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Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid
progress, and poor therapeutic effects. The molecular mechanisms associated with PC
initiation and progression are largely insufficient, hampering the exploitation of novel
diagnostic biomarkers and development of efficient therapeutic strategies. Emerging
evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs
(lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis.
Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs),
competitively sequestering miRNAs, therefore modulating the expression levels of their
downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely,
ceRNA networks, play crucial roles in the biological processes of PC by regulating cell
growth and survival, epithelial–mesenchymal transition and metastasis, cancer stem cell
maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this
review, the emerging knowledge on the lncRNA-associated ceRNA networks
involved in PC initiation and progression will be summarized, and the potentials of the
competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be
comprehensively discussed.
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INTRODUCTION

Pancreatic cancer (PC) is a highly aggressive malignancy with a dismal prognosis and limited
treatment options worldwide (1). According to cancer statistics, it is the fourth leading cause of
cancer-related deaths in the USA, with an overall 5-year survival rate of 8% and a median survival
time of 6 months (2). Patients are often asymptomatic, and approximately 80%–85% of PC patients
have unresectable or metastatic lesions at the time of initial diagnosis. Surgical resection remains the
exclusive potential curative treatment. Owing to the aggressive nature of this neoplasm, early
postoperative recurrence and occult metastasis also reduce the efficacy of surgical treatment, and only
approximately 20% of patients treated with postoperative adjuvant chemotherapy can survive for 5
years (3). Systemic chemotherapy is indispensable in the treatment of advanced or metastatic PC.
Despite many attempts to optimize the chemotherapeutic regimens for PC in clinical studies, such as
FOLFIRINOX (fluorouracil, leucovorin, oxaliplatin, and irinotecan), gemcitabine/Nab-paclitaxel,
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gemcitabine/erlotinib, gemcitabine/capecitabine, and
capecitabine/oxaliplatin (XELOX), the increase in the overall
survival rate is still poor. By contrast, there is little evidence to
support the efficacy of radiotherapy in the treatment of PC (4).
Thus, there is an urgent need for a better understanding of the
molecular mechanisms of PC to improve patient prognosis.

Although several genes and pathways have been found to be
involved in the occurrence and progression of PC, the underlying
mechanisms remain unclear. According to previous studies, the
mutations of the driver genes in the sentinel cell are the primary
cause of tumor initiation (5, 6). These genetic alterations in the
oncogene Kirsten RAt Sarcoma virus (KRAS) and tumor
suppressor genes such as tumor protein 53 (TP53), cyclin-
dependent kinase inhibitor 2A (CDKN2A), and Smad4 together
lead to the occurrence of PC (7). KRASmutations, which occur in
more than 90% of PCs, are one of the most frequent oncogene
changes associated with PC development (8, 9). Subsequently, at
the later stage compared with the KRASmutation, the inactivation
of TP53, CDKN2A, and Smad4 plays a key role in the pathogenesis
and invasion of PC (10). Accumulating studies have revealed that
the disorders of various signaling pathways mediate changes in the
tumor stromal cells, and this process is closely associated with the
occurrence and progression of PC (11, 12). Mutations in KRAS
and epidermal growth factor receptor (EGFR) can activate
different signaling pathways including renin-angiotensin system/
rapidly accelerated fibrosarcoma/Mitogen-activated protein kinase
kinase/extracellular-signalregulated protein kinase (Ras/Raf/MEK/
ERK) and phosphatidylinositol-3-kinase (PI3K)/Akt (13, 14). In
recent studies, targeting and regulating the key signaling molecules
in these pathways have become a hot research topic for improving
PC therapy (13). In addition, during the progression of PC, there
are dysregulations of important signaling pathways such as EGFR/
mitogen-activated protein kinase (MAPK), tumor necrosis factor-
related apoptosis-inducing ligand/ tumor necrosis factor receptor
associated factor 2 (TRAIL/TRAF2), and Ikappa B kinase/nuclear
factor-k-gene binding (IKK/NF-kB), and in these signaling
pathways, not only the apoptosis-inhibiting related proteins but
also the expression of many other molecules including B-cell
lymphoma-2 (Bcl-2), baculoviral IAP repeat containing 5/
(BIRC5), inhibitor of apoptosis protein 3 (IAP3), and cellular
inhibitor of apoptosis protein (cIAP) has changed (15). At present,
the research on PC-related pathways has become more attractive.

According to previous reports, most RNAs do not encode
proteins (16). These noncoding RNAs (ncRNAs) can be divided
into long noncoding RNAs (lncRNAs), circular RNAs (circRNAs),
microRNA (miRNA), enhancer ncRNAs, etc., and are closely
related to a variety of malignant tumors including PC (17, 18).
With the support of innovative technologies such as high-
throughput RNA sequencing, a large number of ncRNAs have
been discovered and clearly classified (19). The ncRNAs play
important roles in a variety of biological processes and have
regulatory function in the process of transcription and
posttranscriptional gene expression (20). The dysregulation of
ncRNAs affects many cellular processes including signal
transduction, posttranscriptional modifications, and chromatin
remodeling, which is closely related to the occurrence and
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development of various cancers (21, 22). In addition to acting as
tumor suppressors or oncogenic driver genes in a variety of
malignant tumors, ncRNAs also regulate various molecules in the
signaling pathways to exert effects (23, 24). The aberrant expression
of ncRNAs participates in the regulation of drug resistance, cell
invasion, metastasis, and other processes, which ultimately affects
the development of PC (25–27). There are also interactions between
different RNAs, and studying the interactions of RNAs may be
helpful for the further understanding of PC pathogenesis (28, 29).
In recent years, studies have reported the correlation between the
aberrant expression levels of different ncRNAs in PC, including the
interaction between mRNA and ncRNAs, basing on the competing
endogenous RNAs (ceRNA) hypothesis (29, 30).
THE ceRNA HYPOTHESIS IN CANCERS

MiRNAs are short endogenous RNAs with a length of
approximately 21–23 nt (31). The binding sites of miRNAs are
called miRNA recognition elements (MREs), which are most
commonly found in the 3′-untranslated regions (3′-UTRs) of
RNA transcripts such as mRNA (32). In the traditional concept,
miRNAs, as the regulatorymolecules of the gene expression, bind to
the MREs on the mRNAs and then guide the Argonaute protein to
the target mRNA, leading tomRNA degradation or gene expression
inhibition (33, 34). However, with the further in-depth research on
RNA interaction, Franco-Zorrilla et al. (35) have discovered that
ncRNAs could relieve the inhibitory effect of miR-399 on its target
RNA in plants. Furthermore, Ebert et al. (36) found the similar
molecular effects in the animal experiments. Studies indicate that
miRNAs are regulated by other ncRNAs bearing MRE sequences in
the process of regulating mRNA gene expression (37, 38). Different
ncRNAsmay possess the sameMRE sequence, so multiple ncRNAs
may competitively bind to the same miRNA (39). Initially, the
phenomenon that ncRNAs compete with mRNAs to bind miRNAs
through MREs is called “RNA sponge” (40). In 2011, Salmena et al.
(41) formally proposed the ceRNA hypothesis, calling such
ncRNAs that competitively bind miRNAs as ceRNAs.

It has been reported that miRNAs could be regulated by
various RNA molecules such as lncRNA, circRNAs, and
pseudogenes (37). There are over 500 miRNA genes in the
human genome, and more than half of mRNA genes may carry
MREs (42–44). Multiple miRNAs can regulate a single RNA with
various MREs, while multiple RNAsmay contain the same specific
MRE (34). The different types of these RNA interactions together
constitute ncRNA–miRNA–mRNA ceRNA regulatory networks.
Current research indicates that the concentration of ceRNAs and
miRNAs affects the competition efficiency of the ceRNA–miRNA
network (45). In addition, RNA-binding proteins (RBPs), RNA 3′-
UTRs, and the subcellular localization of ceRNAs all affect the
activity of ceRNAs (36, 45). According to statistics, the potential
targets of miRNAs account for more than 60% among the genes
that encode human proteins (41, 46). Therefore, changes in the
influencing factors of ceRNAs can lead to the imbalance of
the ceRNA networks, which may further contribute to the
occurrence or development of diseases, including cancer (47).
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After the ceRNA hypothesis was put forward, more and more
studies, supported by bioinformatics and other technologies, have
confirmed the existence of ncRNA–miRNA–mRNA regulatory
networks in cancer (29, 47). Researchers have discovered dense
MREs in most cancer-related coding genes and lncRNAs in the
human genome (32). In cancer cells, these aberrantly expressed
lncRNAs interact and further affect the expression of miRNAs
through the ceRNA network, which ultimately regulate related
cancer genes (32). The lncRNA highly upregulated in liver cancer
(HULC) was found to inhibit miR-372 as a ceRNA in liver cancer,
thereby increasing the expression of cAMP-dependent protein
kinase catalytic subunit beta (PRKACB) (48). In non-small cell
lung cancer, LINC81507 acts as the sponge of miR-199b-5p and
exerts effects through the Caveolin1/signal transducer and activator
of transcription-3 (CAV1/STAT3) signaling pathway (49). In
addition, the ceRNA network formed by lncRNA–miRNA–
mRNA plays an important role in various cancers including PC.
The lncRNA/miRNA/mRNA ceRNA networks in PC are shown in
Supplementary Table 1.
LncRNA-MEDIATED CeRNA IN
PANCREATIC CANCER PATHOGENESIS
AND DEVELOPMENT

Recently, mounting evidence indicates that the identified
lncRNAs could exert their oncogenic roles by acting as
ceRNAs to regulate target gene expression (20, 50–53), thereby
modulating cell proliferation (54), apoptosis (55), cell cycle (56),
invasion and metastasis (57), epithelial–mesenchymal transition
(EMT) (58), metabolism (59), autophagy (60), angiogenesis (61),
stemness (62), as well as chemoresistance (63), thus involving in
PC pathogenesis and progression (64–67). In this section, we will
elucidate the functions of some lncRNA-mediated ceRNA
regulatory networks in PC. Also, we highlight the ceRNA
regulatory networks consisting of an lncRNA/miRNA/mRNA
axis. We summarize the identified lncRNA/miRNA/mRNA
networks in several hallmarks of PC in Figure 1.
LncRNAS AS ceRNAS REGULATING CELL
GROWTH AND SURVIVAL

Cell growth and survival are complicated processes (68, 69) that
are tightly regulated by tumor suppressor genes, oncogenes,
along with other controlling mechanisms and associated with
the hallmarks of sustaining proliferative signaling, evading
growth suppression, enabling replicative immortality, and
resisting cell death (65, 68, 70). Recent studies have uncovered
the regulatory role of lncRNAs in cell growth and survival
through multiple mechanisms in PC (20, 53, 65–67, 71). Apart
from the oncogenic role of lncRNAs, growth and survival are also
regulated by several lncRNA-mediated ceRNA networks in PC
(67, 71). In this section, we will discuss some ceRNA networks
and their role in PC cell growth and survival.
Frontiers in Oncology | www.frontiersin.org 3
THAP9-AS1/miR-484/YAP

