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The homeobox (HOX) genes encoding an evolutionarily highly conserved family of
homeodomain-containing transcriptional factors are essential for embryogenesis and
tumorigenesis. HOX genes are involved in cell identity determination during early
embryonic development and postnatal processes. The deregulation of HOX genes is
closely associated with numerous human malignancies, highlighting the indispensable
involvement in mortal cancer development. Since most HOX genes behave as oncogenes
or tumor suppressors in human cancer, a better comprehension of their upstream
regulators and downstream targets contributes to elucidating the function of HOX
genes in cancer development. In addition, targeting HOX genes may imply therapeutic
potential. Recently, novel therapies such as monoclonal antibodies targeting tyrosine
receptor kinases, small molecular chemical inhibitors, and small interfering RNA
strategies, are difficult to implement for targeting transcriptional factors on account of
the dual function and pleiotropic nature of HOX genes-related molecular networks. This
paper summarizes the current state of knowledge on the roles of HOX genes in human
cancer and emphasizes the emerging importance of HOX genes as potential therapeutic
targets to overcome the limitations of present cancer therapy.

Keywords: homeobox genes, transcription factors, therapy, biomarker, cancer progression
Abbreviation:NSCLC, non-small-cell lung carcinoma; CRC, colorectal cancer; PTC, papillary thyroid cancer; LSCC, laryngeal
squamous cell cancer; GC, gastric cancer; HCC, hepatocellular carcinoma; FASN, fatty acid synthase; LUAD, lung
adenocarcinoma; HNSCC, head and neck squamous cell carcinoma; TNBC, triple negative breast cancer; CMM, cutaneous
malignant melanoma; ESCC, esophageal squamous cell carcinoma; NPC, nasopharyngeal carcinoma;
CHOL, cholangiocarcinoma.
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1 INTRODUCTION

1.1 General Overview
The homeobox (HOX) genes were initially discovered in 1992
with the roles in embryogenesis in Drosophila melanogaster,
where mutations in antennapedia and bithorax clusters were
observed to lead to abnormal body development (1). These
mutations lead one body segment to emerge similar to another
segment and is originally called the term “homeotic” mutations
since the 1990s (2).

The HOX genes encode a family of transcription factors that
regulate embryogenesis and morphogenesis during the embryonic
period and adulthood. These genes are highly conserved and
contain homologous domains in almost all eukaryotic cells (3).
The HOX genes comprise a highly conserved sequence of 180-183
base pairs encoding a homeodomain of 60 or 61 amino acids helix-
turn-helix motif (2). The specific structure was initially
characterized by magnetic resonance spectroscopy imaging.

In the human genome, according to the sequence similarity and
position correlation in the chromosome, 39 HOX family genes can
be divided into 4 clusters, namely HOXA, HOXB, HOXC, HOXD.
Frontiers in Oncology | www.frontiersin.org 2
The number after the subgroup HOXA, HOXB, HOXC, HOXD
increases orderly in a 3’ to 5’ orientation, which is shown in
Figure 1. Each cluster has between 9 and 11 genes in a row on a
homologous strand of DNA, which contains duplication and
divergence of ancestral HOX genes.

1.2 Physiological Function of HOX Genes
HOX genes encode a family of master transcriptional regulators
throughout growth and development in human tissues and organs.
This period monitoring elicits distinct and temporospatial limb and
organ developmental programs along the anterior-posterior axis
(99). Researchers found the chromosomal arrangement of HOX
genes was closely related to their localization order of genetic
expression (100).

Plenty of scientific evidence suggests that the specific functions
of individual HOX genes largely reflect their regional and restricted
expression patterns. The disruption of the chromosome region
related expression pattern may lead to developmental defects and
diseases, especially human cancer (101).

HOX proteins encoded by HOX genes are key components of
substantial metabolic processes such as lipidic metabolism, and their
FIGURE 1 | Overview of HOX involvement in different tumors in human. The colors of HOX molecules indicate regulations in relevant tumor cell. The red font means
the corresponding HOX genes is up-regulated in tumor, while the blue font means the corresponding HOX genes is down-regulated in comparison. Regulation of
HOX factors in various tumor types described in this figure legend. [brain cancer mainly includes the glioma and neuroblastoma (4–11), lung cancer (12–24),
hepatocellular carcinoma (25–31), bladder cancer (32, 33), cholangiocarcinoma (34), head and neck squamous cell carcinoma (35, 36), breast cancer (21–23, 37–
54), gastric carcinoma and esophagus cancer (55–64), prostate cancer and renal carcinoma (43, 65–72), ovarian cancer (73–79), endometrial cancer and cervical
cancer (80–84), leukemia (85–95), skin carcinoma (96–98)].
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roles in organogenesis and tumorigenesis have been studied in detail
over the past decade (12, 37, 73, 102–105). Pluripotent embryonic
carcinoma cells have been associated with the differentiation of a
broad spectrum of tissues early in development in mice embryos
(106). This process appears to be related to retinoic acid reactions,
the chromosomal region determining the aforementioned relation
was regulated by HOX gene (96, 107).

