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Nasopharyngeal carcinoma (NPC) is a malignant tumor of the head and neck. The primary
clinical manifestations are nasal congestion, blood-stained nasal discharge, headache,
and hearing loss. It occurs frequently in Southeast Asia, North Africa, and especially in
southern China. Radiotherapy is the main treatment, and currently, imaging examinations
used for the diagnosis, treatment, and prognosis of NPC include computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET)-CT, and
PET-MRI. These methods play an important role in target delineation, radiotherapy
planning design, dose evaluation, and outcome prediction. However, the anatomical
and metabolic information obtained at the macro level of images may not meet the
increasing accuracy required for radiotherapy. As a technology used for mining deep
image information, radiomics can provide further information for the diagnosis and
treatment of NPC and promote individualized precision radiotherapy in the future. This
paper reviews the application of radiomics in the diagnosis and treatment of
nasopharyngeal carcinoma.

Keywords: nasopharyngeal carcinoma, computerized tomography, magnetic resonance imaging, positron
emission computed tomography, radiomics
1 INTRODUCTION

Compared with other head and neck tumors, NPC has unique epidemiological, etiological, clinical,
and genetic characteristics (1). According to the data of the International Agency for Research on
Cancer, there are approximately 133,354 new cases of NPC, which accounts for only 0.7% of all
cancers diagnosed in 2020. More than 70% of new cases occur in East and Southeast Asia, and South
China is also an area with a high incidence. The age-standardized mortality rate in China is 1.6/
100000, which is approximately twice that of NPC worldwide (2). Therefore, accurate treatment of
NPC is imperative.

Because of the specific anatomical position and important adjacent structures of NPCs and the high
sensitivity of NPC to radiotherapy, the main treatment for NPC is a comprehensive treatment based on
radiotherapy. During radiotherapy, the medical images applied to NPC include magnetic resonance
imaging (MRI), computed tomography (CT), positron emission tomography (PET)-CT, and PET-MRI
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(3). These various medical imaging methods have distinct
characteristics. MRI has high contrast for different tissues, which
provides high-resolution images of soft tissue; however, it requires a
long acquisition time (4). CT has advantages in imaging bone and
vascular invasion, and image acquisition is rapid; thus, it is well
tolerated by patients (5, 6). In contrast to anatomical imaging, PET-
CT combines biological metabolic information, and PET-MRI
combines metabolic information with high-resolution soft-tissue
images, and therefore, they are expected to become newmethods for
the diagnosis and treatment of NPC (5–7). These imaging methods
have played a crucial role in target delineation, planning,
quantitative evaluation, radiotherapy response tracking, and
outcome and toxicity prediction of NPCs (8–11). However, the
application of traditional images is aimed at diagnosing and treating
diseases from a macro perspective. Patients with similar stages and
grades of tumor experience different therapeutic effects with the
same treatment due to the internal heterogeneity of the tumor (12).
Only analyzing the disease from an anatomical level cannot meet
the needs of treatment. With the increase in standards for
radiotherapy, hidden information in images is valuable for
improving NPC treatments. Radiomics is a technology that
involves mining deep information in images, which has been used
widely in the diagnosis, treatment, and prognosis of lung,
esophageal, breast, rectal, and prostate cancers (13–16). There is
an increasing number of studies investigating the diagnosis and
treatment of NPC using radiomics. For example, one study applied
metabolic information obtained from PET-CT to the treatment of
head and neck squamous cell carcinoma with the aim of performing
dose painting (17).
2 RADIOMICS

As an emergent field of transformational research, radiomics
extracts quantitative features from medical images to decode the
Frontiers in Oncology | www.frontiersin.org 2
heterogeneity derived from tumor regions, metastatic lesions,
and normal tissues, and explore microscopic changes in
morphological and functional images (18). There are four steps
in radiomics studies, which comprise image acquisition, tumor
segmentation, feature extraction, and model development and
validation (19) (Figure 1). Radiomics is distinct from traditional
radiology, where images are not only interpreted visually;
moreover, quantitative analyses are possible because the images
are the data.

