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Gastric cancer (GC) is one of the most common malignant tumors of digestive systems
worldwide, with high recurrence and mortality. Chemotherapy is still the standard
treatment option for GC and can effectively improve the survival and life quality of GC
patients. However, with the emergence of drug resistance, the clinical application of
chemotherapeutic agents has been seriously restricted in GC patients. Although the
mechanisms of drug resistance have been broadly investigated, they are still largely
unknown. MicroRNAs (miRNAs) are a large group of small non-coding RNAs (ncRNAs)
widely involved in the occurrence and progression of many cancer types, including GC. An
increasing amount of evidence suggests that miRNAs may play crucial roles in the
development of drug resistance by regulating some drug resistance-related proteins as
well as gene expression. Some also exhibit great potential as novel biomarkers for
predicting drug response to chemotherapy and therapeutic targets for GC patients. In
this review, we systematically summarize recent advances in miRNAs and focus on their
molecular mechanisms in the development of drug resistance in GC progression. We also
highlight the potential of drug resistance-related miRNAs as biomarkers and therapeutic
targets for GC patients.
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INTRODUCTION

Gastric cancer (GC) is one of the most common malignant diseases of the digestive tract and the
third leading cause of cancer-related deaths worldwide (1). According to global cancer statistics, GC
ranks fifth for incidence and fourth for mortality among all types of cancer, with more than one
million new cases and an estimated 769,000 deaths occurring in 2020 (2). Although the incidence of
GC is declining gradually, it is still a major public health problem that seriously threatens patients’
health and lives (3). Currently, common treatment approaches to GC include chemotherapy,
radiation, surgery, and targeted therapies. Depending on the resectability, stage, and status of GC
patients, these therapies can be used in combination to improve their survival and life quality.
However, for metastatic GC, chemotherapy is the main treatment method since most advanced
patients fail to benefit from surgical resection or radiotherapy (4).
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Chemotherapy is the first-line standard treatment option for
all stages of cancer and can effectively delay or avoid cancer
recurrence in the short term. However, the long-term role of
chemotherapy in extending patient survival is very limited (5).
One of the main reasons is the development of drug resistance,
which results in chemotherapy failure, cancer recurrence, and
finally patient death. It has been reported that drug resistance is
correlated with more than 90% of cancer-related death (6, 7).
Overall, drug resistance can be classified into two categories:
intrinsic and acquired. Its underlying mechanisms are very
complicated, mainly including changes in drug efflux, the
inhibition of cell apoptosis, alterations of the cell cycle,
enhancement of DNA damage repair, mutations of drug target
genes, and the dysregulation of epithelial mesenchymal
transformation (EMT) as well as the acquisition of cancer stem
cell (CSC) properties (8). However, the detailed mechanisms
involved in drug resistance are still unclear.

MicroRNAs (miRNAs) are a large group of small ncRNAs
involved in practically all major biological processes via the
direct post-transcriptional inhibition of target mRNAs. It has
been reported that approximately 2600 miRNAs molecules have
been identified in the human genome, and more than 60% of
human protein coding genes are regulated by miRNAs (9, 10).
MiRNAs can simultaneously regulate multiple target genes
involved in different cellular processes, such as signal
transduction, cell differentiation, apoptosis and proliferation
(11). Therefore, the dysregulation of miRNAs contributes to
many pathological processes, including GC. Moreover, the
aberrant expression of miRNAs has been observed in GC (12).
A growing amount of evidence suggests that miRNAs may play
crucial roles in the drug resistance of GC. In this review, we
provide a brief description of recent findings regarding the
biogenesis and functions of miRNAs and highlight their
underlying mechanisms in the drug resistance of GC.
OVERVIEW: BIOGENESIS AND
FUNCTIONS OF MiRNAs

Biogenesis of MiRNAs
MiRNAs are endogenous RNA-type molecules transcribed by
RNA polymerase II (Pol II) with 19–25 nucleotides in length
(13). The biogenesis mechanism of miRNAs has been well-
studied. The majority of miRNAs are generated by the
canonical biogenesis pathway (Figure 1). In this pathway,
primary miRNAs (pri-miRNAs) transcribed from original
miRNA genes are processed into precursor miRNAs (pre-
miRNAs) in the nucleus by a microprocessor complex
consisting of DiGeorge syndrome critical region 8 (DGCR8)
and ribonuclease III enzyme Drosha. Subsequently, pre-miRNAs
are exported to the cytoplasm through exportin 5 (EXP5) and
then further recognized and processed into double-stranded
miRNAs by the Dicer/TRBP/PACT complex. Next, the double-
stranded miRNAs are unwound into a guide strand and a
passenger strand via helicase. The passenger strand (with a
higher stability) is subsequently degraded, whereas the guide
Frontiers in Oncology | www.frontiersin.org 2
strand (with a lower stability) is incorporated into the RNA-
induced silencing complex (RISC) to form a mature miRNA (6).
In addition, multiple non-canonical miRNA biogenesis pathways
have been clarified. These non-canonical biogenesis pathways are
group into Drosha/DGCR8-independent and Dicer-
independent. For instance, the precursor stem lengths of some
miRNAs are shorter than canonical pri-miRNAs, which can’t be
recognized and processed by Drosha/DGCR8. These miRNA
precursors are encoded in short introns that are named mirtrons.
Mirtrons possess a hairpin structure and undergo splicing. The
resulting products form a lariat structure and are processed into
pre-miRNAs by DBR1 (lariat debranching enzyme), which are
followed by further processing via Dicer (14). MiR-451 is a
typical miRNA produced in a Dicer-independent manner. Its
maturation does not require Dicer catalysis. The pre-miRNA of
miR-451 is cleaved by Ago2 to generate an intermediate 3’ end,
which is then further trimmed (15).

The biogenesis of miRNAs is modulated by various factors,
including post-translational modifications, target mRNAs, RNA
binding proteins (RBPs), and long non-coding RNAs (lncRNAs).
For instance, DGCR8 can be modified by SUMO1. The
SUMOylation of DGCR8 regulates its affinity with pri-
miRNAs, leading to an alteration in the pri-miRNA functions
of the recognition and repression of the target mRNAs (16). Bose
et al. found that target mRNA promotes the biogenesis of its
cognate miR-122 by enhancing the activity of AGO2-associated
DICER1 (17). Moreover, Treiber et al. screened approximately
180 RBPs that interact specifically with different pre-miRNAs.
Functional analysis showed that a large number of these RBPs,
including splicing factors and other mRNA processing proteins,
play a role in regulating miRNA processing (18). In addition,
lncRNA NEAT1 is reported to modulate global pri-miRNA
biogenesis by broadly interacting with the NONO–PSF
heterodimer and many other RBPs (19). Collectively, the
biogenesis of miRNAs is tightly regulated by diverse
mechanisms. The dysregulation of miRNA biogenesis would
contribute to many pathological progresses, particularly
cancer progression.

