4.2 Current Preclinical and Clinical Trials
of TCR-T Therapy
TCR-T cell therapy is a promisingmodality for cancer treatment and
initiates an era of highly personalized and precise cancer therapy. In
recent decades, numerous studies have investigated the effectiveness
and safety of the emerging therapeutic strategy. It isworthnoting that
recently our research group successfully attempted to identify four
latent membrane protein-2A (LMP2A)-specific TCRs and
confirmed the cytolytic activity of LMP2A targeted TCR-T cells
against Epstein–Barr virus latency II tumors both in vivo and in vitro.
Our updated findings revealed that LMP2A -specific TCR-T cells
could be a novel alternative for patients with EBV-associated
malignancies regardless of specific HLA type and epitope (49).

Unlike CAR-based ACTs, a large percentage of TCR-T cell
therapy clinical trials mainly focused on solid tumors instead of
hematological malignancies, though TCR-T cell therapy might
seem promising for liquid tumors (50). Clinical trials of TCR-T
cell therapy have exhibited satisfactory results in solid tumors,
including esophageal cancer. Below, we focused on TCR-T cells,
which mainly target cancer testis antigens, including NY-ESO-1,
MAGE-A3, MAGE-A4, and systematically reviewed the relevant
preclinical and clinical studies of TCR-T therapy against
esophageal cancer.

4.2.1 New York Esophageal Squamous
Cell Carcinoma 1
NY-ESO-1 is a well-known cancer testis antigen expressed
during the early stages of fetal development. Its expression
declines drastically after birth and is undetectable in healthy
adult tissues (51). Therefore, it could be a potential candidate for
ACT against NY-ESO-1 positive tumors. In fact, it is the most
targeted antigen in TCR-T based clinical trials. Interestingly,
Frontiers in Oncology | www.frontiersin.org 7
preclinical evidence has demonstrated that NY-ESO-1 targeted
TCR-T therapy has a long-term antigen-specific tumoricidal
effect on glioblastoma cells in vitro (52). Tumor regression and
extended overall survival were also observed in neuroblastoma-
bearing xenograft mouse studies after treatment with NY-ESO-1
targeted TCR-T cells (53).

The safety and feasibility of NY-ESO-1 targeted TCR-T therapy
were further investigated in phase I/II clinical trials. Clinical trials
were performed in a broad range of solid tumors, as well as in some
liquid tumors. One trial reported that 37 out of 42 patients with
synovial sarcoma (NCT01343043) benefited from NY-ESO-1
targeted TCR-T therapy and concluded that lymphodepletion
may improve the engineered TCR-T cell persistence and
therapeutic efficacy (54). NY-ESO-1 targeted TCR-T therapy also
achieved encouraging clinical responses in patients with advanced
multiple myeloma, with no lethal adverse reactions occurring (55).
Detailed information about NY-ESO-1 targeted TCR-T therapy
against esophageal cancer (NCT03941626, NCT03638206,
NCT03159585, NCT02869217, NCT02366546) is summarized in
Table 1. Owing to its substantial efficacy and controllable side
effects,NY-ESO-1hasbeenconsideredasoneof the optimalTCR-T
therapy targets for solid tumors.

Enhanced persistence and function of TCR-T cells are related
to the effectiveness of TCR-T therapy. Corresponding strategies
to improve proliferative activity include multiple repetitions of
TCR-T cell infusions and combinatorial application with
immune checkpoint inhibitors (56). Other strategies include
the transduction of artificial T cell-activating adapter molecules
(ATAMs) to extend the persistence of TCR-T cells. ATAMs are
generated by inserting the intracellular domain of CD28 or 4-
1BB into CD3z, which regulates downstream intracellular
signaling following antigen stimulation (57). The superior
proliferative capability and antitumor effect of NY-ESO-1
targeted TCR-T cells transduced with ATAM were confirmed
both in vitro and in a mouse xenograft model (57, 58).