LncRNA THAP domain containing 9 antisense RNA 1 (THAP9-
AS1), which is an antisense transcript of THAP9 and locates at
chromosome 4q21.22, has been reported to act a key role in the
tumorigenesis of gastric cancer (72) and esophageal squamous cell
carcinoma (73, 74). A recent study by Li et al. (54) demonstrated
that THAP9-AS1 promoted the cell growth of PC through the
THAP9-AS1/miR-484/yes-associated protein (YAP) ceRNA
pathway. Clinical evidence showed that THAP9-AS1 was
overexpressed in PC tissues and significantly associated with poor
prognosis of patients. THAP9-AS1 promoted PC cell growth both
in vitro and in vivo. Ectopic THAP9-AS1 expression bound to miR-
484 directly, and such competitive binding decreased the abundance
of miR-484 and relieved its repression of the downstream target,
YAP, an important downstream nuclear effector of the Hippo
signaling pathway. Inversely, YAP overexpression or knockdown
diminished the effects of THAP9-AS1 modulated in PC cells.
Moreover, THAP9-AS1 bound to YAP protein and inhibited the
phosphorylation-mediated inactivation of YAP by large tumor
suppressor kinase 1 (LATS1). Reciprocally, YAP bound to
THAP9-AS1 promoter via transcriptional enhanced associate
domain 1 (TEAD1) and promoted THAP9-AS1 transcription to
form a positive feedback regulatory loop in PC cells. Importantly,
THAP9-AS1 level positively correlated with YAP expression in PC
tissues. Thus, THAP9-AS1/miR-484/YAP axis might serve as a
potential biomarker and therapeutic target for PC treatment.
MIR31HG/miR-193B

LncRNA miR-31 host gene (MIR31HG) is a recently identified
2,166-nt lncRNA and regulated by methylation of the promoter
region in transcription level (75, 76). Accumulating studies have
revealed that MIR31HG plays oncogenic or tumor-suppressive
roles in cancer initiation and progression (75), and its
overexpression can serve as a prognosis predictor for several
malignancies, including oral cancer (77), hepatocellular
carcinoma (78), and head and neck squamous cell carcinoma
(79). Yang et al. (55) demonstrated that MIR31HG was markedly
upregulated in PC tissues and cell lines. Knockdown of
MIR31HG significantly suppressed PC cell growth, promoted
apoptosis, and induced cell cycle G1/S arrest, whereas enhanced
expression of MIR31HG exerted the opposite effects.
Mechanistically, MIR31HG acted as an endogenous sponge by
competing for miR-193b and regulated miR-193b targets, such as
cyclin D1 (CCND1), myeloid cell leukemia sequence 1 (Mcl-1),
ecto-5'-nucleotidase (NT5E), KRAS, u-plasminogen activator
(uPA), and E-twenty six transcription factor 1(ETS1).
Meanwhile, inhibition of miR-193b expression significantly
upregulated the MIR31HG level, while overexpression of miR-
193b suppressed MIR31HG’s expression and function in PC
cells. As a result, these results demonstrated that MIR31HG
functioned as an oncogene to promote tumor progression, and
MIR31HG/miR-193b axis served as a potential therapeutic target
for PC (55).
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LINC01111/miR-3924/DUSP1

LncRNALINC01111 is a novel long intergenic ncRNA and located
at chromosome 8q21.13 (80, 81). Pan et al. (81) found that
LINC01111 expression was significantly downregulated in PC
tissues and plasma and was positively associated with lymph node
metastasis and tumor stage. Lower expression of LINC01111 was
correlated with poor prognosis in PC patients. LINC01111
overexpression significantly inhibited cell proliferation and
induced cell cycle G1/S arrest in vitro, as well as tumorigenesis
in vivo. Conversely, LINC01111 knockdown enhanced cell
proliferation and promoted cell cycle G1/S transition in vitro, as
well as tumorigenesis in vivo. Meanwhile, the results also
demonstrated that LINC01111 functioned as a molecular sponge
for miR-3924 to upregulate dual-specificity protein phosphatase 1
(DUSP1) protein levels and then downregulate stress-activated
Frontiers in Oncology | www.frontiersin.org 4
protein kinase (SAPK) phosphorylation and the translocation of
p-SAPK from the cytoplasm to the nucleus. Thus, the loss of
LINC01111 in PC activated the SAPK/c-Jun N-terminal kinase
(JNK) signaling pathway, resulting in the promotion of tumor
growth. Moreover, LINC01111 also facilitated an important role in
PC cell invasion and metastasis. Collectively, this study indicated
that LINC01111/miR-3924/DUSP1axiswas a potential therapeutic
target for treating PC (81).
LINC00976/miR-137/OTUD7B

LncRNA LINC00976, a novel long intergenic ncRNA, has been
recently identified as an oncogenic lncRNA to promote the cell
growth of PC through the LINC00976/miR-137/ovarian-tumour
FIGURE 1 | The lncRNA mediated ceRNA mechanism and the identified lncRNA/miRNA/mRNA networks in several hallmarks of PC. lncRNA, long noncoding RNA;
ceRNA, competitive endogenous RNA; miRNA, microRNA; mRNA: mRNA, messenger RNA; PC, pancreatic cancer; EMT, epithelial-mesenchymal transition.
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family deubiquitinases domain-containing protein 7B
(OTUD7B) (Cezanne) ceRNA pathway (82). The data showed
that LINC00976 expression was overexpressed in PC tissues and
cell lines and was positively associated with poorer survival in
patients with PC. Function studies revealed that LINC00976
knockdown significantly suppressed cell proliferation, migration,
and invasion in vivo and in vitro, whereas its overexpression
reversed these effects. Furthermore, bioinformatics analysis,
luciferase assays, and rescue experiments revealed that
LINC00976/miR137/OTUD7B established a ceRNA network to
modulate PC cell proliferation and tumor growth. Ultimately,
OTUD7B mediated EGFR and MAPK signaling pathway, which
suggested that LINC00976/miR-137/OTUD7B/EGFR axis might
act as a potential biomarker and therapeutic target for PC (82).
MALAT1/miR-217/KRAS

LncRNA metastasis-associated lung adenocarcinoma transcript 1
(MALAT1), which is an evolutionarily highly conserved lncRNA
and localized on chromosome 11q13, has been shown to be
involved in the pathogenesis of multiple cancers by acting as an
oncogene to promote cell growth, evade apoptosis, regulate cell
cycle, maintain stemness, and enhance invasion and metastasis
(83–85). Moreover, it is significantly overexpressed in many
cancer types and may be related to tumor prognosis, indicating
its potential use as a biomarker of cancers (83, 85). MALAT-1
played an important role in the carcinogenesis of PC by acting as a
ceRNA. Liu et al. (86) demonstrated that MALAT1 functioned as a
molecular sponge for miR-217 to upregulate the expression
of KRAS for promoting tumor growth in PC. Knocking down
MALAT1 reduced pancreatic tumor cell growth and proliferation
both in vitro and in vivo. AndMALAT1 knockdown also inhibited
cell cycle progression and impaired tumor cell migration and
invasion. However, MALAT1 knockdown attenuated the protein
expression of KRAS not directly through inhibition of cellular
miR-217 expression but decreased the miR-217 nucleus/
cytoplasm ratio, which suggested that MALAT1 inhibited the
translocation of miR-217 from the nucleus to the cytoplasm.
Thus, MALAT1 acted as a tumor promoter at least in part by
binding miR-217 and sequestering the molecule in the nucleus,
thereby promoting oncogenic KRAS expression in PC (86). In
contrast to the previous study by Liu et al., another study
confirmed that the MALAT1 suppressed miR-200c-3p function
via upregulating zinc finger E-box-binding homeobox 1 (ZEB1)
expression to induce the capability of PC cell migration and
invasion (87). Therefore, it can be proposed that MALAT1
could be a potential therapeutic target in PC.
HOTAIR/miR-613/notch3

LncRNA HOX transcript antisense RNA (HOTAIR), which is a
well-characterized oncogenic lncRNA and dysregulated in
variety of cancers, localizes in the HOXC locus of chromosome
12q13.13 that flanks between HOXC11 and HOXC12 loci (88–90).
Frontiers in Oncology | www.frontiersin.org 5
Notably, a growing body of evidence suggests that HOTAIR
constitutes a critical contributor to various known or unknown
mechanisms in the pathogenesis and progression of multiple
cancers and is also an important negative prognostic factor for
cancer patients, including PC (71, 88–90). Cai et al. (91)
demonstrated that HOTAIR could act as a ceRNA via regulating
miR-613/notch3 axis to promote cell growth and survival in PC.
They revealed that HOTAIR was found to be upregulated in both
PC tissues and cell lines, and HOTAIR was inversely correlated
with miR-613 level in PC tissues. Knockdown of HOTAIR in PC
cells suppressed the expression levels of miR-613 and tumor
growth, suggesting that the oncogenic role of HOTAIR might be
correlated with miR-613. Further investigation confirmed that
HOTAIR suppressed miR-613 expression via sponging miR-613
in the PC cells. Thus, the HOTAIR/miR-613/notch3 axis might be
a promising therapeutic target for PC (91). Meanwhile, Deng et al.
(92) reported that HOTAIR spongedmiR-34a to promote PC stem
cell-like properties through activation of the JAK2/STAT3
pathway. Silencing of HOTAIR could inhibit the Wnt/b-catenin
signaling pathway to alleviate EMT in PC (93).
XIST/miR-140, miR-124/iASPP