In conclusion, HOX genes act as primary regulators to
regulate downstream target molecules (103). HOX genes play
an essential role in embryonic development, including
morphogenesis, organogenesis, and differentiation of a variety
of tissues and organs (108).
2 DEREGULATION OF HOX GENES IN
HUMAN CANCER

Over the past several decades, we have come to understand that a
great many genes and proteins controlling embryogenesis usually
partake indispensable effects in carcinogenesis likewise. Many
genes identified as pivotal genes in carcinogenesis, for example,
oncogenes or tumor suppressor genes, have been discovered to
paly primary roles in embryogenesis correspondingly. It
indicates both processes are tightly linked (109). The familiar
components of signal transduction pathways, such as the Sonic
Hedgehog pathway, Wingless-Type MMTV Integration Site
Family, Notch pathway, Paxillin pathway, and Sry-box
transcription factors family members, closely act in accordance
with the above rules.

This close relationship between embryogenesis and
carcinogenesis supports the lineage-dependency theory. The
theory proposes that the cellular mechanisms participating in
lineage heredity and adaptability during development,
potentially underlies tumorigenic mechanisms in humans
(110). The HOX genes might be applicable to the lineage-
dependency theory. Apart from the indispensable involvement
of HOX genes in embryonic development in physiological status,
their abnormal expression, has long been linked to tumors.
Initially, these genes were thought to be related to human
cancers in the hematologic system and embryo. Later, many
other kinds of tumors were also noticed to be associated with
deregulated HOX genes (85, 101, 111). In the context of cancer
development, the abnormal expression of HOX gene may affect
cell proliferation, differentiation, apoptosis, motility,
angiogenesis, autophagy, and cell receptor signaling (112).
HOX genes in the hallmarks of cancer are shown in Figure 2.

The protein products of HOX genes are initially thought to be
transcription factors that accelerate cancerization since HOX
proteins are deregulated in carcinogenesis. In the above process,
HOX proteins govern the intricate balance of multiple signaling
pathways on and off, and affect downstream targets of these
pathways (113), so as to determine different cancer outcomes.

Subsequent studies have shown that HOX genes act not only
as transcriptional activators but also as transcriptional repressors
in cancer. This abnormal regulation of HOX genes in cancer
suggests that HOX genes expression is an integral part of the
regulatory network (103, 114, 115).
Frontiers in Oncology | www.frontiersin.org 3
HOX genes in tumor show temporospatial deregulation
pattern, different from that in normal tissues and organs.
Besides, the gene dominance in expression level, that is, the
aberrantly increased expression level of HOX genes in specific
tissue types, the mechanism is also proposed to explain HOX
genes relevant to cancer. The targets identified for HOX factors
in human cancer are shown in Table 1 (4–7, 13–20, 25–30, 32–
35, 38–49, 55–62, 65–70, 74–76, 80–83, 86–91, 116–121, 127–
130, 133–149).

2.1 Direct Role: As Oncogenes
The HOX genes have been reported to act as oncogenes and
contribute to tumor progression in several types of cancer. For
example, simultaneous overexpression of HOXA9 and MEIS1A
induces acute myeloid leukemia in rats (92, 131). In breast
cancer, HOXB7 has been reported as an oncogene because its
upregulation appears to promote the expression of bFGF and
induce the epithelial-mesenchymal transitions (EMT) (15, 27,
34). In colorectal cancer, HOXB5 overexpression mediated by
CXC chemokine ligand 12 facilitates metastasis through
transactivating downstream protein CXCR4 and ITGB3 (134).
HOXB13 seems to be an oncogene for ovarian and prostate
cancer. Its knockout in ovarian cancer cells results in reduced
tumor invasion (45, 65, 71, 138, 141). On the contrary, its
ectopic expression promotes cell proliferation and non-
anchoring. Mutations and growing resistance to tamoxifen-
mediated apoptosis in the cell tumor antigens P53, Myc, and
Ras are included in mouse ovarian cancer cells (43–46). In
addition, HOXB13 overexpression appears to promote invasion
of these types of cancers. In prostate cancer, HOXB13 regulates
the prostate-derived ETS family members and also facilitates
cell invasion (140). As HOXB3 in glioblastoma, its knockout
leads to cancer cell suppression (150). In squamous carcinoma
of the cervix, HOXC10, which is overexpressed and thought to
be an oncogene, is knocked out to reduce invasiveness (6, 19, 29,
61). In colorectal cancer, HOXA13 overexpression mediated by
insulin-like growth factor 1 promotes metastasis through
upregulating downstream targets ATP-citrate lyase and
insulin-like growth factor 1 receptor (133). Ectopic
overexpression of ATP-citrate lyase and insulin-like growth
factor 1 receptor rescues the decreased colorectal cancer
metastasis induced by HOXA13 knockdown (133). HOXC10
overexpression mediated by Interleukin 1b facilitates
hepatocellular carcinoma (HCC) metastasis (29). The above
studies implicate HOX genes as oncogenes and prognostic
biomarkers. Hence, targeting HOX genes’ relevant pathways is
likely to be the promising therapeutic option for clinical cancer
prevention (29).

2.2 Direct Role: As Tumor-Suppressor
Genes
Basing on our review of the literature, we found the expression of
specific HOX genes in cancers tends to vary with tissue type and
tumor sites. Besides, the HOX genes have been found to behave
as tumor-suppressor genes and dedicate to tumor suppression in
several cancers.
October 2021 | Volume 11 | Article 770428
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FIGURE 2 | HOX genes in the hallmarks of cancer. The hallmarks of cancer comprise eight biological capabilities acquired during multistep development of human
tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include acting as tumor suppressor, sustaining
proliferative signaling, regulating epigenetic control, resisting in anti-cancer drugs, evading immune destruction, enabling ncRNA transcription, inducing angiogenesis,
and promoting invasion and metastasis.