Functions of MiRNAs
MiRNAs exert their biological functions by negatively regulating
the expression of their target mRNAs via directly binding to 3′
untranslated regions (UTR), leading to the inhibition of their
translation (20). The precise regulation of miRNA expression
and activity is crucial for maintaining common physiological
conditions. MiRNAs are involved in the regulation of almost all
major physiological and pathological processes, such as DNA
damage, encompassing metabolism, apoptosis, differentiation,
proliferation, and cell cycle as well as drug resistance (21–23).
Therefore, any dysregulation of miRNA function and aberrant
expression may lead to the occurrence of pathological events,
particularly cancer. In fact, the abnormal expression of miRNAs
has been observed in a number of cancer types, including GC.
MiRNAs act as oncogenes or tumor suppressors to play crucial
roles in cancer progression (24). Moreover, increasing evidence
suggests that miRNAs are closely associated with drug resistance
of GC, and some of miRNAs possess great potential as novel
November 2021 | Volume 11 | Article 768918
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biomarkers and therapeutic targets in reversing drug resistance
in GC (25). However, further studies are still required to
elucidate the detailed mechanism of miRNAs in the drug
resistance of GC.
IMPLICATION OF MiRNAs IN GC DRUG
RESISTANCE

Drug resistance is the most critical obstacle in GC effective
treatment, blocking novel therapies and bringing about huge
Frontiers in Oncology | www.frontiersin.org 3
financial burden to patients and their families (26). The
underlying mechanisms of drug resistance are very complicated
and have not been fully elucidated. MiRNAs play crucial roles in
the development of drug resistance in GC progression (Figure 2).
For instance, miRNA expression profiles are associated with
drug resistance (27), suggesting the potential of miRNA analysis
as a valuable tool in precisely assessing the sensitivity of cancer
cells to chemotherapy in GC treatment. MiRNAs participate in
drug resistance by modulating the drug targets of multiple
cellular pathways involved in the response to chemotherapy
(28, 29). However, the detailed mechanisms of miRNA in drug
FIGURE 1 | Schematic diagram of miRNA biogenesis. For canonical pathway, pri-miRNA is transcribed by Poll II from original miRNA genes in the nucleus. Then,
pri-miRNA is processed into pre-miRNAs by a microprocessor complex consisting of Drosha and DGCR8. For non-canonical pathway, mirtron is transcribed from
original miRNA genes. Then, mirtrons undergo splicing to form a lariat structure, which is further processed into pre-miRNAs by DBR1. Next, the pre-miRNAs are
exported to the cytoplasm with the help of EXP5, GTP, and RAN. In the cytoplasm, the pre-miRNA is further recognized and processed into double-stranded
miRNAs by the Dicer/TRBP/PACT complex. Subsequently, the double-stranded miRNAs are unwound into a guide strand and a passenger strand via Ago protein.
The passenger strand is then degraded, whereas the guide strand is incorporated into RISC to form a mature miRNA. MiRNA binds to the 3’-UTR of mRNAs, and
ten promotes its degradation. In addition, some pre-miRNAs (e.g., miR-451) can be cleaved by Ago2 to generate an intermediate 3’ end, which is then further trimmed.
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resistance in GC are still inconclusive and are required to
be elucidated.

MiRNAs and Drug Resistance
Currently, the first-line chemotherapeutic agents for GC mainly
include 5-fluorouracil (5-FU), doxorubicin (DOX), vincristine
(VCR), platinum drugs, and paclitaxel (PTX). The involvement
of miRNAs in GC resistance to these drugs is summarized
in Table 1.

MiRNAs and 5-FU Resistance
5-FU is a synthetic fluorinated pyrimidine analog with a fluorine
atom at the C5 position in place of hydrogen. It shares a common
structure with pyrimidine and can replace uracil to incorporate
into RNA, leading to the disruption of RNA synthesis (108).
Moreover 5-FU can also disrupt the intracellular deoxynucleotide
Frontiers in Oncology | www.frontiersin.org 4
pools by inhibiting thymidylate synthase (TS) required for DNA
replication, thereby resulting in apoptosis and cell cycle arrest
(109). 5-FU has been widely used to treat GC in clinic. However,
the 5‐year survival rate of patients is still low due to the
development of resistance to this chemotherapeutic agent.
Multiple miRNAs are reported to be involved in the
development of 5-FU resistance in GC. Several oncogenic
miRNAs, such as miR-149, miR-130b, and miR-147, have been
found to promote 5-FU resistance in gastric cancer (30, 33, 34).
For instance, Wang et al. revealed that miR-149 confers 5-FU
resistance by inhibiting TREM2 expression and modulating b-
catenin pathway in GC cells (30). Similarly, miR-130b enhances
the resistance of GC cells to 5-FU through targeting CMPK1 (33).
By contrast, multiple tumor suppressor miRNAs, such as miR-195
and miR-204, can reverse 5-FU resistance of GC (35, 36). For
instance, the overexpression of miR-195 enhanced the sensitivity
FIGURE 2 | Classic mechanisms of miRNA involved in the drug resistance of GC. MiRNAs participate in the development of GC drug resistance by regulating
multiple biological processes of GC cells, including drug efflux, cell apoptosis, cell cycle, and EMT as well as the acquisition of cancer stem cell (CSC) properties.
MiRNAs also involves in the regulation of GC drug resistance by targeting cancer-related signaling pathways, such as the PI3K/Akt, Wnt/b-catenin, MAPK, TGF-b/
Smad, and NF-kB signaling pathways.
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of GC cells to 5-FU by downregulating HMGA1 expression (35).
Exogenous expression of miR-204 sensitized GC cells to 5-FU by
inhibiting EMT process via targeting TGFBR2 (36).

MiRNAs and DOX Resistance
DOX, also known as adriamycin (ADR), is an anthracycline and
one of the more effective chemotherapy agents applied for GC
treatment. Clinically, it is commonly used in combination with
other chemotherapy agents, such as 5-FU, VCR, and PTX (27).
DOX could exert strong cytotoxic effects on tumor cells through
different molecular mechanisms including inhibition of DNA
topoisomerase II, intercalation of DNA, and generation of free
radicals (110). Multiple miRNAs have been shown to be
responsible for the development of DOX resistance in GC.
Several oncogenic miRNAs can promote DOX resistance in
GC. For instance, miR-21-5p was highly upregulated in GC
cell lines, and its overexpression increased DOX resistance in GC
cells by inhibiting gene expression of phosphatase and tensin
homologue (PTEN) and TIMP3 (44)(X21). Exosomal miR-501
could also significantly enhance DOX resistance by silencing cell
death inducer (BLID), and, thus, suppressing caspase-9/-3 and p-
AKT (45). Conversely, several tumor suppressor miRNAs can
reverse DOX resistance of GC. MiR-16-1, for instance, has
been found to increase the sensitivity of GC cells to DOX
via inhibiting FUBP1 expression (56). The overexpression
of miR-494 could also enhance the sensitivity of GC cells to
DOX by directly targeting phosphodiesterases 4D (PDE4D)
expression (54).

MiRNAs and VCR Resistance
VCR is an alkaloid extracted from vinca, which suppresses
tubulin polymerization and disable spindles formation, thereby
causing mitosis arrest of tumor cells (111). VCR is one of the
first-line chemotherapy agents for GC treatment and often used
in combination with other chemotherapeutic drugs. Multiple
miRNAs have been reported to be involved in VCR resistance of
GC. For instance, oncogenic miR-19a/b was highly expressed in
VCR-resistant GC cells. The overexpression of miR-19a/b
Frontiers in Oncology | www.frontiersin.org 5
significantly enhanced the resistance of GC cells to VCR by
directly targeting PTEN expression (57). On the contrary, some
tumor suppressor miRNAs, such as miR-101, miR-126, and
miR-181b, have been found to reverse the resistance of GC
cells to VCR. Bao et al. showed that miR-101 was downregulated
in GC tissues and cell lines. Forced expression of miR-101 could
promote the sensitivity of GC cells to VCR by downregulating
the expression of P-gp via targeting ANXA2 (58). Wang et al.
revealed that miR-126 overexpression increased the sensitivity of
GC cells to VCR via suppressing EZH2 expression (63). In
addition, Zhu et al. found that ectopic expression of miR-181b
could sensitize GC cells to VCR-induced apoptosis by
downregulating BCL2expression (69).