LncRNA X inactivation-specific transcript (XIST) is derived
from XIST gene and is important for inactivation of X
chromosome in the development of female mammals (94). It is
reported that XIST is dysregulated in a variety of cancers
and exerts its either tumor-suppressive or oncogenic role in
tumorigenesis and progression of cancers, such as hepatocellular
carcinoma, lung cancer, gastric cancer, and osteosarcoma (95–
97). Recent studies indicated that XIST was overexpressed in PC
and involved in regulating the cell proliferation, apoptosis,
migration, and invasion (98). Liang et al. (56) demonstrated
that XIST was specifically upregulated in PC tissues and related
to the advanced TNM stage and larger tumor dimension.
Patients with high XIST expression correlated to poorer
survival compared with that low expression. Knockdown of
XIST could induce PC cell cycle arrest at G0/G1 phase by
regulating cell cycle arrest-related CDK1 and P21, and p53-
independent apoptosis-related factor iASPP, which significantly
leads to suppression of the cell viability and proliferation in vivo
and in vitro. Mechanistically, XIST functioned as a ceRNA for
interacting with miR-140 and miR-124 to upregulate the
inhibitor for the apoptosis-stimulating protein of p53 (iASPP)
express ion. Meanwhile , iASPP could suppress p73
transcriptional activity to decrease the inhibitory effect of p73
on XIST expression without changing p73 protein levels.
Moreover, XIST was inversely correlated with miR-140, miR-
124, and p21, respectively, and positively correlated with iASPP
and CDK1. Thus, these data all indicated that XIST played a key
role in regulating PC cell proliferation and cell cycle and might
provide a potential therapeutic strategy for PC (56). In addition,
it has been proven that XIST/miR-133a/EGFR (99), XIST/miR-
34a-5p (98), and XIST/miR-137/Notch1 (100) ceRNA axes also
played important roles in PC cell growth and survival regulation,
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while XIST/miR-429/ZEB1 (101) and XIST/miR-141-3p/TGF-
b2 (102) ceRNA axes contributed to PC cell migration
and invasion.
LncRNAs AS ceRNAs AFFECTING
EPITHELIAL–MESENCHYMAL
TRANSITION AND METASTASIS

EMT is a complex and developmental process in which polarized
epithelial cells lose their characteristics instead of acquire
mesenchymal properties with the capacity of migration and
metastasis, playing a critical role in the progression of cancers
(65, 68, 103–105). It has been shown that epithelial cells in this
process that are induced by the transcriptional factors Snail,
Twist, Slug, ZEB1, and ZEB2, would result in loss of E-cadherin
expression and acquisition of mesenchymal markers, such as N-
cadherin or vimentin (106–108). Recent studies have indicated
that lncRNAs regulate PC EMT and metastasis (20, 53, 109, 110),
and therefore, the mechanism underlying the role of lncRNAs
should be addressed, knowing that some lncRNAs may serve as
ceRNA for PC EMT and metastasis.
NORAD/miR-125A-3p/RhoA

LncRNA noncoding RNA activated by DNA damage (NORAD,
also known as LINC00657) is a highly conserved, ubiquitously
expressed cytoplasmic lncRNA and locates on chromosome
20q11.23, which is required for maintaining chromosomal
stability and proper mitotic divisions in human cells (111,
112). Recent evidence indicates that NORAD is dysregulated in
various human cancers and acts as an important regulator by
interacting with different types of mechanisms to promote tumor
progression, such as cell proliferation, invasion, metastasis, and
apoptosis (113, 114). Chen et al. (58) revealed that NORAD
could enhance the hypoxia-induced EMT to promote PC cell
metastasis by acting as a ceRNA. Notably, they firstly revealed
that NORAD expression was highly increased in PC tissues by
using human microarray datasets GSE15471 and GSE16515 for
analyzing its expression profile, and NORAD expression
was significantly upregulated after hypoxic stimulation for
48 h. Knockdown of NORAD impaired PC cell migration and
invasion in vitro and decreased the metastatic and disseminated
ability in an orthotopic mouse metastatic model. Western
blotting also showed that knockdown of NORAD significantly
suppressed the expression levels of the mesenchymal cell
markers N-cadherin, vimentin, and ZEB1 but increased the
expression levels of the epithelial cell marker E-cadherin.
Furthermore, they demonstrated that NORAD utilized its
oncogenic role by directly binding to miR-125a-3p and
inhibiting its expression in PC cells, thus leading to
upregulation of RhoA expression. Meanwhile, treating with ras
homolog gene family (RhoA) pathway specific inhibitor CCG-
1423 could impede the flow of EMT and invasive behaviors
induced by NORAD. Additionally, patients with higher NORAD
Frontiers in Oncology | www.frontiersin.org 6
expression had shorter overall survival and recurrence-free
survival rates. Thus, NORAD/miR-125a-3p/RhoA axis might
be a potential novel therapeutic target for the treatment of PC
(115). Moreover, Bi et al. (116) also found that lncRNA
LINC00657 (NORAD) enhanced PC cell proliferation,
migration, and invasion but restricted the apoptosis by acting
as a ceRNA on miR-433 to increase protein activated kinase 4
(PAK4) expression.
SOX2OT/miR-200/Sox2

LncRNA SOX2 overlapping transcript (SOX2OT), which is a
highly expressed lncRNA in embryonic stem cells and maps to
human the chromosome 3q26.3 locus, plays critical roles in
embryogenesis, cell differentiation, and pluripotency
maintenance (117). SOX2OT harbors SOX2 gene transcription
in its intronic region and produces at least eight transcript
variants to exploit its effect on various diseases, including
cancer (117, 118). Recent studies have demonstrated that
SOX2OT is overexpressed in many cancers and involved in
tumor development and progression by acting as an oncogene
to promote cell proliferation, invasion, migration, and growth
and suppress cell apoptosis (118). Zhang et al. (119)
demonstrated that SOX2OT was overexpressed in PC tissues
and significantly correlated with TNM staging, acting as a
potential prognosis marker for patient outcome. They found
that the tumor suppressor YY1 bound to the promoter of
SOX2OT and inhibited tumor growth in vivo and in vitro by
suppressing SOX2OT and SOX2 expression in PC. Furthermore,
they observed that SOX2OT could promote PC cell EMT by
acting as a ceRNA (120). They found that plasma exosomal
SOX2OT expression was high and correlated with TNM stage
and overall survival rate of PC patients. Further research showed
that SOX2OT or exosomal SOX2OT promoted PC cells
metastasis and regulated EMT properties by increasing the
expression levels of the mesenchymal cell markers N-cadherin
and vimentin but suppressing the expression levels of the
epithelial cell marker E-cadherin. Mechanistically, SOX2OT
competitively bound to the miR-200 family to increase the
expression of Sox2, thus promoting invasion and metastasis of
PC in vitro and in vivo. Besides, they also found that SOX2OT/
miR-200/Sox2 ceRNA axis could enhance stem cell-like
properties of PC (120). Thus, SOX2OT/miR-200/Sox2 played
important roles in tumor progression and might be a useful
marker for PC prognosis.
LINC00462/miR-665/TGFBR1, TGFBR2

LncRNA LINC00462, which contains two exons with
approximately 962 nucleotides in length and is located on
chromosome 13 according to NONCODE 4.0, is found to
promote tumor proliferation, migration, and invasion by
regulating the AKT signaling pathway in multiple cancers,
including hepatocellular carcinoma and renal cell carcinoma
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(121, 122). Zhou et al. (123) demonstrated that LINC00462
promoted PC invasiveness through the miR-665/TGFBR1-
TGFBR2/SMAD2/3 pathway. They found that the expression
level of LINC00462 was significantly higher in tumor tissues and
was correlated with large tumor size, poor tumor differentiation,
TNM stage, and distant metastasis in PC patients. In vitro,
LINC00462 promoted PC cell migration and invasion but
inhibited cell adhesion. In vivo, LINC00462 enhanced PC cell
metastasis to lung, liver, and spleen in a mouse xenograft model.
LINC00462 also regulated PC cell EMT properties by increasing
the expression of intracellular adhesion molecule (ICAM)-1,
vimentin, Twist1, matrix metalloproteinase (MMP)2, and
MMP9 but decreasing the expression of E-cadherin. Further
study showed that LINC00462 acted as a ceRNA to promote the
malignant phenotype of PC by sponging miR-665, thus
upregulating the expression levels of transforming growth
factor beta 1 (TGFBR1) and TGFBR2. Ectopic expression of
miR-665 could reverse LINC00462 overexpression-mediated cell
migration, invasion, and EMT in PC. In contrast, knockdown
expression of miR-665 observed the opposite effects. While
LINC00462-mediated cell malignant behavior promotion in
PC was also rescued by loss of expression of TGFBR1 and
TGFBR2. Furthermore, LINC00462 activated the SMAD2/
SMAD3 signaling pathway by increasing the expression levels
of p-SMAD2/3 and the nuclear distribution of SMAD2/3, which
led to upregulating collagen 1, collagen 3, and fibronectin.
Meanwhile, LINC00462 played important roles on cell
proliferation and tumorigenesis in PC. Taken together,
LINC00462/miR-665/TGFBR1/2 regulatory network might be
a potential novel therapeutic target for the treatment of PC (123).
HULC/miR-133b

LncRNA is highly upregulated in liver cancer (HULC), which is
originally identified as the most overexpressed lncRNA in
hepatocellular carcinoma, and is located on chromosome 6p24.3
with approximately 500 nucleotides in length and contains two
exons (124, 125). Increasing evidence demonstrates that HULC is
also dysregulated in other types of cancer and plays essential roles
in tumor initiation and progress by promoting different
tumorigenic phenotypes, such as cell survival, proliferation,
and invasion in vitro , as well as tumor growth and
angiogenesis in vivo (124, 125). Peng et al. (126) found that
HULC was overexpressed in PC tissues and associated with
tumor size, lymph node metastasis, and vascular invasion. And
multivariate analysis showed that HULC expression was an
independent prognostic indicator for overall survival and time
to recurrence of patients with PC. Knockdown of HULC
significantly decreased PC cell ability of proliferation and
induced cell cycle arrest at G1/S phase in vitro. Zheng et al.
(127) further revealed that HULC promoted the proliferation
and invasion of PC cells but inhibited apoptosis by being
involved in the Wnt/b-catenin signaling pathway. Similarly,
HULC downregulated the expression of miR-15a, then
activated the PI3K/AKT pathway to enhance PC cell ability of
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migration and invasion (128). Meanwhile, exosomal HULC
could function as ceRNA for contributing to PC cell invasion
and migration by regulating EMT (129). Exosomal HULC
expression was significantly increased in PC patients’ serum
compared to healthy individuals or intraductal papillary
mucinous neoplasm patients. Further study showed that
knockdown of HULC suppressed PC cell invasion and
migration and inhibited the EMT by downregulating N-
cadherin, vimentin, and Snail but upregulating E-cadherin in
vitro and in vivo. Meanwhile, exosomal HULC derived from PC
cells also promoted cancer cell invasion and migration by
inducing EMT. Mechanistically, HULC interacted with miR-
133b to alter PC cell invasion and migration, as well as EMT
(129). Moreover, HULC and miR-622 via transfer by
extracellular vesicle regulated PC cell invasion and migration
(130). Thus, extracellular vesicle-encapsulated HULC could be a
potential circulating biomarker and therapeutic target for PC.
H19/miR-194/PFTK1