Feng et al. HOX Genes in Human Cancer
HOXC8 in nasopharyngeal cancer is silent and its ectopic
expression causes the inhibition of tumor growth (143). In vitro
and in vivo, in addition, HOXA5 is often down-regulated in breast
cancer and appears to mediate apoptosis through p53 or caspases 2
and 8 in normal cells, thus having a tumor-like effect inhibition (50,
121, 122). Downregulation of HOXC9 in infant neuroblastoma
appears to lead to increased cancer cell survival and tumor growth
(5). HOXB1 is also significantly down-regulated in glioma cells, its
knockdown promotes proliferation and invasion, inhibits apoptosis
of cancer cells in vitro, and leads to poor survival (5, 8, 151).

The expression changes of HOXA4, HOXA9, and HOXD10
cause abnormal proliferation and differentiation of colorectal
carcinoma cells and contribute to tumor development (14, 74, 87,
127). In addition, HOXB3 overexpression promotes the
proliferation and invasion of glioblastoma cells, acute myeloid
leukemia, pancreas, prostate, ovarian, and lung cancer (74, 93,
150, 152, 153). Excessive HOXB7 inducing MET in breast cancer
cells also interferes with DNA repair and tamoxifen (136).
HOXA5 down-regulation is discovered in multiple tumors,
Frontiers in Oncology | www.frontiersin.org 4
including liposarcoma, cervical cancer, breast cancer, which
suggests that HOXA5 may be an important tumor suppressor
(21, 51, 84, 123). The promoter methylation and downregulation
of HOXA5 during the epigenetic deregulation decrease RARb-
driven apoptosis mediated by caspase 2 and caspase 8. Therefore,
HOXA5 consumption in breast cells causes a lack of epithelial
cell characteristics as well as an increase of stem cell property and
cellular plasticity, eventually leads to a more aggressive
phenotype (119).

Therefore, the abnormal expression of the HOX genes in
various cancers seems to indicate that random alterations are not
necessary for the health maintenance and survival of cancer cells.
Instead, abnormal expression of specific HOX genes in cancer
seems to play a large part in the development of cancer.

However, HOX genes may show a predisposition. It is up-
regulated or down-regulated in certain tumors, promoting
cancer progression or inhibition in certain cases. Thus, they
can be regarded as oncogenes or tumor suppressor genes, usually
depending on the corresponding tumor microenvironment.
October 2021 | Volume 11 | Article 770428
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2.3 Indirect Role: Epigenetic Control via
HOX Genes
HOX proteins are also involved in chromatin posttranslational
modifications, epigenetically affect the expression of crucial
cancer progression genes. For example, HOXB3 regulates the
expression of DNA methyltransferase, which can add methyl to
the 5 positions of cytosine ring carbon in CpG dinucleotide (93,
152, 153). Therefore, HOX proteins can indirectly regulate the
expression of other genes by controlling the expression of
methyltransferase. Thus, the HOX genes may have an indirect
effect on cancer by controlling the expression of DNA
Frontiers in Oncology | www.frontiersin.org 5
methyltransferase, which seems to be of considerable relevance
to understanding the mechanisms involved in tumorigenesis.

In fact, all cancer progression has common abnormalities, such
as the massive epigenetic silencing of tumor suppressor genes. The
mechanisms behind this phenomenon are remained to be fully
understood. The DNA methyltransferase protein family consists of
DNA methyltransferase (DNMT)-1, DNMT3A, DNMT3B, and
DNMT3L (154). The last is associated with de novo methylation
of DNMT3A/B, which is required during embryonic development,
imprinting, and X chromosome inactivation. DNMT1 maintains
the DNA methylation profile of the genome during each cell
TABLE 1 | Targets identified for HOX factors in human cancer.

HOX
protein

Role Interference Cancer type Year Reference

HOXA1 Oncogene Sequester G9a/EZH2/Dnmts, sponge miR-193a-5p, via cyclin D1, via
miR-100

Breast cancer, glioma,
GC, lung cancer

2014,2016,2018 (38, 63, 97, 116)

HOXA3 Oncogene Upregulate methylation level, promote differentiation to angiogenesis,
confer cisplatin resistance

NSCLC, PTC, blood 2011,2019 (13, 117, 118)

HOXA4 Tumor
suppressor

Downregulate b-catenin, Cyclin D1, c-Myc and survivin, indicate inhibition
of Wnt signaling, upregulate GSK3b

Lung cancer, ovarian
carcinoma

2009,2018 (14, 74, 79)

HOXA5 Tumor
suppressor

Induce apoptosis mechanism mediated by cas2 and cas8; regulate E-
cadherin and CD24; methylate promoter region & limit p53 expression

Breast cancer,
mammary cancer,
cervical cancer

2015-2021 (9, 21, 39–41, 50,
51, 80, 84, 119–

126)
HOXA6 Oncogene Coexpress with PBX2 GC, CRC, leukemia 2021 (55)
HOXA7 Oncogene Combine to Snail promoter, cyclin E1/CDK2, activate Snail Cervical cancer, HCC 2016,2020 (25, 81)
HOXA9 Oncogene Pioneer factor at de novo enhancers and recruit CEBPa & MLL3/MLL4

complex, regulate BRCA1, activate JAK/STAT, induce 1GF1R
expression

Pancreatic cancer,
leukemia, NSCLC

2017-2020 (75, 77, 86–90, 92,
94, 127–132)