MiRNAs and Resistance to Platinum Drugs
Platinum drugs are a class of cell cycle non-specific
chemotherapeutic agent that widely used in clinical treatment
of cancer patients. Currently, five platinum chemotherapy
analogues have been approved for use in clinic, including
cisplatin (CDDP), oxaliplatin (OXA), carboplatin, nedaplatin,
and lobaplatin. These drugs directly insert platinum into DNA to
form cross-links, which is either removed by specific DNA repair
processes or it triggers a signaling cascade resulting in apoptosis
of cancer cells (112). It has been reported that multiple miRNAs
are involved in resistance to platinum drugs in GC. Several
oncogenic miRNAs can facilitate the resistance of GC cells to
platinum drugs. For instance, exosomal miR-588 from M2
macrophages increased the resistance of GC cells to CDDP via
inhibiting the expression of cylindromatosis (CYLD) (71). In
another study, exosomal miR-522 derived from cancer-
associated fibroblasts (CAFs) was found to promote acquired
resistance of GC cells to CDDP by inhibiting ALOX15
expression (70). Additionally, miR-135a was highly expressed
in GC samples. The overexpression of miR-135a could promote
the resistance of GC cells to OXA by inhibiting E2F1 and DAPK2
expression (93). By contrast, multiple tumor suppressor miRNAs
can reverse platinum drugs resistance of GC. For instance, miR-
34c overexpression was found to promote the sensitivity of drug-
TABLE 1 | MiRNA and drug resistance in GC.

Chemotherapeutic
agent

miRNAs Alteration Effect on
chemotherapy

References

5-FU miR-149; miR-106a-5p; miR-421; miR-6785-5p; miR-130b; miR-147 Up Reduction (30–34)
miR-195; miR-204; miR-567; miR-30a; miR-195-5P; miR-BART15-3p; miR-31; miR-623 Down Enhancement (35–42)

DOX miR-223; miR-21-5p; miR-501; Lin28; miR-501; miR-663; miRNA-135a-5p; miR-92a; miR-
520h

Up Reduction (43–51)

miR-3064-5p; miR-217; miR-494; miR-495; miR-16-1 Down Enhancement (52–56)
VCR miR-19a/b Up Reduction (57)

miR-101; miR-508-5p; miR-1284; miR-874; let-7b; miR-647; miR-126; miR-1; miR-23b-3p;
miR-15b; miR-16; miR-200bc/429; miR-497; miR-181b

Down Enhancement (29, 58–69)

CDDP miR-588; miR-522; miR-7; miR-4290; miR-21; miR-135b-5p; miR-379-5p; miR-95-3p; miR-
142-3p; miR-99a-5p; miR-223-3p; miR-505; miR-500a-3p; miR-492;

Up Reduction (70–82)

miR-34c; miR-34a; miR-152-3p; miR-30a-5p; miR-98-5p; miR-618; miR-1200; miR-let-7b;
miR-30e; miR-4290; miR-3619-5p

Down Enhancement (73, 83–92)

OXA miR-135a; miR-421 Up Reduction (93, 94)
miR-567; miR-582-5p; miR-22-3p; miR-26; miR-361; miR-326; miR-3433-3p; miR-515-5p Down Enhancement (37, 95–101)

PTX miR-590-5p; miR-155-5p Up Reduction (102, 103)
miR-34c-5p; miR-21; miR-34a; miR-98; miR-34c; miR-217; miR-124-3p; miR-107; miR-495 Down Enhancement (46, 53, 55, 83,

87, 104–107)
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resistant GC cells to CDDP combined with paclitaxel by
increasing the expression of apoptosis-related proteins.
Consistent with this, inhibition of miR-34c significantly
decreased the sensitization of drug resistant GC cells to CDDP
combined with paclitaxel (83). Furthermore, the overexpression
of miR-7 was able to enhance the sensitivity of GC cells to CDDP
by inhibiting LDH-A expression (72). In addition, Qian et al.
showed that miR-4290 was significantly downregulated in both
GC samples and cell lines. Overexpression of miR-4290 could
increase the sensitivity of GC cells to CDDP by suppressing
PDK1-mediated glycolysis (73).

MiRNAs and PTX Resistance
PTX, a class of taxanes, is the most successful and widely used
chemotherapeutic agent. As a natural anticancer drug, PTX
promotes the assembly of tubulin into microtubules and resists
the dissociation of microtubules, blocking mitosis progression,
which resulting in programmed cell death (113). PTX is
frequently used as the first-line treatment drug in GC.
However, the resistance of GC to PTX is a great obstacle in its
clinical applications. It has been reported that multiple miRNAs
are involved in PTX resistance. Oncogenic miRNAs can promote
PTX resistance. For instance, miR-590-5p was highly expressed
in GC tissues and cells. Overexpression of miR-590-5p
significantly decreased the sensitivity of GC cells to PTX by
inhibiting RECK expression. Opposite result was obtained in
miR-590-5p knockout GC cells (102). In another study,
exosomal miR-155-5p derived from PTX-resistant GC cells has
been found to promote drug resistance in PTX-sensitive GC cells
by inhibiting the expression of GATA3 and TP53INP1 (103). On
the contrary, several tumor suppressor miRNAs are able to
reverse the resistance of GC cells to PTX. For instance, low
expression of miR-34c-5p was observed in PTX-resistant GC
tissues. Overexpression of miR-34c-5p significantly promoted
the chemosensitivity of PTX-resistant GC cells (104). Tumor
suppressor miR-21 has also been found to enhance the sensitivity
of GC cells to PTX, at least in part, by modulating P-glycoprotein
expression (105). In addition, overexpression of miR-34a and
miR-98 could sensitize GC cells to PTX by suppressing the
expression of E2F5 and BCAT1, respectively (87, 106).

Expression Profiles of Drug Resistance-
Related MiRNAs in GC
With the rapid development of detecting techniques and
bioinformatics, a large number of miRNAs have been
identified in GC. Many of them have aberrant expression levels
and are closely correlated with the drug resistance of GC,
indicating their great potential in predicting survival and
response of patients to therapy (26). For instance, Sun et al.
performed a microarray analysis to detect the miRNA expression
profiles of GC cell-derived exosomes. They found that miR-106a-
5p, miR-421, miR-19b-3p, miR-133a, and miR-214 are
upregulated, whereas miR-144, miR-16-5p, miR-100, miR-30a-
5p, and miR-361-5p are downregulated in MGC-803/5-FU
exosomes compared with those in MGC-803 exosomes. High
levels of miR-106a-5p and miR-421 in exosomes indicate 5-FU
Frontiers in Oncology | www.frontiersin.org 6
resistance in GC (31). Zhang et al. showed that 68 miRNAs were
differentially expressed in SGC-7901/CDDP cells compared to
SGC-7901 cells, including 41 upregulated miRNAs and 27
downregulated miRNAs. In BGC-823 and BGC-823/CDDP
cells, 94 differently expressed miRNAs were observed,
including 40 upregulated miRNAs and 54 downregulated
miRNAs in BGC-823/CDDP cells. Among these differently
expressed miRNAs, high levels of miR-99a and miR-491
indicate CDDP resistance in GC (114). In another study, using
the Gene Expression Omnibus (GEO) database and GEO2R
analysis, Zhou et al. confirmed 244 differentially expressed
miRNAs in drug-resistant GC patients compared with in GC
patients, among which 1120 were upregulated, and 124 were
downregulated (115). Furthermore, Wei et al. reported 48
differentially expressed miRNAs (more than two-fold) in
SGC7901/DDP cells when compared with SGC7901 cells,
including 19 upregulated miRNAs and 29 downregulated
miRNAs (116). Due to several factors, such as the
heterogeneity of cancer cells, differences in research strategies,
and differences in criteria for selecting significant miRNA profile
data, the expression profiles of drug resistance-related miRNAs
in GC may vary among studies. However, these studies still
provide researchers with a new direction in showing that these
altered miRNAs may be used to predict drug response to
chemotherapy for GC patients.