Radiomics statistical features can be divided into first-order,
second-order, and high-order features. A first-order statistical
feature describes the distribution of individual voxel values
without considering the spatial relationship (20). Second-order
features are usually described as ‘texture’ features; they describe
the statistical correlation between voxels with similar (or
dissimilar) contrast values and provide a measurement of
intratumor heterogeneity. The high-order statistical method
applies a filter grid to the image to extract repeated or non-
repeated patterns (19). These data are combined with clinical
data to develop models to improve the accuracy of diagnostic,
treatment, and prognostic predictions. Mining image
information and combining clinical medicine with engineering
may become routine practice in the diagnosis and treatment of
NPC in the future. Furthermore, radiomics will allow oncologists
to establish relevant tumor databases and use this data to provide
decision support for the diagnosis and treatment of tumors (21).
3 RADIOMICS SIGNATURE

When researchers make predictions about diagnosis or
treatment based on radiomics, they need to first clarify the
diseases and problems to be studied, and then collect relevant
clinical data, such as hemoglobin, lymphocytes, etc. The features
which are extracted from the volume of interest and related
FIGURE 1 | Flow chart of radiomics.
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clinical parameters are filtered through various ways, such as Cox
proportional hazards model and classifier, and then the final
required model is established (22).
4 APPLICATION OF RADIOMICS FOR THE
DIAGNOSIS AND TREATMENT OF NPC

Most imaging studies on NPC have focused on MRI data, and
few have reported on the use of CT, PET-CT, and PET-MRI
images. Moreover, studies have focused predominantly on
prognosis, and there is currently a lack of exploratory and
prospective studies, even though retrospective studies can
provide valuable clinical guidance for diagnosis, differential
diagnosis, treatment, recurrence, and prognosis of the disease.

4.1 Diagnosis
4.1.1 Diagnosis
The resolution of soft tissue on MRI is significantly superior to
that of CT and PET-CT and can effectively show the range of
parapharyngeal space, skull base, and intracranial tumors. It is
the gold standard for the evaluation of NPC (5–7). NPC is prone
to distant metastasis; therefore, PET-CT is now used to evaluate
distant metastasis by providing systemic anatomical and
metabolic information. The National Comprehensive Cancer
Network guidelines (23) recommend MRI and PET-CT for the
diagnosis of NPC. The TNM staging system (based on tumor
size, regional lymph node involvement, and distant metastases)
that is currently used to guide the diagnosis and treatment of
NPC is regarded as the gold standard. However, during diagnosis
and treatment, patients at similar stages have exhibited different
treatment responses, which may be due to the internal
heterogeneity of the tumor. Thus, Zhu et al. (24) developed a
radiomics model that combined the features extracted from MRI
data with clinical information to analyze the survival subgroups
of early NPC (validation group C-index: 0.814), compared it with
the T (C-index: 0.803) and TNM staging systems (C-index:
0.765), and concluded that performance of the radiomics
model was superior to the TNM staging system. This may
have a significant impact on individualized diagnoses,
treatments, and prognoses of NPC in the future.

Compared with CT, MRI has a higher resolution of soft tissue,
which is advantageous for imaging NPCs. Research on the
application of CT combined with radiomics to the diagnosis
and staging of disease remains limited. PET-MRI combines the
metabolic characteristics of PET and the high-resolution
characteristics of MRI (6). Compared with MRI, the increased
[18F]-fluorodeoxyglucose (FDG) uptake of PET-MRI can better
show the subtle changes in local lesions, and it can also provide a
more suitable anatomical reference than can PET-CT (5). Chan
et al. (25) found that the sensitivity, specificity, and accuracy for
the diagnosis of primary tumors of head and neck MRI were
94.2%, 90.9%, and 99.5% (p = 0.75), respectively, 99.6%, 98.3%,
and 99.2% (p = 0.92) for head and neck [18F]-FDG PET-CT,
respectively, and 98.2%, 96.3%, and 99.3% (p = 0.87) for [18F]-
FDG PET-MRI, respectively. The positive predictive value of
Frontiers in Oncology | www.frontiersin.org 3
PET-MRI in the diagnosis of distant metastasis (93.1%) is higher
than that of MRI and PET-CT (78.8% and 83.3%, respectively).
This was a prospective study that suggested that this imaging
method has better diagnostic capabilities for nasopharyngeal
cancer and may play an important role in the diagnosis and
treatment of NPC in the future.