HOXA10 Oncogene Suppress FASN transcription by forming a protein complex with AR and
prevent AR recruitment to FASN gene promoter, hinder mir195

Prostate cancer,
testicular cancer,
HNSCC

2020 (35)

HOXA11 Oncogene LncRNA HOXA11-AS recruit EZH2 along with the histone demethylase
LSD1 or DNMT1

GC, LUAD, renal cancer 2016,2017,2018 (56, 57)

HOXA13 Oncogene IGF-1 CRC, GC 2021 (133)
HOXB4 Tumor

suppressor
Downregulate activity of Wnt/b-catenin signaling pathway, downregulate
P-gp, MRP1 and BCRP expression

Cervical cancer,
leukemia

2016,2021 (82, 91)

HOXB5 Oncogene Transactivate CXCR4, ITGB3, FGFR4, CXCL1 HCC, CRC, breast
cancer, HNSCC, GC

2015,2021 (26, 42, 134)

HOXB7 Oncogene Reprogram to iPSC with comparable efficiency to LIN28B or c-MYC,
activate TGFb signaling pathway

Lung cancer, GC 2016,2018 (15, 27, 34, 58,
135, 136)

HOXB8 Oncogene Instigate BACH1-mediated transcriptional cascade, viaZEB2 targets GC, CRC 2017,2020 (59, 137)
HOXB13 Tumor

suppressor
Suppress C-Myc expression to exert antitumor effects via b-catenin/
TCF4 signals, network with ABCG1/EZH2/Slug

Colon cancer, lung
cancer, prostate cancer

2015-2019 (16, 43–46, 60,
65–68, 138–141)

HOXC6 Prognosis
marker,
oncogene

Enhance BCL2-mediated antiapoptotic effects, drive MET Prostate cancer, cervical
cancer,HCC

2019 (28, 69, 83)

HOXC8 Oncogene Upregulate TGFb1, repress LMP1 NSCLC, TNBC 2018 (17, 47, 48, 142,
143)

HOXC9 Oncogene Mediate autophagy, via mir-495/HOXC9 axis, promote multi-
chemoresistance

Bladder cancer,
neuroblastoma, NSCLC

2011,2015,2016 (4, 5, 32)

HOXC10 Oncogene Via upregulating PDPK1, VASP, EMT, promote angiogenesis, induce
immunosuppressive gene

HCC, lung cancer,
ovarian cancer

2014-2020 (6, 7, 19, 29, 49,
61, 144, 145)

HOXC13 Oncogene Modulate CCND1 & CCNE1 Lung adenocarcinoma 2017 (20)
HOXD3 Tumor

suppressor
Inhibit HDAC1 via ITGA2 pathway & MAPK/AKT signaling HCC, CRC 2019,2020 (146, 147)

HOXD8 Oncogene Enhance LINC01116 contribution to progression of BCa via targeting
ELK3 & HOXD8

Bladder cancer 2020 (33)

HOXD9 Oncogene Transactivate RUFY3 & ZEB1, promote MET GC, HCC 2015,2019 (30, 62)
HOXD10 Tumor

suppressor
Inhibit RHOC/AKT/MAPK pathway, upregulate mir-10b CRC 2019 (76, 148)

HOXD13 Tumor
suppressor

Inhibit SMAD1, suppress BMP4 Prostate cancer 2021 (70)
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division. DNMT3A and DNMT3B can actively add de novomethyl
to DNA sequences to control gene expression and play a key role in
cancer progression.

Palakurthy has shown that DNMT3B is the target of HOXB3
protein and is involved in the epigenetic regulation of tumor
suppressor gene RASSF1A in lung adenocarcinoma and other
cancers (153). HOXB3 also directly interacts with DNMT3B to
promote the occurrence of leukemia in acute myeloid leukemia.

In addition, HOX genes may also play a role in post-
translational modification of chromatin and affect gene
expression. For instance, Heinonen has shown that HOXB7
can directly bind to chromodomain protein Y-like and
enhance the histone methyltransferase activity of Polycomb
Complex 2 and induce gene silencing as typical for
trimethylate lysine 27 of histone H3 (155).

2.4 Tumor Proliferation, Invasion,
and Metastasis
Proliferation phenotype has been found in various HOX-related
researches, especially in leukemia, where HOX upregulated
expression is often resulted from translocation mutations or
altered regulation in the trithorax homologue myeloid-
lymphoid leukemia (112). Invasion and metastasis phenotypes
caused by abnormal HOX gene expression have been mostly
studied in solid tumors, where HOX gene deregulation is usually
due to loss-of-function mutations or gain-of-function mutations,
or undefined mutations in upstream regulators.

In recent work, HOXC13 promotes cell proliferation by
modulating the expression of cyclin D1 and cyclin E1 in lung
adenocarcinoma. HOXA5 inhibits cell proliferation by
regulating p53 expression in liposarcomas and p21 in non-
small lung cancers (20, 63, 84, 120). Although HOXB13
overexpression promotes prostate cancer metastasis by
downregulating intracellular zinc and upregulating NF-kappaB
signaling pathways, HOXB13 consumption promotes
proliferation of PC-3 and LNCaP cells by controlling G1/S and
G2/M checkpoints (16, 60, 67, 138, 141).