MiRNAs Regulate the Drug Resistance of
GC by Targeting Signaling Pathways
An accumulating amount of evidence has shown that
miRNAs are involved in the regulation of GC drug resistance
by targeting cancer-related signaling pathways, such as the
phosphatidylinositol 3-kinase (PI3K)/AKT, mitogen-activated
protein kinase (MAPK), Wnt/b−catenin, nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB), and signal
transducers and activators of transcription (STAT) signaling
pathways. MiRNAs can change the chemotherapeutic
sensitivity of GC via modulating the function or expression of
some components of these pathways (117). Understanding the
mechanisms of miRNAs in signaling pathway regulation may
facilitate the development of new therapeutic strategies against
GC drug resistance.

The PI3K/AKT signaling pathway is involved in the
regulation of various cellular functions during cancer
progression, such as proliferation, apoptosis, and metastasis
(118, 119). This pathway also confers drug resistance to
various types of cancer, including GC (120). Some miRNAs
have been shown to mediate the drug resistance of GC by
targeting the PI3K/AKT signaling pathway. For instance,
Zhang et al. revealed that miR-567 enhances the sensitivity of
GC cells to 5-FU and oxaliplatin. Mechanistically, miR-567
inhibits PI3K/AKT/c-Myc signaling pathway by blocking
PIK3AP1 activity. Interestingly, c-Myc inversely regulates the
expression of miR-567, leading to the formation of a miR-567-
PIK3AP1- PI3K/AKT-c-Myc feedback loop (37). Ni et al. found
that miR-95-3p activates the PI3K/AKT signaling pathway by
upregulating the expression of p-PI3K and p-AKT, leading to the
November 2021 | Volume 11 | Article 768918
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enhancement of CDDP resistance of GC (76). PTEN is a key
negative regulator of the PI3K/AKT signaling pathway (121).
Shen et al. showed that miR-147 is upregulated in GC tissues and
cell lines. MiR-147 decreases the sensitivity of GC cells to 5-FU
by targeting PTEN to activate the PI3K/AKT signaling pathway
(34). In addition, high levels of exosomal miR-21 derived from
M2 macrophages have also been demonstrated to facilitate
CDDP resistance in GC cells by enhancing the activation of
the PI3K/AKT signaling pathway via the downregulation of
PTEN (74).

The MAPK signaling pathway is a classical carcinogenic
pathway, and its aberrant activation has been shown to
promote the initiation and progression of many cancer types,
including GC (122, 123). It has been reported that some miRNAs
contribute to the drug resistance of GC by regulating the
expression of key components in the MAPK signaling
pathway. For instance, Chen et al. found that low expression of
miR-206 is closely correlated with the CDDP resistance of GC
cells. The overexpression of miR-206 inhibits the proliferation of
drug-resistant GC cells and decreases CDDP resistance by
downregulating the expression of MAPK3 and p-MAPK3
(124). Another study showed that the downregulation of miR-
135b enhances the CDDP sensitivity of GC cells. Mechanistically,
miR-135b increases the expression of p-p38MAPK p38MAPK,
p-ERK1/2, and ERK1/2 by targeting mammalian ste20-like
kinase 1 (MST1), leading to the activation of the MAPK
signaling pathway (125). Moreover, miR-20a is reported to
promote the multidrug resistance (MDR) of GC cells by
activating the epidermal growth factor receptor-mediated
PI3K/AKT and MAPK/ERK signaling pathways by targeting
LRIG1 (126). In addition, miR-27a-5p has been shown to
enhance the sensitivity of GC cells to DOX by inhibiting the
MAPK and AKT signaling pathways by targeting apurinic/
apyrimidinic endodeoxyribonuclease 1 (APEX1) (127).

The Wnt/b−catenin signaling pathway plays crucial roles in
maintaining the fundamental function of cells. Dysregulation of
the Wnt/b−catenin signaling pathway has been widely observed
in multiple types of cancer, including GC. Wang et al. showed
that the overexpression of miR-149 enhances the 5-FU resistance
of GC cells by activating the Wnt/b−catenin signaling pathway
by targeting TREM2 (30). In another study, Chen et al. revealed
that miR-34a mediates the enhancement of lncRNAHOTAIR on
the CDDP resistance of GC cell lines by inactivating the Wnt/
b−catenin signaling pathway (128). MiRNAs can also modulate
the drug resistance of GC by targeting the transforming growth
factor (TGF)-b signaling pathway. For instance, the expression of
miR-187 is negatively associated with the CDDP-resistance of
GC cells. The overexpression of miR-187 inhibits CDDP
resistance in GC cells by downregulating the expression of
TGF-b1 and p-Smad4 to inactivate the TGF-b/Smad signaling
pathway (129). Additionally, miR-200c overexpression decreases
the resistance of GC cells to trastuzumab by suppressing the
TGF-b/Smad signaling pathway via downregulating zinc finger
E-box-binding homeobox 1 (ZEB1) and ZEB2 expression (130).
In addition, miR-362 and miR-20a have been reported to activate
the NF-kB signaling pathway and upregulate the expression of
Frontiers in Oncology | www.frontiersin.org 7
NF-kB-regulated genes by targeting CYLD, leading to the
enhancement of the CDDP resistance of GC cells (131, 132).
In a study by Guo et al., miR-106a-3p was found to increase the
apatinib resistance of GC cells by targeting SOCS genes (SOCS2,
SOCS4, and SOCS5) to activate the JAK2/STAT3 signaling
pathway (133). Taken together, these studies suggest that
targeting the cancer-related signaling pathways is a common
miRNA regulation mechanism for miRNAs in GC drug
resistance. Understanding the mechanisms of miRNAs in the
regulation of the GC signaling pathway may thus provide new
insights on therapeutic strategies against GC drug resistance.

MiRNAs and Drug Efflux in GC
Excessive drug efflux is one of the classical mechanisms of the
generation of drug resistance during cancer treatment. Human
ATP-binding cassette (ABC) transporters belong to the P-type
membrane ATPase superfamily and are closely associated with
excessive drug efflux (26). It has been reported that ABC
transporters are usually highly expressed in drug-resistant
cancer cells, and their overexpression promotes the efflux of
excessive intracellular drugs, leading to the impairment of
chemotherapeutic effects (134, 135). An increasing number
of studies have suggested that miRNAs are involved in the
regulation of excessive drug efflux in GC cells by modulating
ABC transporters.

Permeability glycoprotein (P-gp), also known as ABCB1 and
MDR1, was the first identified ABC transporter closely
associated with MDR. Currently, a series of miRNAs, such as
miR-103/107, miR-459, miR-361, miR-21, miR-19a/b and mir-
129, have been shown to regulate the resistance of GC cells to
chemotherapeutic drugs by directly or indirectly targeting P-gp
(55, 57, 98, 105, 136, 137). Furthermore, Zhang et al. found that
miR-132 is upregulated in Lgr5+ GC cells with stem cell-like
features, and the overexpression of miR-132 promotes the CDDP
resistance of these Lgr5+ GC cells. Mechanistically, miR-132
increases the expression of ABCG2 by targeting SIRT1 to
downregulate the deacetylation of CREB (138). In addition,
Wu et al. reported that the overexpression of miR-129-5p
decreases the drug resistance of GC cells by targeting MDR-
related ABC transporters, including ABCB1, ABCC5, and
ABCG1, whereas the silencing of miR-129-5p shows the
opposite effect (139). Shang et al. showed that miR-508-5p
overexpression sufficiently reverses the resistance of GC cells to
multiple chemotherapeutics and enhances the sensitivity of
tumors to chemotherapy by targeting ABCB1 and Zinc ribbon
domain-containing 1 (29). Collectively, these findings suggest
that miRNAs play a key role in regulating the drug efflux of GC
cells, which may provide new insight in the investigation of the
roles of miRNA in the drug resistance of GC cells.