LncRNA H19, which is firstly described as a fetal transcript in
mice in 1984, is located on chromosome 11p15.5 and expressed
exclusively from the maternal allele (131, 132). Recent studies
indicate that H19 is dysregulated in various cancer types and
serves as oncogene or tumor suppressor to affect the
development and progression of cancer through various
mechanisms. For example, H19 enhances invasion and
metastasis in bladder cancer, glioma, breast cancer, non-small
cell lung cancer, and gastric cancer but suppresses the
aggressiveness of hepatocellular carcinoma and prostate cancer
(131, 133). Further study demonstrated that H19 acted as a
ceRNA to enhance invasion and metastasis by regulating Wnt/b-
catenin signaling pathway in PC (134). Sun et al. (134) found that
H19 was overexpressed and correlated with distant metastasis,
advanced TNM stages, and poor survival in patients with PC.
Multivariate analysis revealed that high H19 expression was an
independent indicator of poor prognosis. H19 knockdown
suppressed PC cell migration and invasion in vitro .
Subsequently, they demonstrated that H19 promoted PC cell
invasion and migration at least partially by increasing [cyclin-
dependent kinase 14 (CDK14)] expression through antagonizing
miR-194. H19 knockdown significantly reduced the expression
of PFTK1, while miR-194 inhibition significantly increased the
expression of PFTK1; the suppressive effect of H19 knockdown
was partially attenuated by miR-194 inhibition and PFTK1
overexpression. Moreover, H19/miR-194 modulated Wnt/b-
catenin signaling by upregulating p-LRP6, Snail but
downregulating p-b-catenin to promote PC cell invasion and
migration. The expression level of H19 and PFTK1 was positively
correlated with each other, while miR-194 was negatively
correlated with H19 and PFTK1 in tissue samples. Collectively,
the H19/miR-194/PFTK1 ceRNA axis might be a potential novel
therapeutic target for PC (134). In addition, the H19/let-7/
HMGA2/EMT signaling axis also played important roles on
PC metastasis and EMT (135). And H19 could maintain PC
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cell EMT process and stemness by deriving miR-675-3p
that directly targeted SOCS5 then activating the STAT3
pathway (136).
TUG1/miR-382/EZH2

LncRNA taurine upregulated gene 1 (TUG1), which is originally
identified in the genomic screen of taurine-treated mouse retinal
cells, is a nucleotide lncRNA sequence localized to chromosome
22q12.2 (137, 138). Recent studies have been indicated that TUG1
is dysregulated in numerous human cancers and acts as an
unfavorable predictor of survival for patients with cancer, such
as renal cell carcinoma, ovarian cancer, bladder urothelial
carcinoma, oral squamous cell carcinoma, esophageal squamous
cell carcinoma, hepatocellular carcinoma, and intrahepatic
cholangiocarcinoma (137, 138). Zhao et al. (139) revealed that
TUG1 was essential for the migration and EMT in PC by serving
as a ceRNA. They firstly demonstrated that TUG1 was
overexpressed in tumor tissues and correlated with large tumor
size, poor tumor differentiation, TNM stage, vascular infiltration,
distant metastasis, and overall survival of patients with PC, which
indicated that upregulated TUG1 might contribute to
the development of PC. Then, knockdown of TUG1 decreased
the PC cell migration capacity and the formation of
EMT by upregulating E-cadherin, b-catenin but downregulating
N-cadherin, vimentin in vitro. In contrast, overexpression of
TUG1 showed opposite effects. Further study confirmed that
TUG1 exerted inhibitory effects on miR-382 expression through
functioning as a ceRNA and therefore directly sponging miR-382
in PC. Overexpression of miR-382 could reverse the TUG1 effects
on the promotion of PC cell migration and EMT formation.
Additionally, TUG1 could positively regulate the expression of
EZH2, a target of miR-382, by decreasing miR-382. Knockdown of
EZH2 abolished PC cell migration and EMT formation, which was
caused by TUG1 overexpression. Moreover, the expression level of
TUG1 was negatively correlated with miR-382 and positively
correlated with EZH2 in PC tissues. Collectively, these data
indicated that TUG1/miR-382/EZH2 ceRNA regulatory
signaling pathway enhanced PC cell migration capacity and
EMT formation and might be a potential novel therapeutic
target for PC (139). Otherwise, TUG1/miR-29c axis was also
critical for promoting the growth and migratory ability of PC
cells in vitro and in vivo (140). Inhibition of TUG1/miR-299-3p
ceRNA axis suppressed PC cell malignant progression via
deactivation of the Notch1 pathway (141).
LncRNAs AS CeRNAs RELATED TO
CANCER STEM CELL MAINTENANCE

Cancer stem cells (CSCs) are a functional subpopulation of cells
that exhibit high proliferation, self-renewal, and high
tumorigenic, invasive, and metastatic capability, as well as
chemoresistance, and their abundance is positively associated
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with the degree of PC malignancy (69, 142, 143). Studies have
revealed that the cell surface proteins CD44, CD24, CD133,
chemokine C-X-C-motif receptor 4 (CXCR4), aldehyde
dehydrogenase 1 family, member A1 (ALDH1), Epithelial cell
adhesion molecule (EPCAM), adenosine triphosphate binding
box transporter G2 (ABCG2), and cellular-mesenchymal
epithelial transition factor (c-MET) are identified as PC stem
cell markers (69, 143, 144). Several lines of evidence have shown
that oncogenic lncRNAs help sustain cancer stem cell traits by
acting as ceRNAs in the initiation and progression of PC (20, 53,
145). Thus, the lncRNA-mediated ceRNA network may serve as
a potential biomarker and therapeutic target for PC.
ROR/let-7 FAMILY

LncRNA regulator of reprogramming (ROR), which is highly
expressed in induced pluripotent stem cells (iPSCs) and
embryonic stem cells (ESCs), is located at 18q21.31 and can be
regulated by pluripotency transcription factors, such as Sox2, Oct4,
and Nanog (146, 147). It has been identified that ROR is an
important regulator of reprogramming differentiated cells to iPSCs
and maintenance of ESCs, which indicates that ROR plays critical
roles in tumorigenesis and progression of human cancer (146, 147).
Accumulating evidence has demonstrated that ROR is upregulated
in multiple types of cancer and associated with tumor metastasis,
EMT program, drug resistance, and stem cell-like characteristic
promotion by various regulatory mechanisms in ovarian, lung,
breast cancer, hepatocellular cancer, gastric cancer, and so on (146,
147). Meanwhile, recent studies also reveal that ROR acts as a
ceRNA by sponging miR-145 (148), miR-205 (149), and miR-34a
(151) to regulate gene transcription. Zhan et al. (150) demonstrated
that ROR was overexpressed in PC tissues and enhanced PC cell
metastasis, EMT promotion, and tumor growth by activation of
ZEB1 pathway. Similarity, another study showed that ROR could
modulate the expression of polypyrimidine tract-binding protein 1/
pyruvate kinase isozymes M2 (PTBP1/PKM2) through sponging
miR-124 to induce PC cell autophagy, which led to gemcitabine
resistance for PC (152). Moreover, Fu et al. (153) revealed that ROR
functioned as a ceRNA to promote stem cell-like phenotype in PC.
They firstly found ROR was significantly upregulated and
positively correlated with poor prognosis in patients with PC.
Knockdown of the expression of ROR impaired cell proliferation,
migration, and invasion ability, suppressed the EMT process, and
induced cell cycle G1/S arrest in PC. Further study displayed that
ROR was overexpressed in PC stem-like cells and promoted PC
stem-like cell sphere formation capability in vitro and
tumorigenicity in vivo by regulating the expression of Sox2 and
Nanog. Mechanistically, ROR exerted its oncogenic effects by
sponging several tumor suppressor miRNAs such as let-7 family
(let-7i-5p, let-7b-5p, let-7e-5p, let-7e-3p, let-7b-3p, and let-7c-3p),
miR-93-5p, miR-145-3p, miR-320a, and miR-320b to maintain the
cancer stem cell properties of PC. Collectively, ROR was a potential
therapeutic target for PC. In addition, Gao et al. (151) showed that
ROR/miR-145/Nanog ceRNA axis also contributed to modulate
PC cell stem-like properties.
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AFAP1-AS1/miR-384/ACVR1

LncRNA actin filament-associated protein 1 antisense RNA 1
(AFAP1-AS1), which is transcribed from the AFAP1 gene in the
antisense direction, is mapped to the 4p16.1 region of human
chromosome with 6,810 bp in length (154, 155). AFAP1-AS1
contains several overlapping and complementary regions among
the exons of AFAP1-AS1 and can affect the expression of
AFAP1. Accumulated studies have shown that AFAP1-AS1 is
aberrantly expressed and exerts a carcinogenic role in numerous
types of tumors, including breast cancer, liver cancer, gastric
cancer, non-small cell lung cancer, and colorectal cancer (154,
155). In PC, AFAP1-AS1 had also been reported to be aberrantly
expressed and was able to function as a regulator of
tumorigenesis by regulating cell proliferation, apoptosis,
migration, invasion, stemness, and so on (156, 157). Wu et al.
(62) revealed that AFAP1-AS1 functioned as a ceRNA to regulate
the cancer stem cell properties of PC. They first found that
AFAP1-AS1 was overexpressed in PC tissues and side population
(SP) cells. While SP cells were rich with cancer stem cell markers
Oct4, ABCG2, Nestin, CK19, and CD133, which indicated that
AFAP1-AS1 was involved in maintaining stemness. Knockdown
of AFAP1-AS1 exerted suppressive effects on PC cell sphere
formation and clone formation, while overexpression of AFAP1-
AS1 group showed the opposite trend. Moreover, AFAP1-AS1
positively regulated the expression of CSC markers Oct4,
ABCG2, Nestin, CK19, and CD133 by gain or loss strategies in
PC cells. Furthermore, their research identified that AFAP1-AS1
modulated PC cell stemness by upregulating activin receptor
type-1 (ACVR1) through competitively binding to miR-384 (62).
MiR-384 decreased PC cell ability of sphere formation and clone
formation and inhibited the expression of Oct4, ABCG2, Nestin,
CK19, and CD133. In contrast, ACVR1 enhanced PC cell
stemness by increasing cell sphere formation and clone
formation and upregulating of Oct4, ABCG2, Nestin, CK19,
and CD133. Their study data also found that AFAP1-AS1-
promoted PC cell tumorigenesis and stemness could be
reversed by miR-384 in vivo. Therefore, these results suggested
that AFAP1-AS1/miR-384/ACVR1 pathway might do duty for a
potential therapeutic target for PC patients (62).
UCA1/miR-590-3p/KRAS