HOX proteins affect cell cycle process by regulating cell cycle-
related proteins (156), thus also affect proliferation and apoptosis
in cancer progression. Growing evidence is noticeable that many
HOX transcription factors are abnormally expressed in cancer,
and their dysregulation significantly promotes tumor invasion
and metastasis.

HOXD9 interacts with the promoter region of zinc-finger E-
box binding homeobox (ZEB)-1, inhibition of ZEB1 induced by
HOXD9 suppresses HCC cell migration, invasion as well as EMT
(30). In addition, according to microarray analysis, ZEB2 may be
a downstream cofactor of HOXB8 (59). Patients enrolled in
studies have shown that high HOXB13 expression promotes the
progression of lung adenocarcinoma and predicts poor
prognosis (16).

In epithelial ovarian cancer cells, HOXA9 not only promotes
the growth of epithelial ovarian cancer cells in vivo by activating
transcriptional activity of the gene encoding transforming
growth factor b (TGFb)-2, but also binds to the promoter of
the cadherin3 gene that encodes P-cadherin to induce
Frontiers in Oncology | www.frontiersin.org 6
intraperitoneal dissemination (77, 94). Many reports suggest
the temporospatial deregulation of HOXA9 is associated with
primary tumors and specific histological subtypes. HOXA9 is of
therapeutic potency, while the potency is limited by the low
membrane permeability.

2.5 Angiogenesis
Angiogenesis is an important link during tumor progression.
HOX proteins affect angiogenesis mainly by regulating VEGF
expression (7). For example, HOXC10 level is statistically
correlated with VEGFA expression in gliomas. HOXC10
upregulates VEGFA expression transcriptionally by binding to
its promoter, and the post-translational modification of histones
mediated by protein arginine methyltransferase 5 andWD repeat
domain 5 is required in angiogenesis (7).MiR-203a negatively
targets HOXD3 directly by targeting the VEGFR promoter
region and increases VEGFR expression.

HOX protein expression also plays an important role in
endothelial cells (EC) (146). For instance, HOXA5 is expressed
in static EC but not in activated angiogenic EC. HOXA5
continuously increases the TSP-2 expression and decreases the
VEGF expression, thereby inhibiting histopathological
angiogenesis (124, 125). In addition, HOXA5 is absent in EC
of proliferative hemangioma (9). HOXA5 increases the mRNA
and protein expression of Akt1, further enhances Akt activity by
coordinating the down-regulation of PTEN, thereby increasing
the stability of the capsular patellar junction (126).

2.6 Resistance in Anti-Cancer Drugs
HOX proteins are involved in resistance to the anti-cancer drugs
in cancers, especially in myeloid leukemia, HCC, breast cancer,
and lung cancer. HOX proteins regulate various non-coding
RNAs (ncRNAs) which influence cancer cells chemotherapy
resistance. In particular, we take the example of the role of
HOXB13 in mediating chemotherapy resistance in lung
adenocarcinoma. HOXB13 upregulates a series of drug-transfer
and drug-resistance-related genes by directly binding to their
promoters and forming the cisplatin-HOXB13-ABCG1/EZH2/
Slug network, including ATP Binding Cassette Subfamily G
Member 1, Enhancer Of Zeste 2 Polycomb Repressive Complex
2, and Slug (16, 139). Levels of HOXB13 and its target genes may
help predict sensitivity of platinum-based chemotherapy in lung
adenocarcinoma patients (16).

2.7 HOX-Mediated Molecular Crosstalk
During Tumorigenesis
2.7.1 Post-Translational Modifications
A variety of signaling pathways that regulate proliferation,
apoptosis, differentiation, movement, and angiogenesis, interact
with HOX transcription factors family. Post-translational
modifications of HOX protein also play a key role in
tumorigenesis. HOX post-translational modifications are an
under-valued project. In most eukaryotic proteins, the turn-over,
intracellular localization, molecular interactions and activity are
modulated by post-translational modifications. The post-
translational modifications of HOX proteins in cancer mainly
October 2021 | Volume 11 | Article 770428
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contributes to the modulation of protein stability, DNA binding,
transcriptional activator-like effectors interaction, transcriptional
activation capacity, unidentified cellular impact (157).

2.7.2 MicroRNA and Non-Coding RNA
Of the 39 HOX genes, 30 HOX genes contain more than one
conserved nucleotide sequences that are expected to be targets of
miRNAs in vertebrate (2). We found that the HOX targeting
genes are mainly located on the 3’ side of each HOX miRNA site.
This study shows that HOX miRNAs help inhibiting abundant
pre-gene expression, hence enhancing the prevalence of post-
genes. In patients with gastrointestinal stromal tumors, the level
of miRNA196a is positively related to higher tumor histologic
grade, higher recurrence rate, and lower survival rate (64).