In a study of PET-MRI combined with radiomics, Feng et al.
(26) developed a radiomics model of FDG PET-MRI and
reported areas under the curve (AUC) of the training group
based on T2-weighted imaging and PET models of 0.85 and 0.84,
respectively, and those of the validation group of 0.83 and 0.82,
respectively, which offers great promise for the clinical staging of
NPCs. In terms of internal heterogeneity of tumors, Akram et al.
(27) showed that the imaging features Neighboring Gray Tone
Difference Matrix-busyness extracted from MRI data before and
after treatment may reflect differences between recurrent and
non-recurrent areas in tumors; moreover, they demonstrated the
potential of radiomics in the identification of radiation resistance
in tumors before treatment to select dose increments.

4.1.2 Differential Diagnosis
Radiomics is advantageous not only for the diagnosis of diseases
but also for differential diagnoses. The clinical manifestations
and medical images of radiation-induced osteonecrosis and bone
metastasis of the cervical spine are similar (28). Furthermore, the
two conditions require different treatment methods and thus,
require differentiation before treatment. The AUCs of MRI-
based radiomics nomogram training and validation groups
have been reported to be 0.725 and 0.720, respectively (28).
Although CT and MRI are not applicable for differentiating
between tumor recurrence and inflammation (29), PET-CT can
distinguish between these two conditions; however, the high
uptake of inflammation can affect the diagnosis of recurrence.
The diagnostic performance of NPC images based on PET-CT
imaging was evaluated using 42 cross combinations of six feature
selection methods and seven classifiers. The optimal
combination of feature selection and machine learning
methods (the cross-combination fisher score [FSCR] + random
forest [RF], FSCR + k-nearest neighborhood [KNN], FSCR +
support vector machines [SVM] with radial basis function kernel
[RBF-SVM], and minimum redundancy maximum relevance
[MRMR] + RBF-SVM) to identify the two diseases were
obtained (AUCs of 0.883, 0.867, 0.892, and 0.883, respectively;
sensitivity: 0.833, 0.864, 0.831, and 0.750, respectively; specificity
1, 1, 0.873, and 1, respectively). Compared with the standard
uptake value (SUV), total lesion glycolysis, and other indices,
radiomics showed a higher AUCs (0.867–0.892 vs. 0.817),
although the difference was not statistically significant (p =
0.462–0.560) (Table 1).

4.2 Treatment
4.2.1 Treatment Response Prediction
Radiotherapy is the main treatment for NPC during the early
stage and radiotherapy and chemotherapy are the primary
treatments during in late stage (6). For patients with intensity-
modulated radiotherapy, weight loss, tumor regression, and
other factors can result in large dose errors when applying the
January 2022 | Volume 11 | Article 767134
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originally planned irradiation (30). In such cases, adaptive
radiotherapy may be a better treatment option. Adaptive
radiotherapy is usually administered to patients during
radiation therapy, and the processes of imaging, sketching, and
planning are repeated. The current radiotherapy system presents
a significant economic burden for patients, and treatment is
time-consuming and labor-intensive. Patients who need adaptive
radiotherapy should be identified before treatment to improve
treatment response. Yu et al. (30) used tumor marker features in
MRI images acquired before treatment, and feature modeling
(using enhanced T1 and T2 images provided AUCs of the
enhanced T1, T2, and combined model verification groups of
0.852, 0.750, and 0.930, respectively), which may offer a basis for
determining patient eligibility for adaptive radiotherapy and
developing personalized treatments to reduce dose error. For
the treatment response of NPC patients with advanced local
progression to induction chemotherapy, Zhao et al. (31)
developed a nomogram that combined multi-sequence MRI
features before treatment with clinical parameters to predict
the treatment effect in non-epidemic NPC areas. The model
(training and validation group C-index: 0.952 vs. 0.863) had
better predictive ability than the model developed using clinical
parameters alone (training and validation group C-index:
0.708 vs. 0.549). In addition, in a study by Piao et al. (32), the
AUC of the combined model was highest (AUC: 0.905) with
the separate modeling of ClusterShade_angle135_offset 4 and
Correlation_AllDirection_offshel_SD features based on
enhanced magnetic resonance sequence imaging (AUC: 0.804
and 0.762, respectively). The combined model of the two features
can help to determine the sensitivity and drug resistance in
patients undergoing neoadjuvant chemotherapy, which is crucial
for treatment scheme selection and treatment plan modification
in patients with NPC.