4.2.2 Melanoma-Associated Antigen-A Family
MAGE-A3 and MAGE-A4 are two members of MAGE-A
subfamily, and their overexpression is associated with poor
prognosis (59). They are also cancer-testis antigens, whose
expression is restricted to immune-privileged sites in normal
tissues (60). Moreover, the expression of MAGE-A3 and MAGE-
A4 is upregulated in multiple malignancies, including esophageal
cancer, which provides a theoretical basis for their application in
TCR-T therapy (61). Studies have validated the antitumor
TABLE 2 | Comparison of structural features and mechanisms of TCRs versus CARs in cancer immunotherapy.

Property TCR CAR

Receptor structure a and b chain, CD3 ScFv, CD3z, costimulatory molecules
Subunits 10 1
Antigen recognition domain TCR ScFv
Antigen recognition Extracellular and intracellular antigen Extracellular antigen
MHC dependence MHC-dependent MHC-independent
Receptor affinity Micromolar range Nanomolar range
Antigen epitope density One Several orders of magnitude
Dosage of transfusion cells high low
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activity of MAGE-A4 specific TCR cells since they could
suppress the growth of MAGE-A4 expressing tumors, such as
esophageal cancer and lung carcinoma (62).

In a clinical trial, a patient who received MAGE-A3 specific
TCR-T cell therapy had a preliminary remission of esophageal
cancer at 1 month, but suffered a serious tumor progression at 2
months anddied shortly thereafter (63). Similarly, partial responses
ofMAGE-A3specificTCR-Tcell therapy against esophageal cancer
were observed in another clinical trial, but disease progression still
occurred at 4th month (64). The first-in-man clinical trial of
MAGE-A4 specific TCR-T cell therapy in patients with recurrent
esophageal cancer demonstrated the safety and long persistence of
TCR-T cells (65). Thus, the efficacy and feasibility of MAGE-A
specific TCR-T therapy is still questionable based on the existing
evidence, and more related studies are required to further validate
the possibility of applyingMAGE-AspecificTCR-T therapy to treat
esophageal cancer.
5 CONCLUDING REMARKS
AND OUTLOOK

Genetically engineered T cell therapies, including CAR-T cell
therapy and TCR-T cell therapy, have revolutionized the
immunotherapy of several hematologic malignancies. As intense
researches continue to deepen in recent decades, these
technologies represent a breakthrough in adoptive T cell therapy
for advanced solid malignancies. In the meantime, NK cells have
become an effective and reliable CAR engineering platform. One
of the commonalities of these three novel treatment options is to
empower the patient’s own immune system to recognize specific
antigens and subsequently eradicate the tumor cells.

In this mini-review, we discuss the structure and design of
CARs and TCRs, which are structurally and functionally distinct
receptors. The scFv, derived from antibodies, is the main
extracellular domain of CARs. It recognizes and binds to the
targeted antigens, which are neither restricted and nor
dependent on MHC molecules. TCR, composed of an a chain
and a b chain, is the main antigen-recognition domain of TCR-T
cells, and capable of binding to specific antigens presented by
pMHC. CARs could only target cell surface antigens, so that the
intracellular tumor antigens are mostly inaccessible to CAR-
based therapies. In contrast, TCR-T therapy has evolved to
recognize both intracellular antigens and cell surface antigens
(66). In addition, we summarize the up-to-date preclinical and
clinical trials of esophageal cancer associated antigen targets in
CAR-T cell therapy and TCR-T cell therapy, although studies on
esophageal cancer remain in their infancy. Currently, the
potential targets against esophageal cancer include MUC1,
HER2, EpCAM, EpA2 and CD276, for CAR-T cell therapy,
NY-ESO-1, MAGE-A3 and MAGE-A4 for TCR-T cell therapy.
Identification and development of novel targeted antigens for
genetically engineered T cell therapies are imperative for treating
patients with solid malignancies.

