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Background: A close metabolic interaction between cancer and immune cells in the
tumor microenvironment (TME) plays a pivotal role in cancer immunity. Herein, we have
comprehensively investigated the glucose metabolic features of the TME at the single-cell
level to discover feasible metabolic targets for the tumor immune status.

Methods: We examined expression levels of glucose transporters (GLUTs) in various
cancer types using The Cancer Genome Atlas (TCGA) data and single-cell RNA-seq
(scRNA-seq) datasets of human cancer tissues including melanoma, head and neck, and
breast cancer. In addition, scRNA-seq data of immune cells in the TME acquired from
human melanoma after immune checkpoint inhibitors were analyzed to investigate the
dynamics of glucose metabolic profiles of specific immune cells.

Results: Pan-cancer bulk RNA-seq showed that the GLUT3-to-GLUT1 ratio was
positively associated with immune cell enrichment score. The scRNA-seq datasets of
various human cancer tissues showed that GLUT1 was highly expressed in cancer cells,
while GLUT3 was highly expressed in immune cells in TME. The scRNA-seq data obtained
from human melanoma tissues pre- and post-immunotherapy showed that glucose
metabolism features of myeloid cells, particularly including GLUTs expression, markedly
differed according to treatment response.

Conclusions: Differently expressed GLUTs in TME suggest that GLUT could be a good
candidate a surrogate of tumor immune metabolic profiles and a target for adjunctive
treatments for immunotherapy.

Keywords: glucose metabolism, glucose transporter, tumor microenvironment, immunotherapy, single cell
RNA sequencing
Abbreviations: TME, tumor microenvironment; GLUTs, glucose transporters; scRNA-seq, single-cell RNA-sequencing; ICIs,
immune checkpoint inhibitors; TCGA, The Cancer Genome Atlas; HNSC, head and neck squamous cell carcinoma; t-SNE,
t-distributed stochastic neighborhood embedding; GBM, glioblastoma multiforme; OXPHOS, oxidative phosphorylation;
KEGG, Kyoto Encyclopedia of Genes and Genomes; TAM, tumor-associated macrophages.
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INTRODUCTION

Dysfunct ion of the immune system in the tumor
microenvironment (TME) plays a crucial role in cancer
progression. Interaction of various cells in the TME with
cancer cells causes immune suppression and/or exhaustion to
induce cancer cellular progression (1, 2). Regarding tumor
metabolism, impaired immune function due to metabolic
competition between cancer and immune cells is one of the
critical factors of an immunosuppressive TME (3, 4). Specifically,
aerobic glycolysis, which is a typical metabolic feature of many
malignant cells (the so-called ‘Warburg effect’) is also the
primary energy source for activating immune cells (5).
Therefore, cancer cells gain aggressive features by surpassing
nutrient consumption to inhibit immune cell metabolism (6).
The close interaction of tumor immune and metabolic profiles
provides an opportunity to target the metabolism of the TME to
enhance the efficacy of cancer immunotherapy and develop a
diagnostic and prognostic biomarker for evaluating metabolic
immune functionality (7).

Cancer shows a broad spectrum of immune profiles and
metabolic properties in the TME, which eventually results in
heterogeneity (8, 9). Thus, the metabolic profiles of the TME
can be used for investigating the immune functionality of tumors
(10). Metabolic reprogramming in cancer and immune cells due to
cancer immunotherapy and/or chemoradiotherapy is a dynamic
process that causes a variable response to immunotherapy (7, 11,
12). In this regard, a previous investigation showed the reciprocal
change of glucose transporter (GLUT) between cancer and
immune cells in lung cancer (13). GLUT1 and GLUT3 were
enriched in lung cancer cells and immune cells of the TME,
respectively (13). Furthermore, as PD-1 signaling inhibits
glycolysis in T cells and PD-L1 in cancer cells stimulates aerobic
glycolysis, this reciprocal glucose uptake associated with the PD-1-
PD-L1 axis can be applied to metabolic modulation with immune
checkpoint inhibitors (ICIs) as a new strategy for cancer
immunotherapy (14, 15). Therefore, investigation of the TME
metabolic profiles in various cancer subtypes and dynamic
metabolic changes associated with ICIs are needed for
developing a biomarker reflecting metabolism and a novel
therapeutic strategy.

In this study, we investigated the glucose metabolism profiles
based on RNA transcripts of various cells in the TME. First, we
tested whether differently enriched GLUTs could be a surrogate
of metabolic competition across multiple cancer types using The
Cancer Genome Atlas (TCGA) and single-cell RNA-sequencing
(scRNA-seq) datasets from different human cancer tissues. In
addition, glucose metabolic profiles of various cells in the TME
were analyzed according to the ICI response using the publicly
available scRNA-seq data. Hence, we aimed to investigate the
feasibility of glucose metabolic profiles as a biomarker reflecting
immune metabolic functionality in the TME and to understand
the metabolic dynamics of various cells affected by ICIs. A better
understanding of the glucose metabolism of the TME at the
single-cell level can facilitate the development of novel
biomarkers for immunotherapy and therapeutics targeting
cancer immunometabolism.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Data
We usedmultiple datasets of scRNA-seq and spatial transcriptome
as well as bulk RNA-seq data of TCGA. Datasets used in this study
is summarized in Supplementary Table 1.