4.2.2 Prognosis Prediction
Most imaging studies have focused on the prognosis of NPC.
These studies (33–36) demonstrate the effectiveness of
conventional MRI in evaluating progression-free survival
(PFS), disease-free survival, and overall survival in patients
with NPC, in combination with clinical information, such as
lymph nodes, Epstein-Barr virus, and tumor stage, which can
guide personalized treatment selection and improve the quality
of care. Ouyang et al. (33) calculated and analyzed the Radscore
and found it can predict PFS as a biomarker. Shen et al. (34)
developed five models based on different combinations of data:
model 1: clinical data; model 2: overall staging; model 3:
radiomics; model 4: radiomics + overall staging; and model 5:
radiomics + overall staging + EB virus). Model 5 had a high C-
index for predicting PFS (training group 0.805, validation group
0.874). Yang et al. (36) suggested a nomogram integrating lymph
node, Dose Volume Histogram signature, reflecting planning
score and TNM stage, that had a C-index of 0.811 for the
prediction of PFS, which showed better performance than
using TNM alone (C-index: 0.613). Furthermore, another
study (37) used different combinations of PET, CT, and
relevant clinical data to develop models and found that the
model combining all three factors had the highest prediction
Frontiers in Oncology | www.frontiersin.org 4
performance (C-indices of the training and validation cohorts
were 0.71–0.76 and 0.67–0.73, respectively). Another found that
subregional radiomics analysis of NPC outperformed the whole
tumor (C-index, 0.69 vs. 0.58) and the traditional AJCC
(American Joint Committee on Cancer) staging system for PFS
prediction (38).

Radiomics can predict not only treatment effects but also
recurrence before treatment, which can improve treatment
decision-making. For the prediction of recurrence, most
studies use MRI images. Zhang et al. (39) developed models
based on MRI radiomics to predict distant metastasis (AUCs of
the training and validation groups: 0.827 and 0.792, respectively)
and divided patients into low- and high-risk groups based on a
risk cutoff score of 0.37 to indicate the risk of metastasis and
determine the treatment strategy. A subsequent study (40)
introduced a nomogram to radiomics to study local recurrence
and found that the nomogram (C-index: 0.74) predicted
recurrence more accurately than did radiomics and clinical
variables (C-index: 0.59). The study by Raghavan et al. (41)
preferred the prediction model, which not only predicted
recurrence but also emphasized whether recurrence would
occur in the form of local or distant metastasis. The AUC,
sensitivity, and specificity of the local recurrence model were
0.82, 0.73, and 0.74, respectively, whereas those of the model for
predicting distant metastasis were 0.92, 0.79, and 0.84,
respectively. In addition, another study (42) combined
machine learning with features extracted from MRI and
applied different feature selection and classifier methods to
determine the optimal combination (random forest + random
forest), which laid a foundation for future studies of local
recurrence and distant metastasis prediction combining MRI
features with relevant clinical information. Li et al. (43) used
radiomics with machine learning to analyze the radiation
resistance of local recurrence (artificial neural network: 0.812;
KNN:0.775; SVM: 0.732) using existing MRI data, which
provided quantitative and objective evaluations of patients with
NPC without requiring additional radiation exposure.
Furthermore, NPCs with in-field recurrences could be
differentiated from NPCs (AUCs: 0.727–0.835).