MiRNAs Regulation of Apoptosis in GC
Drug Resistance
Inducing the apoptosis of cancer cells is one of the main roles of
chemotherapeutic drugs. Therefore, the dysregulation of
apoptosis (or its evasion) is commonly characterized as a
crucial hallmark of GC drug resistance (140). This may be the
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result of the aberrant expression of crucial apoptotic proteins or
the dysregulation of apoptotic pathways. A large number of
studies have shown that miRNAs are involved in the regulation
of apoptosis in drug-resistant GC cells by targeting apoptotic
proteins or pathways (26, 27, 141).

B-cell lymphoma-2 (BCL-2) family proteins are well-known
proteins that regulate mitochondrial apoptosis and are closely
associated with chemotherapy resistance (142, 143). Due to their
distinct effects on apoptosis, BCL-2 proteins are classified into
anti-apoptotic (e.g., Bcl-2, Bcl‐XL, and Mcl-1) and pro-apoptotic
categories (e.g., Bax, Bad, and Bak) (134, 144). Xia et al. found
that miR-15b and miR-16 are downregulated in GC cells. The
overexpression of these two miRNAs enhances the sensitivity of
GC cells to VCR-induced apoptosis by directly targeting Bcl-2
(66). A study of miR-BART20-5p in Epstein-Barr virus-
associated gastric carcinoma showed that miR-BART20-5p
promotes the resistance of gastric carcinoma cell line AGS to
5-FU and docetaxel by downregulating the BAD expression
(145). Chen et al. showed that miRNA-200c significantly
decreases Bax expression and increases Bcl-2 expression by
targeting E-cadherin, leading to the inhibition of the resistance
of GC cells to 5-FU, PTX, and ADR (146). In our previous work,
miR-185 was found to be downregulated in GC tissues and cell
lines. The overexpression of miR-185 enhances the sensitivity of
GC cells to low-dose CDDP or DOX by targeting apoptosis
repressors with a caspase recruitment domain. Conversely,
silencing miR-185 inhibits high-dose chemotherapy-induced
apoptosis (147). In another study, we showed that miR-633
promotes DOX/CDDP resistance in GC cells by decreasing the
expression of Fas-associated proteins with the death domain.
Forkhead box O 3 is an upstream regulator of miR-633 that can
directly inhibit miR-633 transcription by binding to its promoter
region (48). In addition, we also revealed that miR-422a mediates
the facilitation effect of lncR-D63785 on the sensitivity of GC
cells to DOX (148).

P53 is a well-studied tumor suppressor that mediates major
apoptotic pathways to protect cells from malignant transformation.
The dysregulation or mutation of p53 contributes to the
Frontiers in Oncology | www.frontiersin.org 8
development of chemotherapeutic drug resistance in cancer
treatment (149). Li et al. showed that miR-148a-3p enhances the
sensitivity of GC cells to CDDP by promoting mitochondrial
fission-induced apoptosis. Mechanistically, miR-148a-3p promotes
the activation of P53 to induce DRP1 dephosphorylation by
targeting AKAP1, leading to mitochondrial fission and apoptosis
in GC cells (150). They also found that the high expression of miR-
3174 is closely associated with CDDP resistance in GC cells. MiR-
3174 decreases the expression of p53 to inhibit Bax trans-activation
by targeting ARHGAP10, thereby suppressing mitochondria-
dependent apoptosis (151). In addition, Lee et al. revealed that
miR‐193a‐3p triggers the resistance of CD44‐positive GC stem cells
against CDDC by regulating the mitochondrial apoptosis pathway.
Mechanistically, the high expression of miR‐193a‐3p decreases the
expression of Bax, cytochrome C, cleaved caspase 3, and cleaved
caspase 9 and increases the expression of Bcl‐XL and Bcl‐2 via
targeting SRSF2, leading to the enhancement of CDDC resistance in
CD44‐positive GC stem cells (152). Furthermore, miR-20a is
reported to inhibit apoptosis in CDDC-resistant GC cells by
activating the NF-kB pathway. The overexpression of miR-20a
upregulates the expression of p65, livin, and survivin by targeting
NFKBIB (also known as IkBb) (132).

MiRNAs Are Involved in GC Drug
Resistance by Modulating Autophagy
Autophagy is a crucial intracellular degradation system that
protects cells from the damage of stressors, such as hypoxia and
nutrient deprivation (153). It has been reported that
chemotherapy-induced autophagy contributes to the acquired
drug resistance of cancer cells by helping them escape from
deadly cell damage (154). Increasing evidence shows that
miRNAs regulate the drug resistance of GC cells by targeting
autophagy-related genes (Table 2). For instance, the
overexpression of miR-30a is found to inhibit chemoresistance-
associated autophagy in GC cells by downregulating the
expression of light chain (LC)3-II (157). Another study revealed
that miR-495-3p overexpression enhances the sensitivity of GC
MDR cells to chemotherapy by inhibiting autophagy via activating
TABLE 2 | Regulation of miRNA on autophagy in GC drug resistance.

miRNAs Alteration Chemotherapy Role in autophagy References

miR-23b-3p Down 5-FU, VCR,
CDDP

miR-23b-3p inhibits autophagy by targeting ATG12 and sensitizes GC cells to chemotherapeutics. (155)

miR-874 Down CDDP miR-874 inhibits autophagy by targeting ATG16L1 and sensitizes GC cells to chemotherapeutics. (60)
miR-582-5p Down oxaliplatin miR-582-5p inhibits autophagy and sensitizes GC cells to oxaliplatin. (95)
miR-21 Up CDDP miR-21 inhibits autophagy by targeting PI3K/Akt/mTOR pathway and enhances resistance of GC cells

to CDDP.
(156)

miR-30a Down CDDP miR-30a inhibits autophagy by targeting P-gp and enhances sensitivity of GC cells to CDDP. (157)
miR-181a Down CDDP MiR-181a inhibits autophagy by targeting ATG5 and sensitizes GC cells to CDDP. (158)
miR-30b Down CDDP miR-30b inhibits autophagy by targeting ATG5 and enhances sensitivity of GC cells to CDDP. (159)
miR-495-3p Down 5-FU, VCR,

CDDP, ADR
miR-495-3p inhibits autophagy by targeting GRP78/mTOR axis and enhances sensitivity of GC cells
to chemotherapeutics.

(160)

miR-30e Down CDDP miR-30e inhibits autophagy by targeting ATG5 and enhances sensitivity of GC cells to CDDP. (91)
miR-148a-3p Down CDDP miR-148a-3p inhibits cyto-protective autophagy by inhibiting RAB12 and mTOR1 activation, and

enhances sensitivity of GC cells to CDDP.
(150)

miR-23b-3p Down 5-FU, VCR,
CDDP

miR-23b-3p inhibited autophagy by targeting ATG12 and HMGB2 and sensitized GC cells to
chemotherapy.