Preprocessing for Transcriptomic
Data of TCGA
Using the ‘Recount2’ R package (16), we downloaded the RNA
sequence data of 32 solid cancers obtained with the Illumina HiSeq
2000mRNAplatform (Illumina, SanDiego,CA,USA). The coverage
counts were scaled to estimate read counts using the scale_counts
function of the recount2 package. For normalization, the read counts
of all genes were converted into counts-per-million. We merged the
transcriptome data of 32 solid cancers of TCGA projects into one
large-scale expression matrix for pan-cancer analysis.

Immune Cell Enrichment Analysis
and Hypoxia Score
To evaluate overall immune cell enrichment in the TME, cell type
enrichment scores were evaluated. A gene-signature based method,
the xCell tool (http://xcell.ucsf.edu/), for inferring cell types from
tissue transcriptome profiles was used (17). It infers 64 immune and
stromal cell types of the TME. The composite score of immune cells
(i.e., the ImmuneScore) was obtained for the analysis. More
specifically, the immune score was defined as the sum of cell
enrichment scores of B cells, CD4+ T-cells, CD8+ T-cells, dendritic
cells, eosinophils, macrophages, monocytes, mast cells, neutrophils,
and NK cells estimated by xCell. To estimate hypoxia score from
RNA-seq data, single sample gene set enrichment analysis (ssGSEA)
using hypoxia gene signature of biocarta pathway was applied (18).

scRNA-Seq Analysis
The scRNA-seq data were scaled to log-normalization after the
read counts were divided by the total number of transcripts and
multiplied by 10,000. Two thousand highly variable genes were
selected using the FindVariableFeatures function of Seurat (version
3.0) (19) based on a variance stabilizing transformation. The data
were then scaled to z-scores. Principal component analysis was run
on variable genes, and 10 principal components were selected for
clustering analyses. The graph-based clustering approach was
implemented using the FindClusters function. A key parameter
to determine the number of clusters is the conservative resolution,
which was set according to each dataset: 1.0 for the scRNA-seq
data of breast cancer; 0.3 for the scRNA-seq data of HNSC; 0.2 for
the scRNA-seq data of GBM; 0.5 for the scRNA-seq data of human
melanoma treated with ICIs.

The scRNA-seq data were embedded by two-dimensional
projection using t-SNE. To identify the marker genes of
the clusters, the FindAllMarkers function of Seurat was used,
and the first five high-ranked marker genes were identified
according to the fold-change. The marker genes that were
relatively highly expressed in a given cluster were extracted using
the nonparametric Mann–Whitney U test.

Cancer cells and immune cells were identified by known
marker genes of specific cell types as well as the extracted
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markers. For each dataset, at least four cell types were identified
using specific well-known markers: cancer cells (EPCAM for
epithelial cell origin tumors), T-cells (CD3D, CD8A, and CD4),
B-cells (CD79A and IGHM), and myeloid cells (CD68 and LYZ).
To identify cancer cells of GBM, we utilized chromosomal copy
number alterations as described in previous studies (20, 21).
Specifically, expression levels of genes located on chromosome 7
were extracted for all cells, and the scores for copy number
alterations were calculated using a module score. The module
score was evaluated using the AddModuleScore in the Seurat
package. The cluster with a high copy number alteration score
was regarded as a cancer cell cluster.

Spatial Transcriptomic Data Analysis
Spatial transcriptome data obtained from the 10X Genomics
Visium platform were downloaded from publicly available
datasets of 10X Genomics (https://www.10xgenomics.com/
resources/datasets/). A human breast cancer dataset with
spatial information, and H&E staining was used. The data were
preprocessed with ‘SCTransfrom’ function of Seurat version 3.
Immune cell enrichment scores were evaluated by xCell as
described in the aforementioned section.

As a single gene feature count is sparse, we extracted module
scores of GLUT1 and GLUT3 using each gene feature’s correlated
genes. The GLUT1 and GLUT3 module scores were calculated
using top-k positively correlated genes sorted by the Pearson’s
correlation (k = 50). Gene ontology (GO) of GLUT1 (and GLUT3)
correlated genes was evaluated using clusterProfiler (22). The
module scores for each spot were calculated by AddModuleScore
in the Seurat package.

Differentially Expressed Genes of Single
Cell Clusters and Functional GO
Functional Enrichment Analysis
To compare a specific cluster of scRNA-seq data with other
clusters, we used the FindMarkers function of the Seurat package.
Differentially expressed genes of the cluster were selected
according to the following criteria: absolute log fold change >
0.25 and false discovery rate (FDR) corrected p-value < 0.05. GO
functional pathway analysis was performed using the
clusterProfiler (22). The GO terms were filtered with a cut-off
of p-value < 0.05 and FDR of less than 0.2.

Calculating Enrichment Scores of Gene
Functional Pathways
To examine the overall activities of glycolysis and OXPHOS of
the TME, we used Reactome to select genes of certain metabolic
pathways (23). The curated gene sets of the Reactome glycolysis
and OXPHOS pathways to define metabolic profiles were
obtained from MSigDB (Broad Institute, version 6.0). We used
the AddModuleScore function of Seurat to calculate the scores of
glucose metabolic pathways.