LncRNA urothelial cancer-associated 1 (UCA1), a member of
the human endogenous retrovirus H family and firstly identified
in bladder transitional cell carcinoma, is 1,442 bp in length and
located on chromosome 19p13.12 with three exons and two
introns (158–160). According to the tissue expression profiling,
UCA1 is ubiquitously expressed at post-fertilization primary
phase and not expressed in most normal tissues of adults.
Further studies have shown that UCA1 is highly expressed and
exerts oncogenic activity in numerous cancers, such as gastric
cancer, colorectal cancer, liver cancer, breast cancer, cervical
cancer, and prostate cancer (158–160). Several studies also
indicate that highly expressed UCA1 is related to poor
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clinicopathological features and may serve as a prognostic
marker for cancer patients (161). Meanwhile, an increasing
number of studies showed that UCA1 played important roles
in tumorigenesis of PC. Chen et al. (162) firstly demonstrated
that UCA1 was significantly upregulated in PC and correlated
with tumor size, depth of invasion, CA19-9 level, and tumor
stage. UCA1 suppressed the expression of P27 to effectively
inhibit PC cell proliferative activities, induce apoptotic rate,
and cause cell cycle arrest. Zhang et al. (163) revealed that
UCA1 promoted cell migration and invasion of PC cells
through the Hippo signaling pathway via interacting with
YAP. Moreover, recent studies have shown that UCA1
promoted progress and development of PC by serving as a
ceRNA. Zhang et al. (164) elucidated that UCA1 enhanced PC
cell growth, migration, and invasion ability by sponging miR-
135a. And a study by Zhou et al. (165) reported that UCA1 could
bind miR-96 to modulate the expression of forkhead box protein
O3 (FOXO3) that promoted proliferation and metastasis while
reduced apoptosis of PC cells. Additionally, Gong et al. (166)
discovered that the regulatory network of UCA1/miR-107/
ITGA2 regulated the migration and invasion of PC cells
through focal adhesion pathway. Besides, Liu et al. (167)
found that UCA1/miR-590-3p/KRAS axis was critical for
stemness maintenance of PC. They revealed that UCA1 was
overexpressed in PC and might be a negative prognostic factor
for patients’ overall survival. Knockdown of UCA1 decreased
sphere formation capability of PC cells, as well as the expression
of the stemness markers CD133, OCT4, NANOG, and SOX2. In
contrast, overexpression of UCA1 resulted in the opposite effects.
Mechanistically, UCA1 exerted its oncogenic role by enhancing
the expression and activity of KRAS. UCA1 firstly could function
as a molecular sponge by directly binding to miR-590-3p, which
led to upregulating KRAS expression. Then, UCA1 promoted
phospho-KRAS protein expression through interaction with
hnRNPA2B1 to modulate oncogenic KRAS activity, which was
subsequently necessary for tumorigenic activity in PC. Notably,
KRAS also significantly promoted UCA1 expression, thus
forming a positive feedback loop. Thus, these findings
suggested that UCA1/miR-590-3p/KRAS regulatory network
might be a target for new PC therapies (167). Meanwhile, Guo
et al. (168) demonstrated that UCA1, which is derived from
hypoxic PC exosomes, could promote angiogenesis and tumor
growth through the miR-96-5p/AMOTL2/ERK1/2 ceRNA axis
in vitro and in vivo.
LncRNAs AS CeRNAs CONTROLLING
METABOLISM

Metabolism reprogramming has been regarded as a hallmark of
cancer (169, 170). As a primary feature in carcinogenesis,
metabolic reprogramming contributes to tumor cell
proliferation, EMT, metastasis, immune escape, and resistance
to chemotherapy (171–173). Meanwhile, reprogramming of
cancer metabolism is composed of dysregulation of glucose
and glutamine metabolism, alterations of lipid synthesis,
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rewiring of mitochondrial function, etc. (171–173). Numerous
genes have been shown to participate in the regulation of
metabolic pathways, thus aberrant expression of these genes
can be involved in the pathogenesis of PC (103, 170, 172, 174).
The recent studies have revealed a significant attention toward
the role of lncRNAs in the regulation of different aspects of
cancer metabolism (20, 53, 175, 176). Here, we review lncRNAs
as ceRNAs to modulate the processes of cancer metabolism
in PC.
LINC00261/miR-222-3p/HIPK2

LncRNA LINC00261, firstly identified in hepatocellular
carcinoma cells 9 years ago, is located on the 20th
chromosome from site 22,560,552 to 22,578,642 (177).
An increasing number of studies have indicated that
LINC00261 is widely lowly expressed in a variety of cancers
and acts as a tumor suppressor contributing to modulating
cell proliferation, apoptosis, invasiveness, migration,
chemoresistance, angiogenesis, and tumorigenesis via multiple
molecular mechanisms (177). LINC00261 also plays vital roles in
suppression of PC progression by acting as a ceRNA. Zhai
et al. (59) demonstrated that overexpression of LINC00261
suppressed PC cell glycolysis in vitro and in vivo. They further
confirmed that LINC00261 inhibited cell glucose metabolism by
binding to miR-222-3p to induce homeodomain interacting
protein kinase 2 (HIPK2) overexpression and then inactivated
HIPK2-mediated ERK/c-Myc pathway, as well as c-Myc
target genes [glucose transporter member 1 (GLUT1),
hexokinase-2 (HK2), and L-lactate dehydrogenase A chain
(LDHA)]. Functionally, miR-222-3p reversed the LINC00261
overexpression-induced decrease in cell glycolysis, similar to
HIPK2 and miR-222-3p. Thus, these results revealed that
LINC00261 suppressed glycolysis of PC via regulating miR-
222-3p/HIPK2 ceRNA axis. Moreover, Zhai et al. (59) also
found that LINC00261 could reduce c-Myc expression by
sequestering Insulin-like growth factor 2 mRNA-binding
protein 1 (IGF2BP1) to induce glycolysis suppression. In
addition, Liu et al. (178) indicated that LINC00261 repressed
c-Myc transcription by physically interacting and binding with
the bromo domain of p300/cap binding protein (CBP),
preventing the recruitment of p300/CBP to the promoter
region of c-Myc. Furthermore, LINC00261 might interact with
miR-23a-3p (179) or regulate the miR-552-5p/FOXO3 axis (180)
to suppress the development of PC.
FEZF1-AS1/miR-107/ZNF312B

LncRNA FEZ finger zinc 1 antisense 1 (FEZF1-AS1), transcribed
from the opposite strand of its cognate coding gene zinc finger
protein 312B (ZNF312B), is a conserved RNA that is located on
chromosome 7q31.32 with a length of 2,653 bp (181, 182).
Recent research indicates that FEZF1-AS1 is significantly
overexpressed and closely related to patient poor prognosis in
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a variety of malignancies, including nasopharyngeal carcinoma,
hepatocellular carcinoma, cervical cancer, colorectal cancer,
multiple myeloma, breast cancer, osteosarcoma, lung cancer,
gastric cancer, and PC (181, 182). Li et al. (183) and Ye et al.
(184) initially identified that FEZF1-AS1 was upregulated in PC
tissues through lncRNA expression profile microarray analysis.
Subsequently, they confirmed that FEZF1-AS1 and its sense-
cognate ZNF312B were markedly expressed in PC tissues by
using quantitative real-time PCR (qRT-PCR) and in situ
hybridization (ISH) (184). FEZF1-AS1 and ZNF312B
expression was positively related to advanced American Joint
Committee on Cancer (AJCC) stages, nerve invasion, and
patients’ poor survival. And a nomogram, which incorporated
the AJCC classification with significant prognostic factors neural
invasion, ZNF312B expression, and FEZF1-AS1 expression,
illustrated that FEZF1-AS1 and ZNF312B expression had
important impacts on patient prognosis. Mechanistically,
FEZF1-AS1 could act as an endogenous sponge by
sequestering miR-107 and thus abolishing the miRNA-induced
repressing effect on the ZNF312B expression. Functional
experiments also confirmed that the FEZF1-AS1/miR-107/
ZNF312B ceRNA axis played a key role in promoting PC cell
proliferation, regulating cell cycle, enhancing migration and
invasion, and inhibiting apoptosis. More importantly,
the FEZF1-AS1/miR-107/ZNF312B pathway contributed to
Warburg effect maintenance by promoting glycolytic process,
glucose uptake, and lactate production, which met the demands
for continuous energy and nutrients to support PC cell
tumorigenesis and progression (184). Therefore, the ceRNA-
mediated metabolic features of PC provided attractive
therapeutic opportunities for treatments. Meanwhile, Ou et al.
(185) demonstrated that FEZF1-AS1 could promote PC cell
proliferation and invasion through miR-142/HIF-1a axis under
hypoxic conditions and exert its oncogenic effect on PC cells
through miR-133a/EGFR axis under normoxic conditions.
SNHG16/miR-195/SREBP2

LncRNA Small Nucleolar RNA Host Gene 16 (SNHG16),
initially identified as an oncogene in neuroblastoma, is located
on chromosome 17q25.1 and contains two splicing variants
(186). Recent studies have shown that SNHG16 is upregulated
in a variety of human cancers and significantly correlated with
advanced pathological stage, lymph node metastasis, and poor
prognosis in cancer patients (186, 187). Meanwhile, increasing
evidence has suggested that SNHG16 functions as a tumor-
promoting lncRNA that is involved in the regulation of
numerous biological processes, including cell cycle,
proliferation, apoptosis, migration, and invasion through a
variety of potential mechanisms (186, 187). Yu et al. (188)
found that SNHG16 accelerated the development of PC and
promoted lipogenesis via directly regulating miR-195/SREBP2
axis. Knockdown of SNHG16 or Sterol regulatory element
binding protein-2 (SREBP2) suppressed PC cell proliferation,
migration, and invasion, as well as the lipogenesis that was
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measured by decreasing the expression of fatty acid synthase
(FASN), acetyl-CoA carboxylase 1 (ACACA), and stearoyl-CoA
desaturase 1 (SCD1). While overexpression of miR-195 showed
the same effect in PC cells. They further confirmed that SNHG16
directly sponged miR-195 from SREBP2 to modulate their
expression. Meanwhile, miR-195 inhibitor upregulated the
expression of SREBP2 and reversed the effects of shSNHG16
on progression and lipogenesis of PC. Thus, these results showed
that SNHG16 promoted lipogenesis of PC via regulating miR-
195/SREBP2 ceRNA axis. The lncRNA SNHG16/miR-195/
SREBP2 axis might be developed as therapeutic targets for
treating PC (188). Furthermore, Xu et al. (189) found that
SNHG16 contributed to PC cell proliferation, migration, and
invasion via the miR-302b-3p/SLC2A4 ceRNA axis.
LncRNAs AS CeRNAs INDUCING
AUTOPHAGY