(65)
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mTOR (a key upstream mediator of autophagy) and targeting
GRP78 (160). Moreover, Huang et al. showed that the
overexpression of miR-874 enhances the sensitivity of GC cells
to chemotherapy by inhibiting the targeting of autophagy
occurrence by targeting autophagy-related 16-like 1 (60).
Additionally, miR-30e and miR-181a have been shown to
enhance the sensitivity of GC cells to chemotherapeutic agents
by inhibiting chemo-induced autophagy via targeting ATG5 (91,
158). Research on the function of miRNAs in regulating
chemotherapy-induced autophagy is currently limited. Further
studies are thus required to elucidate its exact mechanisms.

MiRNAs Control Drug Resistance in GC by
Modulating Cancer Stem Cell Features
CSCs are recognized as the main cause of chemotherapeutic drug
resistance due to their unique characteristics, such as their high
DNA repair ability, genomic instability, and overexpression of
ABC transporters (161, 162). CSCs are closely associated with the
proliferation, metastasis, and recurrence of cancer. An increasing
amount of evidence has shown that miRNAs are involved in the
regulation of GC drug resistance by affecting CSC properties. For
instance, Peng et al. showed that miR-876-3p is downregulated
in CDDP-resistant GC cells and its low expression is closely
associated with the CDDP resistance of GC. MiR-876-3p confers
sensitivity to CDDP-resistant GC cells. Mechanistically, the
overexpression of miR-876-3p downregulates the expression of
Sox-2, Oct-4, CD133, and CD44 by targeting TMED3, thereby
inhibiting the stem cell-like features of GC cells (163). Zeng et al.
revealed that the expression of miR-145 is decreased in GC cells.
The overexpression of miR-145 enhances the sensitivity of GC
cells to chemotherapeutic drugs by inhibiting the stem-like
properties of GC via directly targeting CD44 (164). Lee et al.
reported that miR‐193a‐3p overexpression promotes the
resistance of CD44‐positive gastric CSCs to CDDC by
modulating the mitochondrial apoptosis pathway via targeting
SRSF2 (152). In addition, some miRNAs, such as miRNA-106b,
miR‐196a‐5p, and miR-26a, are also found to regulate GC stem-
like cell properties (165–167), indicating their great potential in
regulating the drug resistance of GC.
Frontiers in Oncology | www.frontiersin.org 9
MiRNAs and EMT in GC Drug Resistance
EMT is a morphogenetic process that changes epithelial cells
from a pebble-like phenotype to a fibroblast-like phenotype,
which endows cells with migratory and invasive properties.
During the EMT process, the mesenchymal markers (e.g.,
Vimentin, N-Cadherin) are upregulated, whereas the epithelial
markers (e.g., E-cadherin) are downregulated (168). It has been
reported that the aberrant activation of EMT contributes to the
development of drug resistance in cancer by enabling the
conversion of non-CSCs into CSCs (169). An increasing
number of studies have suggested that miRNAs play crucial
roles in drug resistance by directly targeting the EMT process
(Table 3). For instance, Wang et al. showed that miR-30a is
downregulated in CDDP-resistant GC cells. The overexpression
of miR-30a increases the CDDP sensitivity of GC cells by
inhibiting EMT via downregulating the Snail and Vimentin
levels. GC cells with miR-30a knockdown show decreased
sensitivity to CDDP (173). Li et al. revealed that miR-204 is
downregulated in 5-FU-resistant GC cells, with the epithelial
markers (E-cadherin) decreased and the mesenchymal markers
(N-cadherin, Fibronectin, Twist, and Snail) increased. The
overexpression of miR-204 sensitized GC to 5-FU by inhibiting
TGF-b-induced EMT via targeting TGFBR2 (36). ZEB1 is a
crucial EMT-inducing transcription factor. Wang et al. found
that miR-574-3p overexpression inhibits the CDDP resistance of
GC cells. Mechanistically, the overexpression of miR-574-3p
increases E-cadherin expression and decreases vimentin
expression by targeting ZEB1 via binding to its 3’-UTR,
thereby enhancing the sensitivity of GC cells to CDDP (171).
Moreover, miR‐200c overexpression is found to enhance the
trastuzumab sensitivity of GC cells by inhibiting ZEB1 and ZEB2
(130). Additionally, Wang et al. showed that the overexpression
of exosomal miR-155-5p derived from PTX-resistant GC cells
induces EMT progress and enhances drug resistance in PTX-
sensitive GC cells by targeting GATA binding protein 3
(GATA3) and tumor protein p53-inducible nuclear protein 1
(TP53INP1) (103). Collectively, these findings suggest that
miRNAs are crucial regulators determining the fate of drug-
resistant GC cells by targeting the EMT process.
TABLE 3 | The role of miRNA-mediated EMT in GC drug resistance.

miRNAs Alteration Chemotherapy Role in EMT References

miR-30a Down CDDP miR-23b-3p inhibits EMT by upregulating E-cadherin and downregulating N-cadherin via targeting P-gp
and sensitizes GC cells to CDDP.

(38)

miR-200c Down trastuzumab miR-200c inhibits EMT by targeting ZEB1 and ZEB2 and sensitizes GC cells to trastuzumab. (130)
miR-155-5p Up PTX miR-155-5p promotes EMT by targeting GATA3 and TP53INP1 and enhances resistance of GC cells to

PTX.
(170)

miR-574-3p Down CDDP miR-23b-3p inhibits EMT by upregulating E-cadherin and downregulating vimentin via targeting ZEB1
and sensitizes GC cells to CDDP.

(171)

miR-204 Down 5-FU miR-204 inhibits EMT by upregulating mesenchymal markers and downregulating epithelial marker via
targeting TGFBR2 and sensitizes GC cells to 5-FU.

(36)

miR-17 Up CDDP, 5-FU miR-155-5p promotes EMT by targeting DEDD and enhances resistance of GC cells to
chemotherapeutics.

(172)

miR-27a-5p Down DOX miR-23b-3p inhibits EMT by regulating MAPK and AKT pathways via targeting APEX1 and sensitizes
GC cells to DOX.

(127)

miR-95-3p Up CDDP miR-155-5p promotes EMT by regulating PI3K/AKT pathway targeting EMP1 and enhances resistance
of GC cells to chemotherapeutics.

(76)
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MiRNAs Influence Cell Cycle Progression
in GC Drug Resistance
Cell cycle alteration is one of the main processes involved in drug
resistance. The dysregulation of the cell cycle may lead to drug
resistance (28, 174). Therefore, targeting cell cycle progression
factors may provide new insight into therapeutic strategies for
cancer. Many miRNAs have been proven to be involved in GC
drug resistance by regulating cell cycle progression. Cyclin D1 is
a major regulator of cell cycle progression that governs the
entrance of a cell from the G1 phase into S (175). Hu et al.
revealed that miR-449a is downregulated in both GC tissues and
cell lines. The overexpression of miR-449a suppresses
proliferation and promotes CDDP-mediated apoptosis in GC
cells. They further showed that miR-449a reduced the percent of
S phase cells and increased the percent of G1/G0 phase cells by
targeting BCL2 and cyclin D1, leading to the enhancement of the
CDDP sensitivity of GC cells (176). In another study, Jiang et al.
showed that miR-623 is downregulated in both GC tissues and
cell lines. The overexpression of miR-623 enhances the
sensitivity of GC cells to 5-FU by targeting Cyclin D1 (42). In
addition, some miRNAs, such as miR-1301-3p, miR-3663-3p,
and miR-34a, are also found to regulate cell cycle progression by
targeting cyclin D1, indicating their potential role in the drug
resistance of GC (177–179). F-box and WD repeat domain-
containing 7 (FBXW7) is a classical tumor suppressor that
promotes the ubiquitination and degradation of several
oncoproteins, such as Cyclin E, c-MYC, and c-JUN (180).
Zhou et al. demonstrated that miR-223 is up-regulated in
CDDP-resistant GC cells. The knockdown of miR-223
enhances the sensitivity of resistant GC cells to CDDP by
inducing cell arrest in the G0/G1 phase. Mechanistically, miR-
223 modulates the cell cycle of GC cells by targeting FBXW7 via
binding to its 3’-UTR, thus affecting the sensitivity of the GC cells
to CDDP (181). The early region 2 binding factor (E2F) family of
transcription factors are well-studied major transcriptional
regulators of cell cycle-dependent gene expression (182). Wen
et al. showed that miR-26a is downregulated in CDDP-resistant
GC cells. Function analysis demonstrated that miR-26a improves
the sensitivity of GC cells to CDDP by targeting E2F2 and NRAS
(183). Another study revealed that the overexpression of miR-
34a enhances the sensitivity of GC cells to PTX by targeting E2F5
(106). Taken together, these findings provide new insights into
the mechanisms of GC drug resistance mediated by miRNAs
involved in cell cycle regulation, which may improve
chemotherapy effectiveness.