Statistical Analysis
The correlations between variables were evaluated using
Pearson’s correlation analysis. Comparison of the expression
levels of gene features or module scores of two different clusters
Frontiers in Oncology | www.frontiersin.org 3
was performed using the Mann–Whitney U test. Further,
comparison of the expression levels of multiple clusters was
performed using the Kruskal–Wallis test. A p-value of less than
0.05 was considered statistically significant. All statistical
analyses were performed using the R software package, version
4.0.2. (http://www.R-project.org).
RESULTS

Different Expression of GLUTs Represents
Immune Enrichment in Various
Solid Tumors
The expression levels of GLUT1 and GLUT3, which are the main
transporters for glucose uptake in cancer cells (24), were
compared across different types of cancers using TCGA data.
Most cancers showed higher levels of GLUT1 than GLUT3
expression, while testicular germ cell tumors, mesothelioma,
sarcoma, diffuse large B-cell lymphoma, thyroid carcinoma,
pheochromocytoma/paraganglioma, and liver hepatocellular
carcinoma showed higher levels of GLUT3 than GLUT1
expression (Figure 1A). According to a previous study on lung
cancer, GLUT3 is relatively highly expressed in immune cells
within the TME, while GLUT1 is highly expressed in most cancer
cells (13). Thus, we suggested that the GLUT3-to-GLUT1 ratio
(GLUTratio) could reflect immune cell metabolism compared
with cancer cell metabolism. We performed a correlation analysis
between the GLUTratio and the composite immune enrichment
score (ImmuneScore) across all cancer types. As a result, most
cancer types showed a significant positive correlation between the
GLUTratio and ImmuneScore (Figure 1B). Among the 32 cancer
types, 24 presented with a significant moderate and positive
correlation. Notably, an insignificant negative correlation was
found in diffuse large B-cell lymphoma, which originated from
immune cells. This positive association between the GLUTratio
and immune profiles was also found between the GLUTratio and
cytolytic score, which was calculated through granzyme B and
perforin A expression levels to reflect effector T-cell functionality
(25) (Supplementary Figure 1). As it is well known that GLUT1 is
upregulated in hypoxia, we evaluated the association between
GLUTratio and the hypoxia signature. While the hypoxia
signature was positively correlated with GLUT1 expression in
most cancer types, GLUTratio was not (Supplementary Figure 2).

Single-Cell Level Analyses Reveal Different
Patterns of GLUT Expression in the TME
of Various Cancers
To confirm whether the different expression patterns of GLUTs
represent immune profiles of the TME, we employed multiple
scRNA-seq datasets from various human solid tumors. The
scRNA-seq data of human head and neck squamous cell
carcinoma (HNSC) (26) were clustered, and immune cells of
the TME and cancer cells were identified (Figure 2A) using
marker genes of each cluster (Supplementary Figure 2). Their
expression patterns were then visualized using t-distributed
stochastic neighborhood embedding (t-SNE) plots. GLUT1 and
December 2021 | Volume 11 | Article 769393
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GLUT3 were differentially enriched according to clusters
(Figures 2B, C). When clusters were categorized into two cell
types (i.e., cancer and immune cells), GLUT3 and GLUT1
expression levels were significantly higher in immune cells and
cancer cells, respectively (Figure 2D). Similar results were also
found for other cancer types. The scRNA-seq data of human
glioblastoma multiforme (GBM) were clustered (Figure 2E), and
their marker genes are presented in Supplementary Figure 3.
Cancer cell clusters were identified using the chromosomal copy
number alteration score calculated by the gene expression of
chromosome 7 (21) (Supplementary Figure 3). GLUT1 and
GLUT3 also showed different patterns according to clusters
(Figures 2F, G). As demonstrated in HNSC, GLUT1 and
GLUT 3 were enriched in cancer cells and immune cells,
respectively (Figure 2H). This different GLUT expression
pattern in cancer and immune cells was also found in breast
Frontiers in Oncology | www.frontiersin.org 4
cancer (27) (Supplementary Figure 4). In addition, the hypoxia
score was evaluated for scRNA-seq data of HNSC and GBM
(Supplementary Figure 5). It showed that the hypoxia score was
not specifically increased in a certain cell type such as cancer cell.

We additionally analyzed a spatial transcriptome dataset
obtained from human breast cancer tissue. Spatial gene
features were represented using spat ia l ly resolved
transcriptome data of 3,813 spots (Figure 3A). The module
scores of GLUT1 and GLUT3 were assessed using each gene
feature’s associated genes (Supplementary Figure 6A). The GO
results of GLUT1-associated and GLUT3-associated genes
showed GLUT1 was spatially associated with metabolic process
such as NAD metabolic process, while GLUT3 was spatially
associated with extracellular matrix and regulation of
inflammation response (Supplementary Figure 6B). The
GLUT3-associated module score was spatially correlated with
A

B

FIGURE 1 | Pan-cancer analysis of GLUT expression and their association with ImmuneScore. (A) The distribution of GLUT1 and GLUT3 according to TCGA
cancer types. (B) ImmuneScore of the TME and its association with GLUTratio (GLUT3/GLUT1). The positive correlation between ImmuneScore and GLUTratio was
observed in most cancer types. ACC, Adrenocortical carcinoma; BLCA, Bladder Urothelial Carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical squamous
cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; COAD, Colon adenocarcinoma; DLBC, Lymphoid Neoplasm Diffuse Large B-cell
Lymphoma; ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and Neck squamous cell carcinoma; KICH, Kidney Chromophobe; KIRC,
Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LGG, Brain Lower Grade Glioma; LIHC, Liver hepatocellular carcinoma; LUAD, Lung
adenocarcinoma; LUSC, Lung squamous cell carcinoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma;
PCPG, Pheochromocytoma and Paraganglioma; PRAD, Prostate adenocarcinoma; READ, Rectum adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous
Melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular Germ Cell Tumors; THCA, Thyroid carcinoma; THYM, Thymoma; UCEC, Uterine Corpus Endometrial
Carcinoma; UCS, Uterine Carcinosarcoma, UVM, Uveal Melanoma. (ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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ImmuneScore, CD8-T-cells, and macrophages (Figures 3A, B),
while the GLUT1-associated module score was spatially
positively correlated with EPCAM expression and negatively
correlated with ImmuneScore (Figures 3A, B). As the positive
correlation between the GLUTratio and ImmuneScore was
revealed by the pan-cancer analysis with TCGA data, results of
the scRNA-seq and spatial transcriptome data showed that
GLUT3 was highly expressed among immune cells in the TME
compared with that in cancer cells.