T cells canbedivided into two types, basedonthecompositionof
TCR: abT cells and gdT cells. Current studies of TCR-T cells are
Frontiers in Oncology | www.frontiersin.org 8
predominantly focused on abT, and the conventional ab-TCR-T
cells have been described above. gdT cells with TCR comprised of g
anddheterodimer chains, are another subpopulationofT cells, only
represents 1-5% of peripheral blood T cells (67). gdT cells, endowed
with both innate and adaptive immunity, have exhibited potent
tumor recognition and elimination effect on various tumors.Unlike
abT cells, gdT cells do not usually express CD4 or CD8 molecule,
and they could recognize the antigens in an MHC independent
manner, and therefore, are insensitive to immune escape mediated
by lossof targetedantigens (68). EngineeredgdTcells haveexhibited
an equivalent cytotoxicity,while adecline in the release of cytokines,
compared to conventionalabT cells with identical TCR transferred
(69). Furthermore, the g and d chains of gdT cells would not
mismatch with transferred a or b chains of TCR, thereby
preventing the arise of self-reactive TCR clones and increasing
the safety of genetically modified T cell therapy. Therefore, gdT
could overcome the limitations of conventional TCR-abT and
serve as an alternative candidate in genetically modified T cell
therapy. Although the preclinical studies have revealed the
evaluated the prognostic role of gdT cell therapy in cancer
therapy, the divergences in genes encoding g and d chains of TCR
between rodents and primates make it difficult to provide evidence
for applying gdT cell immunotherapy in cancer patients (70).
Besides, the evaluation of the adverse effect of gdT cell therapy
was failed to be implemented either for the mouse cells lacked the
potentially relevant human self-antigens (71). In conclusion, future
efforts such as 3D organoid culture to mimic the in vivo
microenvironment will provide more convincing proof for gdT
cell therapy.

Although these immunotherapies have achieved impressive
results in combating liquid tumors, they still face multiple
obstacles and challenges in treating solid cancers, such as on-
target/off-tumor toxicity, severe treatment-related toxicities,
cytokine storm, neurotoxicity, GVHD, hostile TME,
identification of ideal antigens, tumor immune evasion, limited
tumor infiltration levels and exhaustion of T cells (14, 33). The
researchers should give priority to the management of diverse
toxicities, which have aroused widespread concern. Once
administered into the patients’ blood, the activity of CAR-T
cells is uncontrollable. Therefore, suicide switches, have been
incorporated into CAR-T cells to decrease the toxicities of the
treatment, which could be activated to selectively eradicate the
CAR-T cells in case that severe adverse effects occur. HSV-TK, a
well-characterized suicide gene, could phosphorylate the
ganciclovir (GCV) into GCV-triphosphate, which subsequently
inserted into DNA to disrupt DNA synthesis and eventually
induce the cell death of CAR-T cells. The feasibility and efficacy
of CD44v6 targeted CAR-T cells with HSV-TK suicide gene have
been verified in preclinical studies of acute myeloid leukemia and
solid tumors (72, 73). Other suicide switches include inducible
caspase-9, which could be dimerized to activate the downstream
intracellular apoptotic signaling, thereby eliminating the CAR-T
cells (74). The inhibitory chimeric antigen receptors contain a
PD-1 or CTLA-4 based inhibitory domain, which could shield
the normal cells from being killed by specific CAR-T cells, to
overcome the on target, off tumor toxicities (75). We believe that
November 2021 | Volume 11 | Article 763806
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the immunosuppression of TME could be overcome with gene
editing tools and combined therapies that could protect the
CAR-T (CAR-NK or TCR-T) cells from inhibition of TME
(76). As for antigen identification, the patient-specific
neoantigen targets are of high safety, and have attracted great
interest (77). To prolong the persistence of CAR-T cells, dual-
receptor CAR-T cells have been designed to express two
synthetic receptors simultaneously, one for recognizing
targeted antigens, and the other promoting the proliferation of
T cells (33). Further efforts are still urgently required to achieve
the full potential of these three emerging ACT.
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