4.2.3 Prediction of Side Effects
Radiomics can also be applied to the prediction of radiotherapy
reactions the following radiotherapy for NPC. In a study of
patients with acute xerostomia after radiotherapy (44), parotid
CT images and saliva volume were acquired before, during, and
after treatment to develop a model to predict changes in saliva
volume after early radiotherapy (accuracy: 0.9220, sensitivity:
100%). The difference between the statistical and real values can
then be used to predict the degree of dry mouth by predicting the
amount of saliva. The diagnosis of radiation-induced brain
injury in NPC mainly depends on MRI; however, MRI has
limited use for early diagnoses and can only be used to
evaluate morphological changes in late radiation-induced brain
injury in the temporal lobe. Radiomics can examine microscopic
characteristics, which can be used as markers as a basis for the
treatment of early brain injury. Zhang et al. (45) developed three
models combining machine learning and MRI radiomics; the
January 2022 | Volume 11 | Article 767134
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TABLE 1 | Data of relevant models in references.

Purpose Authors Imaging Application Method/model Results

Diagnosis Diagnosis Zhu et al.
(24)

MRI staging support vector machine
classifier

C-index : training&validation group : 0.827&0.814
(based on model), 0.815&0.803(based on T),
0.842&0.756(based on TNM)

Feng et al.
(26)

PET-
MRI

staging logistic regression
models

AUC: training group:0.84(PET),0.85(T2-weighted);
validation group:0.82(PET),0.83(T2-weighted)

Differential
diagnosis

Zhong
et al. (28)

MRI cervical spine osteoradionecrosis
and bone metastasis

nomogram model AUC: training group : 0.725 ; validation group:0.720

Du et al.
(29)

PET-CT recurrence and inflammation 7 types of machine
learning classifiers

optimal combination of feature selection and machine
learning methods

Treatment
Treatment
response
prediction

Yu et al.
(30)

MRI pretreatment prediction of
adaptive radiation

logistic regression model AUC: training group: 0.962(CET1-w), 0.895(T2-
weighted),0.984(joint T1-T2); validation group:0.852
(CET1-w), 0.750(T2-weighted),0.930(joint T1-T2)

Zhao et al.
(31)

MRI predict the response to induction
chemotherapy and survival

support vector machine,
radiomics nomogram

C-index : training&validation group:0.952&0.863
(radiomics signature with clinical data),0.708&0.549
(clinical nomogram alone)

Piao et al.
(32)

MRI early response of neoadjuvant
chemotherapy

Cox regression model AUC: 0.905(combined), 0.804
(ClusterShade_angle135_offset 4)、0.762
(Correlation_AllDirection_offshel_SD)

Prognosis
prediction

Ouyang
et al. (33)

MRI radiomics signature as a
prognostic biomarker

multivariate Cox
proportional hazards
model

Hazard ratio (HR): 5.14(discovery set), 7.28(validation
set)

Shen et al.
(34)

MRI predicting progression-free
survival (PFS)

Cox model Model 5 incorporating radiomics, overall stage, and
EBV DNA yielded the highest C-index for predicting
PFS (training cohorts: 0.805, validation cohorts:
0.874)

Ming et al.
(35)

MRI disease free-survival (DFS), overall
survival (OS), distant metastasis-
free survival (DMFS)

Cox regression model C-index : validation group: 0.751(DFS)、0.845(OS)、
0、643(DMFS)

Yang et al.
(36)

MRI PFS Nomogram C-index: validation group: 0.811(including three
factors),0.613(just TNM)

Lv et al.
(37)

PET-CT PFS Cox regression model C-index: validation group: 0.67–0.73

Xu et al.
(38)

PET-CT PFS Cox’s proportional
hazard model

C-index: 0.69(S3), 0.58(whole tumor)

Zhang
et al. (39)

MRI distant metastasis logistic regression model AUC: training&validation groups: 0.827&0.792

Zhang
et al. (40)

MRI local recurrence Cox proportional hazard
model, nomogram

C-index: validation groups: 0.74(radiomic features
and multiple clinical variables)

Raghavan
et al. (41)

MRI recurrence multivariate logistic
regression model, Cox
proportional model

local recurrence model: 0.82(AUC), 0.73(sensitivity),
and 0.74(specificity);distant metastasis model: 0.92
(AUC), 0.79(sensitivity), and 0.84(specificity)

Zhang
et al. (42)

MRI optimal machine-learning methods
for the radiomics-based prediction
of local failure and distant failure

machine-learning
methods

optimal combination random forest + random forest
AUC:0.8464 ± 0.0069

Li et al.
(43)

MRI recurrence patterns machine-learning
methods,support vector
machine (SVM) models

NPCs with in-field recurrences (NPC-IFR) and NPCs
with non-progression disease (NPC-NPD) could be
differentiated (AUCs: 0.727–0.835).