ICIs Change GLUTs Expression and
Glycolysis Score of Immune Cells
We further analyzed whether glucose metabolic profiles
(including GLUTs) were dynamically changed according to ICI
treatment since reciprocal glucose uptake between cancer and
Frontiers in Oncology | www.frontiersin.org 5
immune cells reflects tumor immune function (3, 13, 28). A
scRNA-seq dataset of human melanoma cells from pre- and
post-treatment with ICI was analyzed (29). CD45+ immune cells
were clustered into 11 cell types (Figure 4A). Consistent with our
previous findings, GLUT3 was upregulated in all immune cells
compared with GLUT1 (Supplementary Figure 7A). To
characterize the subsets of immune cell clusters, the marker
genes of subsets were depicted in Supplementary Figure 7B.
‘CD8Tcell_1’ and ‘CD8Tcell_2’ were related to exhausted T-cells.
‘CD8Tcell_3’ represented TCF7+ memory/effector cells (29).
‘Myeloid_1’ and ‘Myeloid_2’ types represented macrophages
and ‘Myeloid_3’ represented markers related to plasmacytoid
dendritic cells (Supplementary Figure 7B). Immune cell
populations were differently distributed according to the
response to ICI and pre- and post-treatment (Figure 4B).
A B

D

E F

G H

C

FIGURE 2 | Distribution of GLUT1 and GLUT3 within the TME of HNSC and GBM. (A) Two-dimensional visualization of scRNA-seq data of HNSC by t-SNE
analysis. (B) t-SNE plot indicating different expression patterns of GLUT1 (left) and GLUT3 (right) across cancer and other cell clusters including immune cells.
(C) Violin plots showing the expression distribution of GLUT1(left) and GLUT3 (right) across cancer and other cell clusters of HNSC. (D) Violin plots showing GLUT1
(left) and GLUT3 (right) expression in cancer and immune cell clusters of HNSC. GLUT1 expression was higher in cancer cells, while GLUT3 expression was higher in
immune cells. (E) Two-dimensional visualization of scRNA-seq data of GBM by t-SNE analysis. (F) t-SNE plot indicating different expression patterns of GLUT1 (left)
and GLUT3 (right) across cancer and other cell clusters. (G) Violin plots showing the expression distribution of GLUT1(left) and GLUT3 (right) across cancer and other
cell clusters of GBM. (H) Violin plots showing GLUT1 (left) and GLUT3 (right) expression in cancer and immune cell clusters of GBM.
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First, we compared GLUT3 expression levels according to ICI
treatment. The GLUT3 level was increased in specific immune
cell types after ICI treatment, and the degree of increment was
different according to the response to ICI (Figure 4C). In
particular, GLUT3 of the CD8+ T-cell cluster, which is the key
Frontiers in Oncology | www.frontiersin.org 6
player in ICI (‘CD8Tcell_1’), was increased after ICI treatment in
both responders and non-responders (Figure 4D). Notably, the
change in GLUT3 level after ICI treatment was different between
responders and non-responders in myeloid cells, instead of CD8
T-cells (Figure 4D). In particular, GLUT3 expression in a
A

B

FIGURE 3 | Spatial distribution of GLUTs and immune cells in the breast cancer tissue. (A) Gene expression features and module scores for GLUT1 and GLUT3-
correlated genes were spatially mapped using spatial transcriptomic data of the breast cancer tissue. ImmuneScore, the enrichment score of CD8 T-cells and
macrophages were estimated by xCell analysis. (B) Pearson correlation analyses were performed on GLUT1 and GLUT3 module scores with EPCAM expression
and ImmuneScore. The correlation analyses were performed across spatially distributed spots on the breast cancer tissue.
December 2021 | Volume 11 | Article 769393
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myeloid cell cluster, ‘Myeloid_2’, was decreased among non-
responders only. Furthermore, changes in GLUT3 expression in
myeloid cells after ICI treatment were largely heterogeneous
between responders and non-responders.