MiRNAs and T Cells in GC Drug
Resistance
T cells are the major effector cells in tumor immunity and produce
cytokines in immune responses to mediate inflammation and
regulate other types of immune cells (184, 185). It has been
reported that the immune escape and immune tolerance
induced by the dysregulation of cytotoxic T cell activity are
closely associated with drug resistance in cancer (186). Some
studies suggested that miRNAs are involved in drug resistance
by regulating T cell activity in multiple cancer types. Xu et al.
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demonstrated that the restoration of miR-424 (322) expression in
chemoresistant ovarian cancer cells could activate the T-cell
immune response by regulating the production of CD8+ T,
MDSC, and Treg cells via targeting PD-L1, resulting in the
reversal of drug resistance (187). Qian et al. showed that the
overexpression of miR-101 inhibits cell proliferation and invasion
and induces apoptosis by targeting Notch1 in T-cell acute
lymphoblastic leukemia (T-ALL) cells. Further analysis revealed
that miR-101 enhances the sensitivity of T-ALL cells to the
chemotherapeutic agent ADR (188). MiRNAs can also regulate
GC progression by influencing T cells. For instance, miR−140
plays an anti-tumoral effect in GC by increasing cytotoxic CD8+ T
cell and reducing myeloid-derived suppressive and regulatory T
cell infiltration (189). Exosomal miRNA-16-5p derived from M1
macrophages inhibits GC development through activation of T
cell immune response via PD-L1. These findings strongly indicate
that miRNAs may participate in the development of GC drug
resistance by regulating T cells. Thus, in-depth studies are required
to elucidate the mechanism of miRNAs in regulating T cells in GC
drug resistance, which may provide new insights into the
development of miRNA-based therapeutics strategies in GC.
CLINICAL APPLICATIONS OF DRUG
RESISTANCE-RELATED MiRNAs IN GC

MiRNAs as Diagnostic and
Prognostic Biomarkers
Currently, most GC patients are still diagnosed at an advanced
stage with poor prognosis due to the lack of an effective approach
for early detection and prognostic evaluation in clinical practice.
Some protein biomarkers, such as CEA, uPA, and CA 19-9, have
been applied in clinic, but the low specificity and sensitivity of
these biomarkers limit their further utilization (190–192).
Therefore, it is important to screen and identify novel
biomarkers for the early detection and prognostic evaluation of
GC patients, particularly those demonstrating a poor response
to chemotherapy.

An increasing number of studies suggest that miRNAs
possess great potential to be biomarkers for the diagnosis and
prognosis of GC patients. In a latest clinical trial consist of 5248
GC and control subjects, So et al. developed a clinical diagnostic
assay for GC from a high-risk population based on a serum 12-
miRNA biomarker panel. In the discovery cohorts, the 12-
miRNA panel has an area under the curve (AUC) of 0.93 in
discriminating early GC patients from normal controls.
Excitingly, the AUC value also reached 0.92 in the verification
cohorts. Further prospective study revealed that the AUC value
for the 12-miRNA panel was 0.848, which is higher than HP
serology (0.635), PG 1/2 ratio (0.641), PG index (0.576), ABC
method (0.647), CEA (0.576), and CA19-9 (0.595). Moreover,
the overall sensitivity of the 12-miRNA assay was 87.0% at
specificity of 68.4% (193). These data strongly suggest that
serum 12-miRNA panel is a promising biomarker with higher
GC diagnostic accuracy than traditional serum-based
biomarkers. In another study consist of 354 GC patients,
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Shimura et al. identified a miRNA-based signature (including
miR-30a-5p, -134-5p, -337-3p, -659-3p, and -3917), which can
be used as a biomarker to identify peritoneal metastasis (PM) in
GC patients. The AUC value for the combination miRNA
signature was 0.82 in distinguishing GC patients with versus
without PM. In an independent validation cohort, the AUC value
reached 0.74 (194).

It has been reported that miRNAs are involved in drug
resistance and may serve as promising biomarkers for predicting
drug resistance and prognosis in GC (26) (Table 4). For instance,
Jin et al. found that miR-3180-3p is significantly upregulated and
miR-124-3p is downregulated in both drug-resistant GC patients
and cell lines. The combination of the twomiRNAs can effectively
distinguish drug-resistant GC patients from drug-sensitive GC
patients (AUC=0.946±0.023, p<0.001), indicating their potential
as serum-based biomarkers in predicting the therapeutic benefit of
CDDP in GC (204). Ji et al. showed that miR-374a-5p is
upregulated in GC serum, and its upregulation predicts poor
prognosis of GC patients. The overexpression of miR-374a-5p
promotes the drug resistance of GC cells by targeting Neurod1,
indicating the great value of miR-374a-5p as a biomarker for GC
diagnosis and prognosis (195). Besides, miR-1229-3p is
significantly upregulated in the plasma of GC patients, and its
upregulation is an independent poor prognostic factor for
recurrence-free survival. The overexpression of miR-1229-3p
promotes the significant drug resistance of GC cells to 5-FU both
in vitro and in vivo. This data indicate that plasma miR-1229-3p
can serve as a clinically useful biomarker for predicting drug
resistance to 5-FU in GC patients (200).

In addition, Huang’s group found that partial response rates of
GC patients with high miRNA27a expression and low miRNA27a
expression to fluoropyrimidine‐based chemotherapy to be 7.7%
and 25.9%, respectively (P = 0.018). GC patients with high
miRNA27a expression have a significantly worse overall survival
(OS) than those with lower miRNA27a expression (P = 0.024).
These results suggest that miRNA27a is a promising biomarker for
predicting resistance to fluoropyrimidine‐based chemotherapy
and a novel prognostic biomarker for metastatic or recurrent
GC (201). MiR-21 in both tumor tissue and plasma is significantly
upregulated in drug-resistant GC patients compared to the drug-
Frontiers in Oncology | www.frontiersin.org 11
sensitive GC patients (p < 0.001). ROC analysis showed that the
expression of miR-21 in tissue distinguished drug-resistant GC
patients from drug-sensitive GC patients, with an AUC of 0.830,
88.0% sensitivity, and 68.7% specificity; moreover, the expression
of miR-21 in tissue plasma distinguished drug-resistant GC
patients from drug-sensitive GC patients, with an AUC of 0.759,
52.0% sensitivity, and 88.1% specificity. Moreover, GC patients
with high miR-21 expression exhibit shorter OS time than patients
with low miR-21 expression, indicating that miR-21 might be a
promising biomarker for identifying metastatic GC with drug
resistance (202).