Autophagy is a highly conserved process in response to
environmental stresses for ensuring cellular homeostasis
through the removal of proteins or dysfunctional organelles
(190–192). Existing studies indicate that autophagy plays a
dynamic role in cancer initiation, progression, as well as drug
resistance, by regulating interactions between the tumor and
tumor microenvironment (190–193). There is increasing
evidence that a large number of lncRNAs are obviously
involved in PC autophagy (20, 53, 191, 194, 195).
Identification of the mechanisms by which autophagy is
activated in PC will help clarify PC pathogenesis (196). A
number of research articles suggested that lncRNAs induce or
suppress autophagy through ubiquitin-like modifier-activating
enzyme (ATGs), and their signaling pathways may suppress or
promote carcinogenesis of PC (192, 194, 195). Here, we describe
the recently characterized lncRNAs that function as ceRNAs
through inducing or inhibiting autophagy in PC.
PVT1/miR-20a-5p/ULK1

LncRNA plasmacytoma variant translocation 1 (PVT1), which
originated from an intergenic region on chromosome 8, is an
important oncogenic lncRNA highly expressed in human
malignancies and correlated with patients’ poor prognosis
(197, 198). Compared to the majority of lncRNAs, the
carcinogenic effect of PVT1 has been confirmed in various
tumors. Numerous studies have revealed that PVT1 displays a
crucial role to facilitate cancer progression by promoting growth
and proliferation, enhancing migration and invasion,
suppressing apoptosis, regulating metabolism, maintaining
stemness, as well as inducing chemotherapy resistance (197–
199). However, current research implies that the mechanisms
underlying the carcinogenic role of PVT1 are rather complex. It
has been proven that PVT1 can exert its varied oncogenic roles
through overexpression and modulation of miRNA expression,
protein interactions, targeting of regulatory genes, formation of
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fusion genes, functioning as a ceRNA, and interactions with
myelocytomatosis oncogene (MYC), among many others
molecular mechanisms (199, 200). Certainly, identifying the
carcinogenic role and molecular mechanism of PVT1 has
important implications for therapeutically targeting cancer.
Huang et al. (60) demonstrated that PVT1 promoted the
development of PC through the PVT1/miR-20a-5p/unc-51-like
autophagy-activating kinase 1 (ULK1)/autophagy ceRNA
pathway. They found that PVT1 was dramatically upregulated
and positively associated with ULK1 protein expression in PC
tissues and cells. And overexpression of PVT1 enhanced PC cells
autophagy in vitro and in vivo, whereas knockdown of PVT1
showed the opposite trend. Meanwhile, PVT1 overexpression
could promote cell proliferation and colony formation, suppress
apoptosis, and increase S phase cells in PC cells; however, the
attenuated effects were observed when treated with autophagy
inhibitor 3-methyladenine. On the contrary, PVT1 knockdown
with treatment of autophagy inducer rapamycin in PC cells
would restore proliferation and colony formation, inhibit
apoptosis, as well as ascend cell cycle S phase. These data
suggested that PVT1 could induce cytoprotective autophagy in
PC. Further studies revealed that PVT1 induced autophagy by
upregulating ULK1 protein expression. Mechanistically, PVT1
modulated ULK1 expression by sponging miR-20a-5p.
Moreover, the expression of PVT1 in high-grade (III + IV) PC
tissues was higher than that in low-grade (I + II) tissues. And the
overall survival time of patients with high PVT1 expression was
significantly shorter than that of patients with low PVT1
expression. Thus, the study demonstrated that PVT1 acted as a
sponge to regulate miR-20a-5p and subsequently affected ULK1
expression for inducing autophagy and promoting development
of PC (60). Additionally, PVT1 could upregulate the expression
of both Pygo2 and ATG14 and thus regulated Wnt/b-catenin
signaling and autophagic activity to overcome gemcitabine
resistance through sponging miR-619-5p in PC (201). And the
ceRNA axes PVT1/miR-448/SERBP1 (202), PVT1/miR-519d-
3p/HIF-1a (203), and PVT1/miR-143/HIF-1a (204) might also
be potential biomarkers and therapeutic targets for PC.
LINC01207/miR-143-5p/AGR2

LncRNA LINC01207, located in the 4q32 genomic locus with
three exons and two introns, has been reported to be upregulated
in multiple types of cancer and associated with the prognosis of
patients with poor survival (205–209). Recent studies have
demonstrated that LINC01207 performs as an oncogenic
lncRNA to promote cell growth, migration, invasion, and
enhance apoptosis, as well as maintain stemness via ceRNA
regulatory mechanism. Liu et al. (210) revealed that silencing
of LINC01207 suppressed anterior gradient 2 (AGR2)
expressions to facilitate autophagy and apoptosis of PC cells by
sponging miR-143-5p. They first confirmed that LINC01207 and
AGR2 were highly expressed, while miR-143-5p was poorly
expressed in PC tissues when compared to the adjacent tissues.
Further studies showed that LINC01207 could directly bind to
October 2021 | Volume 11 | Article 765216

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xiong et al. LncRNA-Mediated ceRNA in PC
miR-143-5p, and AGR2 was a target gene of miR-143-5p. And
knockdown of LINC01207 could decrease the expression of AGR2
by upregulating miR-143-5p, which indicated that LINC01207
functioned as a ceRNA to upregulate AGR2 expression by
sponging miR-143-5p. Moreover, LINC01207 knockdown and
miR-143-5p overexpression could inhibit PC cell proliferation,
promote apoptosis, and induce autophagy by upregulating the
expression of LC3II and beclin-1, while decreasing P62, AGR2,
and the ratio of Bcl-2/Bax expression. Thus, LINC01207 silencing
inhibited PC progression by inhibiting the mR-143-5p/AGR2 axis,
providing a potential target for PC treatment (210).
ANRIL/miR-181a/HMGB1

LncRNA antisense noncoding RNA in the INK4 locus (ANRIL),
initially identified in a kindred of familial melanoma-neural
system tumor with a germ-line deletion of the entire CDKN2A/B
locus in 2007, is located at the 9p21 region with 3.9 kb length
and also named CDKN2B antisense RNA 1 (CDKN2B-AS) (211,
212). It has been proven that ANRIL is implicated in several
malignant tumors, and high expression of ANRIL is associated
with aggressive clinicopathologic features, such as high histological
grade tumor size, advanced tumor–node–metastasis stage, andpoor
overall survival with the disease (211–213). Additionally, ANRIL
participates in tumorigenesis by promoting cell proliferation,
migration, invasion, and EMT but inhibiting cell apoptosis
through a number of mechanisms (213, 214). Recent studies also
show thatANRIL can act as anoncogenic ceRNA to facilitate tumor
progression via miRNA regulation, including mechanisms
involving let-7a (215) and miR-125a (216) in nasopharyngeal
carcinoma, miR-99a (217) and miR-449a (218) in gastric cancer,
miR-34a (219) in glioma, miR-122-5p (220), miR-191 (221), miR-
144 (222), andmiR-199a-5p (223) in hepatocellular carcinoma,miR-
186 (224) in cervical cancer, let-7a in prostate cancer (225) and
colorectal cancer (226), miR-125a-5p (227) in endometrial
carcinoma, and miR-199a (228) in breast cancer. In PC, previous
research demonstrated that ANRIL was overexpressed in cancer
precursors known as intraductal papillary mucinous neoplasms
(IPMNs) (229), and ANRIL could promote PC cell migration and
invasion through modulation of EMT by activating ATM–E2F1
signaling pathway in vivo and in vitro (230). Whereas Wang et al.
(231) have recently revealed that ANRIL aggravated PC cell
gemcitabine chemoresistance by targeting inhibition of miR-181a
and activating high-mobility group box-1 (HMGB1)-induced
autophagy. They first demonstrated that ANRIL and HMGB1 were
obviously higher in PC tissues and cell lines, while miR-181a was
significantly lower in both PC tissues and cell lines. And knockdown
ofANRILcould inhibitPCcell proliferation, invasion, andmigration,
as well as the expression of cell adhesion-related proteins. However,
downregulation of miR-181a would reverse the inhibitory role of
ANRIL knockdown on PC cell, which suggested that the oncogenic
role of ANRIL on PC cells might be mediated by miR-181a.
Meanwhile, ANRIL knockdown or miR-181a overexpression
promoted the expression of LC3 II and Beclin1, while miR-181a
inhibition could reverse the inhibition of autophagy by ANRIL
Frontiers in Oncology | www.frontiersin.org 12
knockdown, which indicated that ANRIL-modulated autophagy
was mediated by miR-181a. Further studies revealed that miR-181a
targeted HMGB1 to suppress PC cell proliferation, invasion, and
migration, as well as stimulate autophagy. Mechanistically, ANRIL
functioned as a ceRNA to regulate the expression of HMGB1 by
inhibiting the activity of miR-181a in PC cells. And ANRIL could
enhance PC cells to gemcitabine resistance via miR-181a/HMGB1
pathway, which provided new insights and potential targets for the
therapy of PC. Moreover, the ANRIL/miR-181a axis also played
important roles in laryngeal squamous cell carcinoma, colon cancer,
and gastric cancer (232–234).
LncRNAs AS CeRNAs FACILITATING
CHEMORESISTANCE

Chemotherapy resistance causes PC recurrence and failed
clinical outcome (235). Cancers can exhibit either intrinsic or
acquired chemoresistance to prevent the success of drug
treatment (27, 236). It is clear that many factors and signaling
pathways are involved in chemoresistance of PC, such as drug
transport, metabolism, tumor microenvironment, EMT, DNA
damage repair, mutation of drug targets, autophagy, epigenetics.
and cancer stem cells (27, 237, 238). However, the molecular
mechanisms of chemoresistance remain poorly understood, and
the exploration of such mechanisms will help improve the
current treatment of PC (238, 239). Since studies have
indicated that lncRNAs play critical roles in initiation and
progression of PC (20, 27, 53, 237, 240), it is increasingly
speculated that the function and mechanism of lncRNA-
mediated ceRNA network for chemoresistance regulation.
GSTM3TV2/let-7/LAT2, OLR1