Considering that effector immune cells depend on glycolysis
for energy consumption, we additionally analyzed enrichment
scores of glucose metabolism of immune cells. Myeloid cells
showed higher glycolysis and oxidative phosphorylation
(OXPHOS) scores than other immune cells (Supplementary
Figure 7C). The glycolysis score of ‘CD8 T-cell_1’ was increased
after ICI in both responders and non-responders. The glycolysis
score was also remarkably different according to the response to
ICI in myeloid cells as the GLUT3 expression level changes. The
difference in glycolysis according to the ICI response was also
prominent in myeloid clusters. A cluster, ‘Myeloid_1’, showed
increased glycolysis and ‘Myeloid_2’ showed decreased glycolysis
after ICI treatment in responders, while the glycolysis of both
clusters was not changed in non-responders (Figure 4E).
Frontiers in Oncology | www.frontiersin.org 7
Metabolic Reconfiguration of Myeloid
Cells Associated With ICI Response
As the glucose metabolic profiles of myeloid cells were
significantly modified after ICI treatment, we further analyzed
myeloid cell subsets for a more detailed examination of metabolic
changes. The myeloid subsets were re-clustered (Figure 5A) and
the landscape of scRNA-seq data, as visualized with t-SNE plots,
varied a lot according to ICI treatment (Figure 5B). In particular,
non-responders showed a remarkable increase in a subtype of the
myeloid cluster (‘subtype 2’) after ICI, while this cluster was
decreased in responders after ICI (Figure 5C). According to the
differential gene expression analysis, the marker genes of ‘subtype
2’ were identified as PLTP, MT1G, APOC1, APOE, and MT1H
(Figure 5D). These differentially expressed genes of ‘subtype 2’
myeloid cells were associated with the lipid catabolic process and
mitochondrial functions in GO analysis (Figure 5E). According to
the KEGG pathway analysis, these genes were associated with
‘phagosome’ as the most significantly associated pathway
A B

D

E

C

FIGURE 4 | Dynamic change of GLUT3 and glycolytic activity in immune cells after ICI treatment in melanoma patients. (A) t-SNE plot showing scRNA-seq data
obtained from melanoma patients before and after ICI treatment. (B) t-SNE plot of pre-treatment (left) and post-treatment (right) patients, color-coded by ICI
response. (C) Ridge plots showing GLUT3 expression at pre-treatment and post-treatment across immune cell clusters according to the response to ICIs. A red box
indicates myeloid cells that showed different patterns of GLUT3 expression after ICI treatment in accordance with the treatment response. (D) Violin plots showing
the expression distribution of GLUT3 across immune cell clusters in responders and non-responders. (E) Violin plot showing glycolysis activity enrichment scores
across immune cell clusters in responders and non-responders. (ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; uncorrected p-values).
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(Figure 5E). GLUTs were differently expressed in the ‘subtype2’
cluster among myeloid cell clusters where GLUT3 was highly
expressed in the TME according to the previous results. The
‘subtype 2’ cluster showed relatively low GLUT3 and high GLUT1
expression levels compared with ‘subtype 1’, which is the most
abundant myeloid cell subtype in the TME (Supplementary
Figures 7D, E). The OXPHOS score of ‘subtype 2’ was the
highest among the five myeloid clusters (Supplementary
Figures 7D, E). The ‘subtype 2’ cluster also showed high
expression of classical M2 macrophage markers (MRC1 and
CD163), and it also expressed some M1 macrophage markers,
including CD86, ITGAX, HLA-DRA, and STAT1. Furthermore, it
included PD-L1-positive cells (Supplementary Figure 7F).
Another type, ‘subtype 4’, was relatively increased in responders
after ICI. The ‘subtype 4’ was associated with IDO1, CD1C, and
NRDG2 expression as well as M1 markers (Supplementary
Figure 7G). According to the subset analysis of myeloid cells,
non-responders showed increased myeloid cells with high
OXPHOS, relatively high GLUT1 expression, low GLUT3
expression, and PD-L1-positive types. Thus, this non-responder
associated myeloid cell cluster was different from the immune cells
in TME which relatively showed high GLUT3 and low GLUT1
according to our previous results.
Frontiers in Oncology | www.frontiersin.org 8
DISCUSSION

In this study, we explored the glucose metabolic features of the
TME at the single-cell level. First, differently expressed GLUTs
between cancer and immune cells in the TME were found in
various cancer types according to bulk, single-cell and spatial
RNA-seq analyses. Second, we found that glucose metabolic
profiles of immune cells in the TME were associated with ICI
treatment response. In non-responders, specific subtypes of
myeloid cells increased after ICI treatment were associated
with high GLUT1, instead of GLUT3 expression, and M2
macrophage markers.

We proposed a new surrogate marker for immune functionality
in terms of metabolism resulting from different GLUT expression in
cancer and immune cells. The dynamic interactions of cancer cells
with the TME affect local factors favoring cancer progression, and
this may lead to immunosurveillance avoidance (1). One of the key
mechanisms for cancer immune escape is metabolic competition
between cancer and immune cells within a nutrient-deprived TME
(3, 4). Despite this key mechanism of metabolic interaction, the
development of biomarkers reflecting the functional metabolic
status of the TME or new therapeutics targeting TME metabolism
adjunctive to immunotherapy is still insufficient. We demonstrated
A B