In addition, HOX transcribed antisense RNA (HOTAIR) also
contributes to HOX expression regulation. HOTAIR is a 2.2-
kilobase long non-coding RNA that is transcribed from the
antisense strand of HOXC clusters, and its function is to inhibit
the transcription of 40 kilobases of HOXD clusters (158, 159). The
mechanism of action of these long non-coding RNAs has not been
fully determined. However, HOTAIR has been shown to regulate
chromatin state and kinetics by binding to specific chromatin
modification complexes. The trimethylation of histone H3 lysine
27 at the HOXD site requires HOTAIR/PRC2 interactions.
Knocking out HOTAIR activates HOXD gene transcriptional
activity on human chromosome 2 (158, 160, 161). Thus, it is
possible to modulate the HOXD gene by modulating HOTAIR
levels, which has implications in cancer therapy. For example, the
expression of HOTAIR is closely related to the neoplasm staging
and poor prognosis of glioma. Reducing HOTAIR expression
induces inhibition of colony formation, G0/G1 cell cycle arrest,
and inhibition of tumor growth in situ (10). Thus, HOTAIR seems
to serve as a prognostic factor for survival, as well as a biomarker for
identifying molecular subtypes in cancer (162).

Recent evidence underscored the function of long noncoding
RNAs (lncRNAs)-driven hepatocarcinogenesis. The expression
level of lncRNA HOXA transcript at the distal tip (HOTTIP) and
HOXA13 is associated with metastasis and survival in HCC
patients. It indicates the prospective potency of HOTTIP and
HOXA13 to be the predictive biomarker in HCC (163).

Summing up the above, we highlight the specific roles of
miRNAs and lncRNAs in human cancer. They perform not only
as the intermediary between DNA and protein, including
chromosome remodeling, transcription, and post-transcriptional
processing, but as leading characters in body balance adjustment
during congenic malformation, oncogenesis, metabolic processes,
and deregulation of cell cycle (164).
3 HOX TRANSCRIPTION FACTORS AS
THERAPEUTIC TARGETS

3.1 HOX Genes Act as a Key Intermediate
Point in the Anti-Cancer Progression
HOX proteins interact with specific cofactors to select their
downstream binding sites in the genome. In vertebrates, those
Frontiers in Oncology | www.frontiersin.org 7
including pre-B cell leukemia transcription factor (PBX) and
mouse heterotopic integration, belong to the tricarboxylic acid
cycle family of homologous domain protein. In addition, these
HOX cofactors can increase the nuclear translocation of HOX
protein from the cytoplasm to the nucleus. Nuclear translocation
of HOX protein is inhibited by suppressing the formation of
HOX/PBX dimer, which impairs the function of HOX transcript
factors (165). Therefore, considering the use of HOX protein as
cancer therapeutic targets, its interaction with cofactors needs to
be determined. Therapeutic values of HOX factors in human
cancer are seen in Table 2 (4, 7, 13, 14, 17, 18, 22, 23, 25–27, 29,
31, 32, 35, 41, 45, 56, 57, 68, 71, 72, 81, 82, 84, 87, 88, 90, 97, 116,
117, 127, 128, 132–135, 137, 141, 147, 148, 153, 166, 167).

Morgan et al. have found HXR9 peptides specifically target the
interaction between HOX and PBX (78, 168). HXR9 inhibits HOX
function by preventing its binding to PBX, which leads to apoptosis
in multiple mouse breast cancer derived cell lines (168). In addition,
the interaction between HOX and HXR9 has been shown to cause
apoptosis in numerous cancers, including melanoma,
mesothelioma, myeloma, renal cancer, prostate cancer, lung
cancer, ovarian cancer, pancreatic cancer, squamous cell cancer of
the head and neck, and oral cancer (58, 78, 95, 98, 168). Kaspar and
Reichert have already used HOX/HXR9-based treatments in cancer
treatments, andMorgan and others are exploring a variant of HXR9
for intratumoral injection in clinical trials (168). The HOX gene
targeting therapy is also being explored through RNA interference
approaches (158). For example, MicroRNAs transcribed in HOX
clusters, namely miR10A32 and miR196B33, regulate HOX
expression through RNA interference (158). These miRNAs
cleave or inhibit the translation of HOX mRNA. The use of these
miRNAs in cancer cells in vitro seems to modulate HOX gene
expression and its effect on cancer progression.

In fact, HOTAIR has the potential to be an effective therapeutic
target for many types of cancer, where abnormal HOXD expression
has been found to be associated with cancer progressions, such as
cancers in breast, stomach, colon, cervix, lung, and liver (11, 12, 24,
36, 52–54, 158, 159, 169, 170). For example, HOTAIR is highly
expressed in cervical cancer compared to normal cells (158, 159,
169). However, its knockout in cervical carcinoma cells induces
apoptosis and inhibits tumor proliferation, migration, and invasion.
3.2 HOX Genes as Therapeutic Targets
Previous studies have shown that HOX protein exerts
carcinogenic activity not only through its reversed transcription
ability but through its protein interaction network.

When designing domain-specific HOX inhibitors, gene
targeting must be taken into account. The problem in bringing
monoclonal antibodies into clinical therapies is their nuclear
localization. To address the above issue, the focus of next-
generation immunotherapies is to develop smaller monoclonal
antibody fragments or totally new entities to improve tissue
permeability and subcellular localization. These crucial
immunotherapeutic strategies are also focused on addressing
the treatment of hematologic tumors and solid tumors.

Since HOX protein is closely linked to brain malignancies
where the blood brain barrier is a major challenge for drug
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Feng et al. HOX Genes in Human Cancer
TABLE 2 | Therapeutic values of HOX factors in human cancer.