Prediction of
side effects

Liu et al.
(44)

CT prediction of Acute Xerostomia support vector
regression

accuracy: 0.9220, sensitivity: 100%

Zhang
et al. (45)

MRI radiation-Induced Brain Injury Random forest method AUC: validation groups: 0.830 (model1), 0.773
(model2), and 0.716(model3)

Stability
characteristic
study

Liang
et al. (46)

MRI Moddicom (v. 0.51),Pyradiomics
(v. 2.1.2)

Spearman’s rank
correlation

Selection of stable features of the disease is key.

Lu et al.
(47)

PET-CT different contrast agents ICC features extracted from [11C] choline are more stable
than those extracted from the [18F]-FDG contrast
agent.

Yang et al.
(48)

PET-
MRI

robust radiomic features intraclass correlation
coefficient (ICC) and

voxel size: 0.5 × 0.5 × 1.0 mm3; normalized grey
level:64 and 128

(Continued)
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AUCs of the validation group were 0.830 (95% confidence
interval [CI]: 0.823–0.837), 0.773 (95% CI: 0.763–0.782), and
0.716 (95% CI: 0.699–0.733), respectively, which offers promise
for applying radiomics to the study of related complications.

4.2.4 Stability Characteristic Study
Because there are numerous methods to extract radiomics features,
obtaining robust features is vital for the generalizability of radiomics
models. Liang et al. (46) used two different feature extraction tools to
extract features from different NPC MRI sequences. Different
extraction methods had varying effects on the features, which may
impact model development. Thus, the selection of stable features of
the disease is key. In a study on PET-CT radiomics characteristics
under different contrast agents, Lu et al. (47) selected [18F]-FDG and
[11C] choline to examine segmentation and discretization and
revealed that discretization has a greater impact on features than
does segmentation, and features extracted from [11C] choline are
more stable than those extracted from the [18F]-FDG contrast agent.
Yang et al. (48) evaluated the reproducibility of features extracted
from PET-MRI and found that a voxel size of 0.5 × 0.5 × 1.0mm3 in
PET, T2, and diffusion-weighted imaging data and a larger bin size
allow the acquisition of stable characteristics. Although these studies
focused on the definition and mode of feature generation, Lv et al.
(49) analyzed the robustness of featurematrix parameters and found
that poor absolute-scale robustness retained good diagnostic
performance (Table 1).
5 FUTURE

Artificial intelligence technologies and radiomics will be applied in
the diagnosis and treatment of NPC in the field of target
delineation, dose evaluation, plan design, outcome prediction, to
realize the individualized clinical adaptive precision radiotherapy.
However, there is still a significant gap between research and
clinical application, which requires relevant modeling to not only
meet or even exceed the industry gold standard but also solve
some medical ethical problems (20). At present, many studies on
radiomics are focused on NPC. However, radiomics may be
extended to diseases other than tumors in the future and
provide a reference for the majority of patients by establishing
databases and other measures. In addition, radiomics can reduce
medical costs and makes full use of medical image data to reduce
Frontiers in Oncology | www.frontiersin.org 6
injuries caused by invasive punctures; relevant models can solve
problems of treatment and prognosis to save on medical costs and
realize individualized treatment.
6 CONCLUSION

Multimodal imaging combined with radiomics offers new
opportunities and methods for studying the diagnosis,
treatment, and prognosis of NPC. The combination of
radiomics and machine learning assists in the diagnosis and
treatment of NPC. However, machine learning in radiomics is
primarily applied to model selection. Although radiomics has
numerous unique advantages, it also carries significant
challenges, such as the need for big datasets for tumor model
development, data sharing between different medical
institutions, and various imaging protocols. Considerable
progress is still needed to apply radiomics models to clinical
practice. Future developments of radiomics require further
forward-looking research and applications to promote
individualized and intelligent treatment.
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