D

EC

FIGURE 5 | Metabolic remodeling of myeloid cells and a myeloid cluster increase in a non-responder to ICI. (A) t-SNE plot of the myeloid cell subset analyzed from
the scRNA-seq data of melanoma patients before and after ICI treatment. (B) t-SNE plot of pre-treatment (left) and post-treatment (right) patients, color-coded by
ICI response. (C) Barplots showing the distribution of myeloid subtypes in responders (left) and non-responders (right), before and after ICI treatment. Notably,
‘subtype2’ was remarkably increased in non-responders after ICI. (D) Scatterplot of the gene expression correlation between myeloid subtype 2 and other myeloid
subtypes. Top 10 genes highly expressed in the subtype 2 cluster were labeled. (E) Dot plots showing the significant up-regulated GO terms of biological processes
and KEGG pathways of myeloid subtype 2. The size of the dot is based on gene counts enriched in the pathway, and the color of the dot shows the significance of
pathway enrichment.
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that the GLUTratio (GLUT3-to-GLUT1 ratio) could be a feasible
biomarker for predicting ICI response (13). In this study, we
showed that the GLUTratio was positively correlated with
ImmuneScore in most solid cancer types. scRNA-seq analysis
showed a relatively higher expression of GLUT3 in immune cells
in multiple cancer types, including HNSC, GBM, breast cancer, and
lung cancer (13). Furthermore, for the breast cancer tissue, GLUT3
was spatially positively associated with immune-rich areas while
GLUT1 was negatively associated. These findings suggest that
different types of GLUTs in the TME could be a good common
target for identifying immune functionality in various cancer types.
Notably, GLUT1 was associated with the hypoxia signature, while
GLUTratio was not. It supports that GLUTratio was different from
hypoxia signature and more related to immune profiles of tumors.
Furthermore, according to scRNA-seq data, the hypoxia signature
was not specifically increased in a certain cell subtype such as cancer
cell. Thus, it suggested that the specific upregulation of GLUT1 and
GLUT3 in different cell types in TME was not associated with
hypoxia. In addition, it could be applied to develop a therapeutic
strategy combined with immunotherapy. As glucose uptake is
mainly mediated by GLUT1 in cancer cells, selective inhibition of
GLUT1 could suppress cancer cellular glucose metabolism (30). In
addition, it can be hypothesized that relatively increased glucose
uptake of immune cells due to metabolic competition could be
expected to have a synergistic effect on immunotherapy. Previous
preclinical studies have shown anti-cancer effects of selective
GLUT1 inhibition (31–33); however, the effect of GLUT1
inhibition on the immune profiles in the TME has not been
analyzed. Further studies regarding the adjunctive role of GLUT1
inhibition in immunotherapy are needed.

We then explored whether the glucose metabolic profiles of
various cells in the TME were altered by ICI treatment. As the
GLUTratio is associated with immune cell enrichment and
cytolytic score, we expected increased molecular features
related to glucose uptake and consumption in effector immune
cells of the TME after ICI treatment. scRNA-seq data obtained
from melanoma patients treated with ICIs revealed increased
GLUT3 expression and glycolysis in CD8+ T-cells. However,
increased GLUT3 expression and glycolysis in CD8+ T-cells
were commonly found in both responders and non-responders.
The increased glycolysis in CD8+ T-cells after ICI treatment was
consistent with previous in vitro and animal studies that showed
suppressed glycolysis due to PD1-PD-L1 interaction in T-cells
(34, 35). PD-1 pathway blocking could increase the glycolysis of
T-cells regardless of the response to ICIs. Instead, the major
difference between responders and non-responders in terms of
glucose metabolism was found in myeloid cells.

Our results on the metabolic alterations in myeloid cells in the
TME according to the response to ICIs suggested the critical role
of tumor-associated macrophages (TAMs) in ICI resistance. In
particular, a specific cluster of myeloid cells increased after ICI
treatment in non-responders. According to the analysis of
human melanoma scRNA-seq, myeloid cells associated with
responders showed a relatively high expression of PLTP,
APOC1, APOE, MT1G, and MT1H. These genes were
associated with lipid catabolic processes, carbon metabolism,
Frontiers in Oncology | www.frontiersin.org 9
and the TCA cycle. This cluster also showed a higher OXPHOS
score, relatively low GLUT3 expression, and high GLUT1
expression. The specific TAM that increased after ICI
treatment in non-responders is important to understand the
role of TAM in the acquisition of resistance to ICI as well as to
develop a biomarker beyond T-cells (36, 37). The myeloid cell
cluster associated with non-responders showed moderate
expression of GLUT1 and glycolysis genes and expression of
M1 markers including CD86 and ITGAX, but with high
expression of M2 markers, including MRC1 (CD206). In
addition, KEGG pathway analysis showed that the most
associated gene set was ‘phagosome’ activity. This implies that
this subtype of myeloid cells could be associated with a
previously suggested mechanism of ICI resistance, which is
phagocytosis of antibody-blocking T-cell binding (36). The
phagosome of TAM is induced by antibody-dependent cellular
phagocytosis, followed by upregulation of PD-L1 in TAM, which
consequently contributes to immunosuppression (38). Notably,
the cluster associated with ICI resistance showed high PD-L1
expression according to our results. Additionally, the increased
ICI-resistant myeloid cells with high phagosome activity, PD-L1
positivity, and moderate GLUT1/glycolysis expression. Another
myeloid subtype with relatively high IDO1 and CD1c tended to
be increased after ICI in responders, though IDO1 is associated
with immunosuppression. It suggests that only some of the
myeloid immunosuppressive changes may affect the ICI
response, while other changes may not affect the response.

There are some limitations to this study that should be
addressed. First, to explore the differential glucose metabolism
within the TME, we investigated the expression values of GLUT
and enrichment scores of metabolic pathways estimated from
transcriptome data. Furthermore, precise measurement of
cellular metabolism is difficult because enrichment scores
cannot directly reflect functional protein activity. As an
explorative study using multiple publicly available datasets of
RNA-seq to identify targets of glucose metabolic profiles, further
mechanistic and functional studies should be conducted for
protein-level analysis and functional metabolic profiling to
measure glucose consumption to validate and extend our study
findings. Second, we used multiple RNA-seq datasets; therefore,
different experimental protocols and preprocessing methods
might affect the results. Finally, even though we analyzed
multiple RNA-seq data from several different types of cancers,
it might be difficult to generalize our findings to all cancer types.
As different types of cancers have different compositions of
immune and stromal cells in the TME, the responsiveness and
the change in cellular composition by ICI might be different
between cancer types.