LncRNA Homo sapiens glutathione S-transferase mu 3,
transcript variant 2 and noncoding RNA (GSTM3TV2), a
novel long intergenic ncRNA encoded from chromosome
1p13.3, has been recently identified as an oncogenic lncRNA to
promote gemcitabine resistance through GSTM3TV2/let-7/L-
type amino acid transporter 2 (LAT2), oxidized low-density
lipoprotein receptor 1 (OLR1) ceRNA pathway in PC (63). The
data showed that GSTM3TV2 expression was upregulated in PC
tissues and gemcitabine-resistant cell lines and was positively
associated with poorer survival in patients with PC. Function
studies demonstrated that overexpression of GSTM3TV2
significantly decreased gemcitabine-induced cytotoxicity in vivo
and in vitro, whereas its knockdown reversed these effects in PC.
Furthermore, bioinformatics analysis, luciferase assays, and RNA
immunoprecipitation assay revealed that GSTM3TV2 was
physically associated with let-7 and functioned as ceRNA for
let-7 to promote gemcitabine resistance. And let-7 directly
targeted LAT2 and OLR1 and suppressed their expressions.
LAT2, a transporter of neutral amino acids, activates
mechanistic target of rapamycin (mTOR) kinase, thereby
inhibiting apoptotic cell death in PC (241). OLR1 is also
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known to increase HMGA2 transcription by upregulating c-Myc
to promote the metastasis in PC (242). LAT2 and OLR1 were
upregulated in gemcitabine-resistant cells, and that inhibiting
their expression enhanced the chemosensitivity of PC
cells to gemcitabine. Meanwhile, GSTM3TV2-mediated
chemoresistance could be depressed by knocking down LAT2
and OLR1. Thus, GSTM3TV2 could upregulate the expression of
LAT2, OLR1 through competitively sponging let-7 to enhance
gemcitabine resistance of PC, which suggested that GSTM3TV2/
let-7/LAT2, OLR1 axis might act as a potential biomarker and
therapeutic target for PC (63).
DYNC2H1-4/miR-145

Linc-DYNC2H1-4, an intergenic ncRNA about 281 nt in length,
has been originally discovered in human liver (237, 243). A recent
study performed byGao et al. (243) demonstrated thatDYNC2H1-
4 acted as a sponge of miR-145 to upregulate the expression of its
targets, MMP3, Oct4, Lin28, Nanog, Sox2, and ZEB1, thereby
promoting EMT progression and CSC formation, which led to
chemoresistance inPCcells. Theyfirst found thatDYNC2H1-4was
upregulated in PC tissues and BxPC-3 gemcitabine-resistant cell
line with acquired gemcitabine resistance. Ectopic expression of
DYNC2H1-4 promoted migration and invasion as well as
pacreatosphere-forming ability in gemcitabine-sensitive PC cells.
Knockdown of DYNC2H1-4 suppressed the acquisition of EMT
phenotypes and CSC properties in gemcitabine-resistant cells.
Mechanistically, DYNC2H1-4 competed with miR-145 to
upregulate its targets’ expression. MiR-145 was established as a
tumor suppressor, targeting embryonic transcription factors
including Lin28, Nanog, Sox2, and Oct4, and also inhibiting the
EMT key regulator, ZEB1 expression. Overexpression of
DYNC2H1-4 in parental BxPC-3 cells significantly elevated the
Lin28,Nanog, Sox2,Oct4, andZEB1expressions,while knockdown
of DYNC2H1-4 in BxPC-3 gemcitabine-resistant cells showed the
opposite effects. Furthermore, upregulation of these miR-145
targets by DYNC2H1-4 was reverted by miR-145 overexpression.
In addition, they also found that MMP3, a nearby gene of
DYNC2H1-4, was expressed differentially in accordance with
DYNC2H1-4 levels in gemcitabine-sensitive and -resistant cell
lines. MiR-145 directly targeted MMP3. Overexpression of miR-
145 decreasedMMP3 expression in gemcitabine-resistant cell lines,
and MMP3 upregulation induced by DYNC2H1-4 was
downregulated by miR-145, which indicated that DYNC2H1-4/
miR-145/MMP3 ceRNA axis was one of the mechanisms by which
DYNC2H1-4 was involved in regulating chemoresistance of
PC (243).
GAS5/miR-221/SOCS3

LncRNA growth arrest-specific transcript 5 (GAS5), which is
located on chromosome 1q25 and originally found to accumulate
in growth-arrested cells, acts as a decoy hormone response element
for the glucocorticoid receptor (GR) (244, 245). It has been shown
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that GAS5 is downregulated and exerted a tumor-suppressive role
in diverse cancers, including gastric cancer, non-small cell lung
cancer, ovarian cancer, cervical cancer, gliomas, bladder cancer,
renal cell carcinoma, and hepatocellular carcinoma (245, 246). The
decreased expression of GAS5 has been correlated with poor
tumor differentiation, metastasis to the lymph nodes, advanced
pathological stages, adverse overall survival, resistance to
chemotherapy, and so on (245, 246). Meanwhile, GAS5 interacts
with the pathology of variety cancers by inhibiting cell proliferation,
suppressing invasion and metastasis, stimulating apoptosis, as well
as the induction of cell cycle arrest (237, 244). Recently, it has been
reported that GAS5 is also involved in the therapy resistance of
cancer by modulating the expression of various gene targets (237,
244). Previous studies have shown that GAS5 was involved in
chemoresistance of PC by serving as a ceRNA formiRNA. Liu et al.
(247) demonstrated that GAS5 functioned as a competing
endogenous RNA for miR-221 to suppress gemcitabine resistance
in PC by regulating the miR-221/SOCS3 pathway. They showed
that the expression levels of GAS5 and suppressor of cytokine
signalling-3 (SOCS3) were downregulated in both PC tissues and
cell lines; however, the expression of miR-221 was increased.
Upregulation of GAS5 promoted SOCS3 expression and
suppressed cell growth, metastasis, and gemcitabine resistance by
inhibiting the EMT and tumor stem cell accumulation both in vivo
and in vitro. Mechanistically, GAS5 directly targeted and
suppressed miR-221 expression and enhanced SOCS3 expression.
Moreover, SOCS3 could reverse the development of miR-221-
mediated EMT and stem cell-like phenotype by inhibiting cell
proliferation, migration, and chemotherapy resistance. Thus,
these results suggested that GAS5/miR-221/SOCS3 ceRNA axis
might be a potential therapeutic strategy in PC (247). In addition,
GAS5 could negatively regulate miR-181c-5p expression to
antagonize gemcitabine and 5-fluorouracil (5-FU) resistance of
PC through inactivation of the Hippo signaling (248).
LncRNAs AS CeRNAs MODULATING
ANGIOGENESIS

Studies have shown that angiogenesis is of great importance in
activating the proliferation, invasion, and metastasis of cancer
cells, thus playing a crucial role in the initiation and development
of solid tumors, including PC (68, 249–252). Many molecular
pathways or angiogenic molecules are directly related to
angiogenesis, such as VEGF, fibroblast growth factor (FGF),
MMP-9, or the platelet-derived growth factor family. Similarly,
accumulating studies have also reported that lncRNAs are
associated with angiogenesis of cancers (20, 53, 253). In this
section, we discuss the latest reports about lncRNAs as ceRNAs
involved in angiogenesis of PC.
CRNDE/miR-451a/CDKN2D

LncRNA Colorectal neoplasia differentially expressed (CRNDE),
originally identified to be specifically associated with colorectal
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cancer, is located on chromosome 16 and is also highly
expressed in other cancers, such as lung cancer, hepatocellular
carcinoma, gastric cancer, breast cancer, and glioma (254–
256). Meanwhile, increasing evidence suggests that CRNDE
can function as a crucial tumor promoter to facilitate the
progression of carcinogenesis in various cancers. It has been
shown that overexpression of CRNDE promotes cell growth
and proliferation, enhances migration and invasion, and
modulates metabolism while suppressing apoptosis through
multiple molecular regulatory networks (254–256). Zhu et al.
(257) found that CRNDE promoted the progression and
angiogenesis of PC via miR-451a/CDKN2D axis. They found
that CRNDE was significantly upregulated in PC tissues as well
as PC cell lines. And CRNDE overexpression enhanced the
progression and angiogenesis of PC cells in vitro and in vivo.
Further studies showed that CRNDE exerted its oncogenic role
by sponging miR-451a to upregulate cyclin-dependent kinase
inhibitor 2D (CDKN2D) expression. Furthermore, Pearson
analysis showed that the expression of CRNDE and miR-451a
was negatively correlated, and the expression of miR-451a and
CDKN2D was also negatively correlated, while the expression of
CRNDE and CDKN2D was positively correlated in PC tissues.
Overexpression of miR-451a or CDKN2D knockdown
significantly reversed CRNDE-mediated PC cell proliferation,
migration, and angiogenesis. Consequently, the above data
demonstrated that CRNDE/miR-451a/CDKN2D ceRNA axis
might become a potential therapeutic target for PC treatment
(257). In addition, Wang et al. (258) reported that CRNDE
sponged miR-384 to promote PC cell proliferation and
metastasis through upregulating insulin receptor substrate
1 (IRS1).
LINC00511/miR-29b-3p/VEGFA

LncRNA LINC00511 is transcribed from chromosome 17q24.3
region and upregulated in different malignancies, such as
glioma, ovarian cancer, breast cancer, cervical cancer, lung
cancer, hepatocellular carcinoma, gastric cancer, and renal cell
cancer (259). It has been proven that aberrantly upregulated
LINC00511 in malignant tumors is strongly associated with
tumor size, clinical stage, lymph node metastasis, and
unsatisfactory prognosis. Meanwhile, growing evidence reveals
that LINC00511 can accelerate tumor progression by inhibiting
malignant cell apoptosis and promoting tumor cell proliferation,
migration, invasion, metastasis, chemotherapy resistance,
and so on (259). Moreover, recent studies also displayed that
LINC00511 played crucial roles in multiple malignant processes
of carcinogenesis by serving as a ceRNA. For example, Lu et al.
(260) revealed that LINC00511 acted as a ceRNA, which
contributed to breast cancer tumorigenesis and stemness by
inducing the miR-185-3p/E2F1/Nanog axis, whereas the
LINC00511/miR-150/MMP13 ceRNA axis also promoted
breast cancer proliferation, migration, and invasion (261). At
the same time, LINC00511 facilitated lung squamous cell
carcinoma progression via sequestering miR-150-5p and
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activating TADA1 by ceRNA mechanism (262). Additionally,
LINC00511 could enhance glioblastoma tumorigenesis and EMT
via LINC00511/miR-524-5p/YB1/ZEB1 positive feedback loop
(263). In PC, Zhao et al. (264) demonstrated that LINC00511
functioned as a ceRNA to mediate the expression of VEGFA
through competition for miR-29b-3p, hence serving as a tumor
promoter for proliferation, migration, and angiogenesis. They
found that LINC00511 was upregulated in PC samples compared
with adjacent non-tumoral samples and significantly associated
with lymph node metastasis, early recurrence, and poor patient
survival. Knockdown of linc00511 impaired tumor proliferation
in vivo and in vitro, concomitant with induction of cell apoptosis.
Further studies showed that knockdown of linc00511 blocked
PC cell migration, invasion, and angiogenesis in vitro.
Mechanistically, LINC00511 promoted PC progression through
sponging miR-29b-3p to upregulate VEGFA expression. VEGFA
knockdown decreased the effect of LINC00511-mediated cell
proliferation, invasion, and angiogenesis. In summary,
LINC00511/miR-29b-3p/VEGFA axis played a critical role in the
tumorigenesis and angiogenesis of PC. Simultaneously, Wang et al.
(265) found that miR-29c-3p/LINC00511 may be utilized to
indicate prognosis of PC based on ceRNA hypothesis through
bioinformatics analysis.
LncRNAs AS CeRNA IN PANCREATIC
CANCER DIAGNOSIS, PROGNOSIS,
AND THERAPY