Gene Down regulation
effects

Downstream
regulated molecules

or pathways

Upstream regulatory
molecules

Tumor x cell
lines x normal

tissues

Related targeting
molecules

Intervention
therapy

Clinical trial
number &
Reference

HOXA1 Proliferation,
migration, invasion,
metastasis

Wiping out epigenetic
silencing of HOXA1

HOTAIRM, G9a, EZH2 GBM Histone modification of
H3K9, H3K27

/ (116)

HOXA1 Metastasis, invasion MITF TGF-b Melanoma TGF-b signaling / (97)
HOXA1 Chemoresistance(up) / MiR-100 SCLC HOXA1 / (22)
HOXA3 Occurrence,

development
/ HOXA-AS2, miR-15a-

5p
PTCC HOXA-AS2/miR-15a-5p/

HOXA3 axis
/ (118)

HOXA3 Chemoresistance EMT& Cisplatin
resistance

HOXA-A3 NSCLC HOXA-A3 / (13)

HOXA4 Growth, migration,
invasion

b-catenin, cyclin D1, c-
Myc, survivin

GSK3b Lung cancer GSK3b LiCI (14)

HOXA5 Angiogenesis / MiR-130-3p HCC SP1/MiR-130-3p/HOXA5 SP1 inhibitor (22)
HOXA5 Growth, migration,

invasion
CAF Exosomal miR-181d-

5p
Breast cancer HOXA5/CDX2 / (41)

HOXA5 Arresting cell cycle TP53, P21 Binding to TAAT motif
within promoter of
TP53

Cervical cancer Wnt/b-catenin / (84)

HOXA7 Migration, invasion Snail / HCC HOXA7/Snail / (25)
HOXA7 Proliferation, invasion / CircSLC26A4 Cervical cancer QKI/circSLC26A4/miR-

1287-5p/HOXA7 axis
/ (81)

HOXA9 Leukemogenesis STAT5, AP1 JAK3/STAT5 Leukemia Mutant JAK/STAT/
HOXA9

PIM1 kinase (88)

HOXA9 Leukemogenesis CEBPa, MLL3, MLL4 HOXA9/Meis Leukemia Histone H3K4 methylation / (128)
HOXA9 Leukemogenesis Meis, Syk MiR-146a Leukemia HOXA9/Meis/Syk

feedback loop
/ (87)

HOXA9 Leukemogenesis Erg Trib1 Leukemia HOXA9/Trib1/Erg JQ1 (90)
HOXA9 Regulating glucose

metabolism
reengineering

HIF1a, HK2, GLUT1,
PDK1

Onco-miR-365 CSCC MiR-365-HOXA9-HIF1a
axis

/ (127)

HOXA9 Tumor aggression HOXA9 BRCA1 Breast cancer / / (132)
HOXA10 Tumor aggression HOXA10, CCSCs LINC00355/miR-195 HNSCC LINC00355 / (35)
HOXA11 Proliferation, cell-cell

adhesion pathway
LncRNA HOXA11-AS,
LSD1

EZH2 GC EZH2/HOXA11-AS/LSD,
HOXA11-AS/miR1297/
EZH2

/ (56)

HOXA11 Metastasis, invasion b-catenin, P21, KLF2 WDR5/EZH2/STAU1 GC HOXA11-AS / (57)
HOXA13 Metastasis ACLY, IGF1R IGF1 CRC IGF1R/ACLY Linsitinib/

ETC-1002
(133,
NCT01154335,
NCT01016860)

HOXB3 Tumor aggression RASSFIA, DNMT3B POL2 Lung
adenocarcinoma

RASSFIA RASSFIA
epigenetic
silencing

(153)

HOXB3 Tumor aggression CDCA3 / Primary prostate
cancer/PC-3/
LNCaP

HOXB3 / (72)

HOXB4 Arresting cell cycle b-catenin, TCF, c-Myc / Cervical cancer Wnt/b-catenin / (82)
HOXB5 Metastasis ITGB3, CXCR4 CXCL12 CRC CXCR4 AMD3100 (134,

NCT02179970)
HOXB5 Metastasis CXCL1, FGFR4 FGF19 HCC FGFR4 BLU-554 (26,

NCT02508467,
CT04194801)

HOXB7 Metastasis TGFb2, SMADS / Breast cancer MET / (135)
HOXB7 Metastasis c-Myc, Slug / HCC MET / (27)
HOXB8 Invasiveness BACH1 / CRC / / (137)
HOXB9 Angiogenesis IL-6, VEGF / Colorectal cancer VEGF Bevacizumab (166)
HOXB9 Migration, tumor

growth
JMJD6 Ack27 Lung

adenocarcinoma
Ack27-HOXB9 / (23)

HOXB9 Migration, tumor
growth

EZH2 Ack27-HOXB9 Clone cancer Ratio of Ack27-HOXB9/
HOXB9

/ (167)

HOXB13 Tumor aggression / / Prostate cancer HOXB13, G84E variant / (71)
HOXB13 Metastasis RFX6 Rs339331 at 6q22 Prostate cancer RFX6 / (68)

(Continued)
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infiltration, this provides instructive thinking of treatment.
Another strategy for targeting oncogenes in cancer cells is to
use small interfering RNAs (siRNAs) (171). Many studies have
shown inhibition of HOX expression by siRNAs can distinctly
retard tumor growth and aggressiveness. Similarly, the use of
siRNA strategies may be an effective therapeutic approach for
targeting HOX genes in vivo.