In a recent study of Jin et al., they found that miR-9-3p, miR-
9-5p, miR-146a-5p, and miR-433-3p were closely associated with
chemotherapy responses in GC patients and cells. MiR-9-5p
distinguished drug-resistant GC patients from drug-sensitive GC
patients with an AUC of 0.856 and p < 0.0001; moreover, the
combination of miR-9-3p, miR-146a-5p, and miR-433-3p
distinguished drug-resistant GC patients from drug-sensitive
GC patients, with an AUC of 0.915, and p < 0.0001, suggesting
the great potential of miR-9-5p and the combined group (miR-9-
3p, miR-146a-5p, and miR-433-3p) as serum-based biomarkers
distinguishing drug-resistant GC (199). These findings strongly
suggest that miRNAs possess great potential as valuable
biomarkers for predicting the drug response and prognosis of
GC. However, more in-depth studies are required to overcome
their limitations in clinical application using high-quality
samples and larger patient cohorts.

Therapeutic Potential of MiRNAs in GC
Drug Resistance
A single miRNA can simultaneously modulate several genes by
targeting different mRNAs, and one gene can also be regulated by
multiple miRNAs, indicating that miRNAs possess great
potential as effective therapeutic targets or therapeutic agents
in cancer treatment. Aberrantly expressed miRNAs have been
shown to play crucial roles in the development of GC drug
resistance. Therefore, correcting these miRNA deficiencies by
either antagonizing or restoring miRNA functions may provide
new insights into the development of therapeutic strategies for
reversing GC drug resistance. Currently, the main miRNA-based
TABLE 4 | Drug resistance-related miRNAs as diagnostic and prognostic biomarkers in GC.

miRNAs Alteration Potential values References

miR-374a-5p Up High level of miR-374a-5p predicts poor prognosis and poor response to chemotherapy. (195)
miR-15a-5p Up High level of miR-15a-5p predicts poorer survival and poor response to chemotherapy. (196)
miR-567 Down Low level of miR-567 predicts poor response to chemotherapy. (37)
Let-7a Down Low level of Let-7a predicts poor response to chemotherapy. (197)
miR-363 Up High level of miR-363 predicts poorer survival and poor response to chemotherapy. (198)
miR-582-5p Down Low level of miR-582-5p predicts poorer survival and poor response to chemotherapy. (95)
miR-9-5p, miR-9-3p,
miR-433-3p

Up Low level of miR-9-5p or combination of high level of miR-9-5p, miR-9-3p, and miR-433-3p predicts poorer
survival and poor response to chemotherapy.

(199)

miR-1229-3p Up High level of miR-1229-3p predicts poor response to chemotherapy. (200)
miR-27a Up High level of miR-27a predicts poorer survival and poor response to chemotherapy. (201)
miR-21 Up High level of miR-21 predicts poorer survival and poor response to chemotherapy. (202)
miR-16 Down Low level of miR-16 predicts poor response to chemotherapy. (203)
miR-508-5p Down Low level of miR-508-5p predicts poorer survival and poor response to chemotherapy. (29)
miR-23b-3p Down Low level of miR-23b-3p predicts poorer survival and poor response to chemotherapy. (65)
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therapies contain nanoparticles, miRNA mimics, miRNA
inhibitors, locked nucleic acid, decoy vectors, DNA sponge,
antagomiRs, and small compounds (205–208). Wang et al.
found that exosomes can act as nanoparticles to deliver anti-
miR-214 to reverse the resistance of GC cells to CDDP.
Exosome-delivered anti-miR-214 is maintained at a stable level
in the blood and downregulated the expression of miR-214 in the
tumor tissues of mice, thereby enhancing the sensitivity of
refractory GC to CDDP (209). Ghasabi et al. showed that miR-
200c mimics significantly reduced the resistance of GC cells to
Frontiers in Oncology | www.frontiersin.org 12
CDDP and increased CDDP-induced apoptosis by targeting
RhoE (210). Ji et al. revealed that the knockdown of miR-374a-
5p using miR-374a-5p inhibitor repressed the resistance of GC
cells to oxaliplatin and promoted cell apoptosis induced by
oxaliplatin (195). In addition, miR-21 has been found to confer
CDDP resistance in GC. The miR-21 inhibitor sensitized CDDP-
resistant GC cells by inducing autophagy via the PI3K/Akt/
mTOR pathway (156). These findings support that miRNA could
become effective therapeutic target or therapeutic agent reversing
GC drug resistance. However, miRNA-based therapies have not
FIGURE 3 | Clinical implications of miRNAs in GC drug resistance. MiRNAs are enriched in blood samples from drug resistant-GC patients. Dysregulated miRNAs
are identified through high-throughput sequencing. Subsequently, the mechanisms of dysregulated miRNA in the drug resistance of GC are investigated using cell
models. The functions of dysregulated miRNA in GC drug resistance are investigated using animal models. Next, the dysregulated miRNAs that can act as diagnostic
or prognostic biomarkers for drug resistant-GC patients are selected. Moreover, targeting specific miRNAs may produce reliable therapeutic effect. Finally, GC patients
with drug resistance receive individualized precision treatment based on these effective strategies.
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been translated into GC clinical treatment. More detailed and in-
depth studies are still required to investigate the roles of miRNAs
in GC drug resistance.
CONCLUSION AND PERSPECTIVE

Chemotherapy is still the first-line standard treatment option for
cancer patients. However, the development of drug resistance
results in chemotherapy failure and cancer recurrence, both of
which seriously threaten patients’ health and lives. In recent years,
increasing numbers of miRNAs have been found to be aberrantly
expressed indrug-resistantGC tissues.Mosthavebeen shown tobe
involved in the regulation of GC sensitivity or resistance to
chemotherapeutic agents by influencing various aspect of GC cell
function, including drug efflux, apoptosis, autophagy, EMT, CSCs,
and cell cycle. Moreover, a complex cross-talk network has been
observed between miRNAs and several drug resistance-related
signaling pathways in GC (Figure 2).

MiRNAs have been shown to be crucial regulators of several
oncogenic pathways during GC progression. Moreover, miRNAs
are small in size. Thus, it is easier to design specific drugs targeting
them or deliver them to target tissues. These features strongly
suggest that miRNAs are ideal therapeutic targets for GC patients.
In the other hand, miRNAs in plasma/serum are well protected
from RNases, they remain stable under harsh conditions (211),
which endows themwith great potential as biomarkers for the early
diagnosis and prognostic evaluation of GC patients. Therefore, the
identification of drug resistance-related miRNAs and the
investigation of their mechanisms in GC progression are crucial
for designing novel effective therapeutic strategies for GC patients,
especially those exhibiting a poor response to chemotherapy. In
addition, the combination of miRNAs with existing
chemotherapeutic agents may provide a new option for
maximizing therapeutic effects and improving clinical outcomes
in GC patients (Figure 3). However, there are still some challenges
in translating the findings on miRNA-mediated drug resistance in
Frontiers in Oncology | www.frontiersin.org 13
GC into clinical utilization, such as side effects, minimized off-
target effects, and the modes of targeted delivery. Nevertheless,
miRNA-based therapies may provide promising therapeutics for
GCpatients toovercomedrug resistance and increase their survival
in the future. Further studies are needed to clarify the exact
mechanism of miRNAs in the regulation of GC drug resistance
using large-scale clinical trials.

In summary, recent studies have shown that miRNAs possess
the great potential to be effective therapeutic targets and promising
biomarkers for predicting drug resistance and prognosis in GC
treatment. In-depth understanding of their mechanism in GC
progression may facilitate the design of potential therapeutic
strategies that can be used to reverse drug resistance in GC
patients. However, overcoming resistance to chemotherapy still
remains a big challenge. Continuous efforts are required to develop
miRNA-based therapies that can provide novel therapeutic options
and thus improve the clinical outcomes of GC patients in the future.
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