Diagnosis of diseases by detecting the differential expression of
circulating RNA in plasma or serum has become a new
technology in the field of noninvasive diagnostic applications
(266). Recent studies have found that miRNA can be detected in
human peripheral blood despite the large amount of endogenous
ribonuclease in blood of cancer patients (267). In addition, a
variety of plasma or serum lncRNAs have been characterized as
potential tumor markers in human fluids. Ren et al. (268) found
that in plasma of patients with prostate cancer, MALAT1 was
significantly overexpressed and could significantly discriminate
cancer patients from healthy controls. Plasma AA174084 levels
were associated with invasion and lymphatic metastasis of gastric
cancer and were found to drop markedly on day 15 after the
patients received surgery (269). As reported, the aberrant
expressions of other lncRNAs have potential to serve as
diagnostic or prognostic biomarkers for the human colon,
breast, liver, and lung malignancies (270–273). In this section,
we discuss some ceRNA networks involved in the diagnosis,
prognosis, and therapy of PC.
UCA1/miR-96-5p/AMOTL2, ERK1, ERK2

LncRNA UCA1 was found to be highly expressed in exosomes
derived from hypoxic PC cells and could be transferred to human
umbilical vein endothelial cells through the exosomes (168).
Further detections revealed the elevated expression levels of
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UCA1 in exosomes derived from serum of PC patients compared
with healthy controls, which was associated with poor survival of
PC patients. In addition, UCA1 could promote tumor growth
and angiogenesis through the UCA1/miR-96-5p/AMOTL2,
ERK1, ERK2 axis.
PVT1/miR-20b/CCND1

By searching The Cancer Genome Atlas (TCGA) and Genotype-
Tissue Expression (GTEx) databases and performing functional
enrichment analysis, Zu et al. (274) recognized that pathways in
cancer was greatly associated with tumor formation and
progression. To identify a meaningful ceRNA network, the
stepwise prediction and validation from mRNA to lncRNA
were applied according to the ceRNA rules. A total of 11 hub
genes, four key miRNAs, and two key lncRNAs were found to be
key factors in the ceRNA network, and the PVT1/miR-20b/
CCND1 axis was identified as a promising pathway-related
ceRNA axis in the progression of PC, which could be
considered as encouraging a prognostic biomarker and
therapeutic target for PC.
LncRISK-7

Zhou et al. (275) performed a genome-wide analysis to investigate
potential lncRNA-mediated ceRNA interplay based on “ceRNA
hypothesis” and uncovered seven novel lncRNAs as functional
ceRNAs contributing to PC. Next, based on the expression data
and the support vector machine (SVM) algorithm, a seven-
lncRNA signature (termed LncRisk-7, including SH3BP5-AS1,
STARD4-AS1, ARNTL2-AS1, AC002550.5, RP11-206L10.5,
AC016738.4, and RP5-901A4.1) was developed as a novel
diagnostic tool, which could significantly improve the early
diagnosis of PC. The LncRisk-7 showed promising efficiency in
distinguishing PC samples from non-malignant pancreas samples
in the training cohort, and its high performance was further
confirmed in two independent validation cohorts. Results of the
functional experiments demonstrated that the seven lncRNA
biomarkers were involved in the regulation of cell cycle, cell
death, and cell adhesion of PC cells, mechanistically acting as
ceRNAs. Results of this work improved our understanding of the
lncRNA-mediated ceRNA regulatory mechanisms in the
pathogenesis of PC and provided the LncRisk-7 as potential
diagnostic biomarkers.
A ceRNA MODULE COMPRISING
OF 29 GENES

Using the paired genome-wide expression profiles of lncRNA,
miRNA, mRNA, and relationships between them, Zhao et al.
(276) constructed a PC-specific hallmark gene-related ceRNA
network (HceNet). The characteristics of HceNet was analyzed
based on “ceRNA hypothesis,” and a ceRNA module comprising
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of 12 lncRNAs, 2 miRNAs, and 15 mRNAs was identified as
potential prognostic biomarkers associated with the overall
survival of PC patients. The prognostic value of ceRNA
module biomarkers was further validated to be statistically
significant in all the training, the validation, and the entire
cohorts. This study provided potential prognostic biomarkers
for PC and provided novel insight into the ceRNA-related
regulatory mechanism in PC progression.
A THREE-LncRNA SIGNATURE

To identify the specific lncRNAs and further analyze their
function relating to PC, Shi et al. (277) constructed a global
triple network based on the ceRNA theory and RNA-seq data
from The Cancer Genome Atlas. Six lncRNAs in the lncRNA–
miRNA–mRNA co-expression network were significantly
associated with overall survival of PC patients, and a three-
lncRNA (LINC00460, C9orf139, and MIR600HG) signature
succeeded to predict survival of patients with PC. Protein–
protein interaction network data uncovered the association of
five genes with the overall survival of PC patients. The findings of
this study deepened our understanding in the function of an
lncRNA-associated ceRNA network involved in PC pathogenesis
and identified the potential prognostic roles of the three-lncRNA
signature in PC.
NAMPTP1/HCG11-hsa-miR-26b-5p-
COL12A SUBNETWORK

By analyzing the expression and survival data of the aberrantly
expressed genes in PC according to the systematic mRNA–
miRNA–lncRNA/pseudogene network, Jing et al. (278)
elucidated the new NAMPTP1/HCG11-hsa-miR-26b-5p-
COL12A subnetwork in PC progression. Further validation
indicated that the subnetwork might be a candidate diagnostic
biomarker or potential therapeutic target for PC.
AN lncRNA–miRNA–mRNA CO-
EXPRESSION NETWORK

To identify new prognostic markers and develop a multi-
mRNAs-based classifier for survival prediction in patients with
PC, Weng et al. (29) established an lncRNA–miRNA–mRNA
co-expression network that consisted of 66 genes (60 lncRNAs,
3 miRNAs, and 3 mRNAs) relating to the prognosis of PC
patients. In addition, a 14-mRNAs-based classifier was
constructed based on a training dataset consisting of 178 PC
patients. The area under the receiver operating characteristic
(AUC) curves in the training dataset for prediction of 1-, 3-, and
5-year OS were 0.719, 0.806, and 0.794, respectively. In the
independent validation dataset, the AUC of classifier was
0.604, 0.639, and 0.607, respectively, which showed the good
prediction function of the network. The network was associated
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with PC pathogenesis and might be used as a reference for future
molecular biology research.
CONCLUSIONS

The ceRNA interplay is a universal posttranscriptional
regulation involving miRNAs and various coding and
noncoding RNAs through the functional interactions among
them. Comprehensive investigations and understanding into the
ceRNA network will greatly increase our knowledge in the
underlying molecular mechanisms of cancer pathogenesis. As
discussed in this review, the lncRNAs harboring the MREs can
specifically sequester miRNAs and function as molecular decoys
or sponges, competitively inhibiting the translation and function
of their downstream target genes. The lncRNA–miRNA–mRNA
ceRNA networks play important regulatory functions in PC
progression, including almost all crucial biological processes.
As important members of the ceRNA networks, lncRNAs are
widely involved in the occurrence of PC, which suggests that
plasma lncRNA can to be used as a novel and effective diagnostic
biomarker. At the same time, lncRNAs have been found to be
involved in the development of the advanced stages of PC,
indicating the great potential of these lncRNAs as prognostic
biomarkers. More importantly, overexpression or knockdown of
related members in the ceRNA networks that are closely
associated with the development of PC can significantly inhibit
the malignant biological behavior of PC, which suggests them as
candidate therapeutic targets for PC.

In recent decades, more and more studies have focused on in-
depth explanations of the molecular mechanisms behind the
malignant biological behavior of PC. However, the diagnosis and
Frontiers in Oncology | www.frontiersin.org 16
treatment measures related to PC are still limited, and the
prognosis of PC has not been significantly improved. At
present, the research and understanding of the novel lncRNA-
related ceRNA networks are still in the early stage, and the exact
mechanisms of their involvement in cancer progression remain
largely unknown, which requires in-depth exploration in the
molecular mechanisms to provide new advances in the treatment
of PC.
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GLOSSARY

AFAP1-AS1 Actin filament-associated protein 1 antisense RNA 1
AGR2 Anterior gradient 2
ANRIL Antisense noncoding RNA in the INK4 locus
CDKN2D Cyclin-dependent kinase inhibitor 2D
ceRNAs Competing endogenous RNAs
CRNDE Colorectal neoplasia differentially expressed
CSC Cancer stem cells
DUSP1 Dual-specificity protein phosphatase 1
EMT Epithelial–mesenchymal transition
EZH2 Enhancer of zeste homolog 2
FEZF1-AS1 FEZ finger zinc 1 antisense 1
GAS5 Growth arrest−specific transcript 5
GSTM3TV2 Homo sapiens glutathione S-transferase mu 3, transcript variant 2

and noncoding RNA
HIF1A Hypoxia-Inducible Factor 1A
HIPK2 Homeodomain-interacting protein kinase 2
HMGB1 High-mobility group box-1
HOTAIR HOX transcript antisense RNA
HULC Highly upregulated in liver cancer
iASPP Inhibitor for the apoptosis-stimulating protein of p53
LAT2 L-type amino acid transporter 2
LncRNAs Long noncoding RNAs
MALAT1 Metastasis-associated lung adenocarcinoma transcript 1
MAPK Mitogen-activated protein kinase
MIR31HG MiR-31 host gene
miRNA MicroRNAs
MREs MiRNA recognition elements
NORAD noncoding RNA activated by DNA damage
OLR1 Oxidized low-density lipoprotein receptor 1
OTUD7B Cezanne
PC Pancreatic cancer
PRC2 Polycomb repressive complex 2
PVT1 Plasmacytoma variant translocation 1
ROR Regulator of reprogramming
SNHG16 Small Nucleolar RNA Host Gene 16
SOCS3 Suppressor of cytokine signaling-3
SOX2OT SOX2 overlapping transcript
SREBP2 Sterol regulatory element-binding protein-2
TGFBR1 Transforming growth factor beta 1
TGFBR2 Transforming growth factor beta 2
THAP9-AS1 THAP9 antisense RNA 1
TUG1 Taurine upregulated gene 1
UCA1 Urothelial cancer-associated 1
ULK1 Unc-51-like autophagy-activating kinase 1
XIST X inactivation-specific transcript
YAP Yes-associated protein
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