We demonstrated that GLUTs are expressed differently in
cancer and immune cells in the TME, and there are relatively
high levels of GLUT3 in the immune cells of the TME,
commonly in various cancer types. By analyzing scRNA-seq
data obtained pre- and post-immunotherapy, we identified a
specific myeloid subset characterized by high GLUT1 expression,
PD-L1 positivity, phagosome activity, and markedly increased
positive M2 markers in the non-responder group. This cluster
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could play a key role in ICI resistance. The characterization of
glucose metabolism in cancer and immune cells within the TME
might help in developing a biomarker reflecting tumor
metabolism. Moreover, our findings provide insight for
developing targets of glucose uptake to overcome ICI
resistance as well as to find a combination of immunotherapy.
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Adaptations and Correlates of Survival to Immune Checkpoint Blockade. Nat
Commun (2019) 10:1–6. doi: 10.1038/s41467-019-12361-9

12. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC,
et al. Spatiotemporal Dynamics of Intratumoral Immune Cells Reveal the
Immune Landscape in Human Cancer. Immunity (2013) 39:782–95.
doi: 10.1016/j.immuni.2013.10.003
13. Na KJ, Choi H, Oh HR, Kim YH, Lee SB, Jung YJ, et al. Reciprocal Change in
Glucose Metabolism of Cancer and Immune Cells Mediated by Different
Glucose Transporters Predicts Immunotherapy Response. Theranostics (2020)
10:9579. doi: 10.7150/thno.48954

14. Zappasodi R, Merghoub T, Wolchok JD. Emerging Concepts for Immune
Checkpoint Blockade-Based Combination Therapies. Cancer Cell (2018)
33:581–98. doi: 10.1016/j.ccell.2018.03.005

15. Kouidhi S, Ben Ayed F, Benammar Elgaaied A. Targeting Tumor Metabolism:
A New Challenge to Improve Immunotherapy. Front Immunol (2018) 9:353.
doi: 10.3389/fimmu.2018.00353

16. Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD,
et al. Reproducible RNA-Seq Analysis Using Recount2. Nat Biotechnol (2017)
35:319–21. doi: 10.1038/nbt.3838

17. Aran D, Hu Z, Butte AJ. Xcell: Digitally Portraying the Tissue Cellular
Heterogeneity Landscape. Genome Biol (2017) 18:1–14. doi: 10.1186/
s13059-017-1349-1

18. Hänzelmann S, Castelo R, Guinney J. GSVA: Gene Set Variation Analysis for
Microarray and RNA-Seq Data. BMC Bioinf (2013) 14:1–15. doi: 10.1186/
1471-2105-14-7

19. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WMIII,
et al. Comprehensive Integration of Single-Cell Data. Cell (2019) 177:1888–
902.e21. doi: 10.1016/j.cell.2019.05.031

20. Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, et al.
Single-Cell RNA-Seq Supports a Developmental Hierarchy in Human
Oligodendroglioma. Nature (2016) 539:309–13. doi: 10.1038/nature20123

21. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An
Integrative Model of Cellular States, Plasticity, and Genetics for
Glioblastoma. Cell (2019) 178:835–49.e21. doi: 10.1016/j.cell.2019.06.024

22. Yu G, Wang L-G, Han Y, He Q-Y. Clusterprofiler: An R Package for
Comparing Biological Themes Among Gene Clusters. Omics: J Integr Biol
(2012) 16:284–7. doi: 10.1089/omi.2011.0118

23. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al.
The Reactome Pathway Knowledgebase. Nucleic Acids Res (2018) 46:D649–
55. doi: 10.1093/nar/gkx1132

24. Macheda ML, Rogers S, Best JD. Molecular and Cellular Regulation of Glucose
Transporter (GLUT) Proteins in Cancer. J Cell Physiol (2005) 202:654–62.
doi: 10.1002/jcp.20166
December 2021 | Volume 11 | Article 769393

https://www.frontiersin.org/articles/10.3389/fonc.2021.769393/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.769393/full#supplementary-material
https://doi.org/10.1038/s41591-018-0014-x
https://doi.org/10.1038/nature21349
https://doi.org/10.1016/j.cell.2015.08.016
https://doi.org/10.1016/j.immuni.2018.03.004
https://doi.org/10.1016/j.immuni.2018.03.004
https://doi.org/10.1016/j.immuni.2013.04.005
https://doi.org/10.1038/s41467-019-10015-4
https://doi.org/10.1038/s41467-019-10015-4
https://doi.org/10.1038/s41571-019-0203-7
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1186/s12943-018-0895-9
https://doi.org/10.3389/fimmu.2017.00248
https://doi.org/10.1038/s41467-019-12361-9
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.7150/thno.48954
https://doi.org/10.1016/j.ccell.2018.03.005
https://doi.org/10.3389/fimmu.2018.00353
https://doi.org/10.1038/nbt.3838
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1038/nature20123
https://doi.org/10.1016/j.cell.2019.06.024
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/nar/gkx1132
https://doi.org/10.1002/jcp.20166
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Choi and Na Glucose Metabolism in Tumor Microenvironment
25. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and Genetic
Properties of Tumors Associated With Local Immune Cytolytic Activity. Cell
(2015) 160:48–61. doi: 10.1016/j.cell.2014.12.033

26. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-Cell
Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head
and Neck Cancer. Cell (2017) 171:1611–24. e24. doi: 10.1016/j.cell.2017.10.044