Although the strategy is not as progressive as small molecular
chemical compound inhibitors or monoclonal antibodies, efforts
have been made over the past decade to implement it in cancer
treatment. At present, poor uptake of cells, side effects of
packaging-related methods are major obstacles to HOX
targeting clinical application. As a result, current efforts are
made to address a range of novel strategies for delivering
siRNAs in vivo.

The small-molecule chemical inhibitors are of anticancer
potential. We highlight the recent therapies targeting HOX
genes-downstream proteins especially in HCC and colorectal
cancer. Overexpression of HOXB5 transactivates downstream
protein expression of FGFR4 and CXCL1, hence promoting
HCC metastasis. The small chemical compounds application of
FGFR4 inhibitor BLU-554 and CXCR2 inhibitor SB265610
sharply inhibits HCC metastasis mediated by HOXB5 (26).
Integrins are also involved in HOX-induced cancer metastasis.
In CAOV-3 cells, HOXA4 overexpression inhibited migration
and increased the protein level of b1 integrin, suggesting that the
b1 integrin may be involved in HOXA4’s inhibitory effect on cell
motility (79). In HOXC10-VASP/IL-1R1 mediated HCC
metastasis, daily administration of IL-1R1 antagonist anakinra
dramatically prolongs survival time (29). In colorectal cancer, the
molecule network IGF1-HOXA13-ACLY/IGF1R and CXCL12-
HOXB5-CXCR4/ITGB3, targeted blocking the downstream
protein with small molecular compounds serves as a promising
anticancer therapy (133, 134).
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Furthermore, natural and synthetic drugs regulating HOX genes
network are associated with anticancer and antibacterial activities.
For instance, researchers synthesized the new molecule 5H-pyrido
[3,2-a] phenoxazine-5-one in the laboratory, evaluated its ability to
regulate the activity of lncRNA HOTAIR and HOXC locus genes
from HOXC9 to HOXC13 in MCF-7 human breast cancer cell
lines, and confirmed that 5H-pyrido[3,2-a] phenoxazine-5-one was
able to inhibit the relevant HOX gene expression and counteract the
pathogenesis of breast cancer (172).

The discovery of targeting downstream molecules with
chemical compounds has enhanced the potential to specifically
target HOX genes intermediated network and eliminate the
cancer development, which may improve clinical outcomes
in cancers.
4 CONCLUSION

Although it is difficult to intercept various transcription factors,
alternative strategies based on the exploitation of the associated
molecular networks are emerging. The HOX genes play an
important role in cancer progression, showing great plasticity and
interfering with many molecular mechanisms. Abnormal HOX
expression by altering its homologous box methylation profile, is
often associated with cancer. In addition, different HOX gene
regulatory features describe different cancer types and are
increasingly being used as cancer biomarkers. Their role in cancer
progression is based on the ability to control gene expression either
directly as transcriptional regulators or indirectly through epigenetic
control. In fact, HOX proteins have been shown to be involved in
different epigenetic mechanisms involved in DNA and histone
methylation, which may be related to the epigenetic regulation of
multiple cancer related genes. Therefore, it is very important to seek
pharmacological agents that are synthetically lethal in conjunction
TABLE 2 | Continued

Gene Down regulation
effects

Downstream
regulated molecules

or pathways

Upstream regulatory
molecules

Tumor x cell
lines x normal

tissues

Related targeting
molecules

Intervention
therapy

Clinical trial
number &
Reference

HOXB13 Tamoxifen resistance
of breast cancer

IL-6 HBXIP Breast cancer HBXIP Aspirin (45)

HOXB13 Tumor aggression b-catenin, TCF4, c-
Myc

DNMT3B RCC DNMT3B-HOXB13-c-Myc
axis

/ (141)

HOXC8 Cisplatin
chemoresistance,
anti-apoptosis

TGFb1 / NSCLC HOXC8 / (17)

HOXC9 Proliferation,
migration

DAPK1-beclin1 / Glioblastoma HOXC9/autophagy / (4)

HOXC9 Chemoresistance SRSF2, PLAU, HIC2 MiR-193a-3p Bladder cancer MiR-193a-3p/HOXC9/
DNA damage

/ (32)

HOXC10 Aberrant expression HOXC10 PRC2 NSCLC Kras-mutant/HOXC10 BET/MEK
inhibitor

(18)

HOXC10 Angiogenesis VEGFA / Gliomas HOXC10/VEGFA Bevacizumab (7)
HOXC10 Invasiveness VASP, PDPK1 IL1b HCC IL1R1 Anakinra (29)
HOXD3 Tumor aggression Integrinb3 HOXD-AS1 CRC HOXD-AS1-HOXD3-

integrinb3
/ (147)

HOXD10 Invasion Snail, Slug, MMP2,
MMP9, MMP14, E-
cadherin

MiR-23a Gliblastoma MiR-23a/HOXD10 / (148)
October 2
021 | Volume 1
1 | Article 770428

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Feng et al. HOX Genes in Human Cancer
with HOX overexpression. Therapies targeting HOX molecules
should intake the functional redundancy among the different
HOX family members, so that appropriate therapeutic
combination can be created. There is an urgent need for a more
comprehensive understanding of their biology, and identifying their
gene targets andmolecular networks involved in tumor progression.
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