27. Chung W, Eum HH, Lee H-O, Lee K-M, Lee H-B, Kim K-T, et al. Single-Cell
RNA-Seq Enables Comprehensive Tumour and Immune Cell Profiling in
Primary Breast Cancer.Nat Commun (2017) 8:1–12. doi: 10.1038/ncomms15081

28. Lyssiotis CA, Kimmelman AC. Metabolic Interactions in the Tumor
Microenvironment. Trends Cell Biol (2017) 27:863–75. doi: 10.1016/j.tcb.
2017.06.003

29. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW,
et al. Defining T Cell States Associated With Response to Checkpoint
Immunotherapy in Melanoma. Cell (2018) 175:998–1013.e20. doi: 10.1016/
j.cell.2018.10.038

30. Siebeneicher H, Cleve A, Rehwinkel H, Neuhaus R, Heisler I, Müller T, et al.
Identification and Optimization of the First Highly Selective GLUT1 Inhibitor
BAY-876. ChemMedChem (2016) 11:2261. doi: 10.1002/cmdc.201600276

31. Wu Q, Deblois G, Cruickshank J, Duan S, Lima-Fernandes E, Haight J, et al.
GLUT1 Inhibition Blocks Growth of RB1-Positive Triple Negative Breast
Cancer. Nat Commun (2020) 11:1–12. doi: 10.1038/s41467-020-18020-8

32. Commander R, Wei C, Sharma A, Mouw J, Burton L, Summerbell E, et al.
Subpopulation Targeting of Pyruvate Dehydrogenase and GLUT1 Decouples
Metabolic Heterogeneity During Collective Cancer Cell Invasion. Nat
Commun (2020) 11:1–17. doi: 10.1038/s41467-020-15219-7

33. MaY,WangW, IdowuMO,OhU,WangX-Y,Temkin SM, et al. OvarianCancer
Relies on Glucose Transporter 1 to Fuel Glycolysis and Growth: Anti-Tumor
Activity of BAY-876. Cancers (2019) 11:33. doi: 10.3390/cancers11010033

34. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 Alters
T-Cell Metabolic Reprogramming by Inhibiting Glycolysis and Promoting
Frontiers in Oncology | www.frontiersin.org 11
Lipolysis and Fatty Acid Oxidation.Nat Commun (2015) 6:1–13. doi: 10.1038/
ncomms7692

35. Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J,
et al. Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by
the Inhibitory Receptor PD-1 Are an Early Driver of CD8+ T Cell Exhaustion.
Immunity (2016) 45:358–73. doi: 10.1016/j.immuni.2016.07.008

36. Arlauckas SP, Garris CS, Kohler RH, Kitaoka M, Cuccarese MF, Yang KS,
et al. In Vivo Imaging Reveals a Tumor-Associated Macrophage–Mediated
Resistance Pathway in Anti–PD-1 Therapy. Sci Transl Med (2017) 9(389):
eaal3604. doi: 10.1126/scitranslmed.aal3604

37. Pathria P, Louis TL, Varner JA. Targeting Tumor-Associated Macrophages in
Cancer. Trends Immunol (2019) 40:310–27. doi: 10.1016/j.it.2019.02.003

38. Su S, Zhao J, Xing Y, Zhang X, Liu J, Ouyang Q, et al. Immune Checkpoint
Inhibition Overcomes ADCP-Induced Immunosuppression by Macrophages.
Cell (2018) 175:442–57.e23. doi: 10.1016/j.cell.2018.09.007

Conflict of Interest: HC is a cofounder and CTO of Portrai inc. and a scientific
advisory board member for AItheNutriGene. KJN is a cofounder of Portrai, inc.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Choi and Na. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
December 2021 | Volume 11 | Article 769393

https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1038/ncomms15081
https://doi.org/10.1016/j.tcb.2017.06.003
https://doi.org/10.1016/j.tcb.2017.06.003
https://doi.org/10.1016/j.cell.2018.10.038
https://doi.org/10.1016/j.cell.2018.10.038
https://doi.org/10.1002/cmdc.201600276
https://doi.org/10.1038/s41467-020-18020-8
https://doi.org/10.1038/s41467-020-15219-7
https://doi.org/10.3390/cancers11010033
https://doi.org/10.1038/ncomms7692
https://doi.org/10.1038/ncomms7692
https://doi.org/10.1016/j.immuni.2016.07.008
https://doi.org/10.1126/scitranslmed.aal3604
https://doi.org/10.1016/j.it.2019.02.003
https://doi.org/10.1016/j.cell.2018.09.007
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Different Glucose Metabolic Features According to Cancer and Immune Cells in the Tumor Microenvironment
	Introduction
	Materials and Methods
	Data
	Preprocessing for Transcriptomic Data of TCGA
	Immune Cell Enrichment Analysis and Hypoxia Score
	scRNA-Seq Analysis
	Spatial Transcriptomic Data Analysis
	Differentially Expressed Genes of Single Cell Clusters and Functional GO Functional Enrichment Analysis
	Calculating Enrichment Scores of Gene Functional Pathways
	Statistical Analysis

	Results
	Different Expression of GLUTs Represents Immune Enrichment in Various Solid Tumors
	Single-Cell Level Analyses Reveal Different Patterns of GLUT Expression in the TME of Various Cancers
	ICIs Change GLUTs Expression and Glycolysis Score of Immune Cells
	Metabolic Reconfiguration of Myeloid Cells Associated With ICI Response

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


