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As a central cellular program to sense and transduce stress signals, the integrated stress
response (ISR) pathway has been implicated in cancer initiation and progression.
Depending on the genetic mutation landscape, cellular context, and differentiation
states, there are emerging pieces of evidence showing that blockage of the ISR can
selectively and effectively shift the balance of cancer cells toward apoptosis, rendering the
ISR a promising target in cancer therapy. Going beyond its pro-survival functions, the ISR
can also influence metastasis, especially via proteostasis-independent mechanisms. In
particular, ISR can modulate metastasis via transcriptional reprogramming, in the help of
essential transcription factors. In this review, we summarized the current understandings
of ISR in cancer metastasis from the perspective of transcriptional regulation.
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INTRODUCTION

Development of secondary lesions in organs or tissues that are physically disconnected with the
original primary cancer is termed metastasis. As a systemic disease, metastasis requires cancer cells
to leave their primary organ, circulate in the bloodstream, endure the pressure of the vasculature,
adapt to the new microenvironment in a secondary site, survive the hostile battle against immune
cells, and finally repopulate in the new organ (1). Once developed and flourished, metastasis is
usually irresistible and life-threatening (2). Despite the advances in the basic and clinical research of
cancer, the vast majority of patients suffering metastatic diseases invariably confront a terminal
illness that is incurable by current therapeutic approaches. Metastasis is the cause of 90% of deaths
from solid tumors (3). In contrast to the large body of findings that have revealed the detailed
pathogenetic mechanisms leading to formation of primary tumors, the biological mysteries of
metastatic disease remain poorly understood. Unlike the well-documented principles that can well
define the uncontrolled growth of tumors, relatively few mechanisms have emerged that would fully
explain how diverse types of metastases arise and how similar or different each may be relative to the
behavior of its corresponding primary tumor. Key oncogenes and tumor suppressors have been
discovered and appreciated in the development of primary tumors (4, 5), yet few, if any, metastasis-
specific gene mutations or genomic disorders have been identified and functionally validated (6–8).

The integrated stress response (ISR) is a conserved network of signaling pathways that helps the
organism to adapt to an ever-changing environment and maintain the integrity and health of the
host (9, 10). In response to a variety of environmental and pathological conditions, including
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nutrient deprivation, oxidative stress, heat shock, protein
homeostasis defects, and viral infection, the ISR copes these
hostile stimuli and restores the cellular balance by
reprogramming gene expression and protein translation (11–
13). It has also been demonstrated that the ISR can be triggered
by oncogene activation during tumorigenesis in human cancers.
Invariably, these various stresses are sensed by four cellular
kinases, including PERK, GCN2, PKR, and HRI, that can
converge to phosphorylate a single serine on eIF2 (eukaryotic
translation initiation factor 2) (14, 15). Upon phosphorylation,
p-eIF2 can reduce protein synthesis by blocking the function of
eIF2’s guanine nucleotide exchange factor termed eIF2B.
Interestingly however, while shutting down the production of
most proteins, p-eIF2 promotes the translation of certain specific
mRNAs, including key transcription factors, such as ATF4. It has
been well-documented that these mRNAs contain inhibitory
ORFs in their 5’-UTRs that can inhibit translation initiation at
their canonical translation start sites (16). Through a
simultaneous down-regulation of general translation and up-
regulation of the synthesis of particular proteins that can reset
gene transcription, the ISR aims to rebuild homeostasis in order
to maintain the integrity of the host. However, if the stresses are
too severe to be managed or resolved, the ISR can eliminate the
damaged cells by executing programmed cell death.
BIOLOGICAL CASCADES OF METASTASIS

The formation of clinically detectable metastasis is the ultimate,
end result of a series of stochastic events that first allow cancer
cells to disperse and survive in distant sites and later to grow as
secondary tumors. The sequence of metastasis steps starts with
the departure of cancer cells from the primary tumor and ends in
the formation of clinically detectable macro-metastases in the
target organs. Apparently, this is a multi-step, long-term
adventure for cancer cells. In general, it comprises steps of
local invasion (or so called invasive transition), entry into the
circulation, travel along the vasculature, arrest at secondary sites,
extravasation, and colonization (metastatic outgrowth) (17).

Invasion represents the very first step and a pre-requisite to
metastatic dissemination. Cancer cells are required to take a
plastic phenotype to complete an invasive transition. A diverse
set of factors and molecular circuits can equip the cancer cells of
plasticity and trigger this transition. Originally discovered as an
essential transdifferentiation program in development and tissue
repair, epithelial-mesenchymal transition (EMT) is known as the
key mechanism in promotion of cancer invasion. While cancer
cells at the boarder of cancer-normal tissue can invade in a
single-cell migration or collective migration manner, they usually
display a mesenchymally transdifferentiated cell state, or at least
a partial (hybrid) EMT (18). In addition to EMT, an
inflammatory microenvironment, or a systemic inflammatory
response, can also trigger the invasive transition of otherwise
stationary cancer cells in the primary organ (19). Related to this,
certain types of normal cells within the microenvironment, for
example, cancer-associated fibroblast (CAF), can be co-opted,
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or educated, by the cancer cells to promote cancer cell invasion
(20, 21).

Dissemination comes after invasion. After entering into the
bloodstream, tumor cells must circulate and survive the hostile
environment before they can extravasate and form secondary
tumors. Circulating tumor cells (CTCs) represent an intermediate
stage of metastasis (22). While some CTCs passively enter the
bloodstream, CTCs derived fromactively invading cells acquire key
properties required for metastatic spread while still facing
significant subsequent barriers to generate a metastatic lesion.
CTCs can circulate as single cells or cell clusters, with the latter
appearing to have increased metastatic potential (23). Most CTCs
die in the circulation, likely from a combination of physical stress,
oxidative stress, anoikis, and the lack of growth factors and
cytokines. To survive, CTCs must actively extravasate into the
surrounding tissue or, in a more passive manner, become clogged
or lodged in a capillary bed.

Once the cancer cells exit the bloodstream, they may begin to
divide and attempt to complete the last step of metastasis,
colonization. Colonization can be divided into steps: formation of
micro-metastasis, latency in thedistantorgan, re-activationofgrowth
in the latentmicro-metastases, andafinal, life-threatening, aggressive
overtaking of the target tissue (24). In most cases, the disseminated
tumor cells may reach an equilibrium between active proliferation
andcell death thatprevents their outgrowth, andfinally eliminatedby
the host immune system. Only very few of them can enter the
dormancy but appear to retain the ability to ultimately grow into a
detectable metastatic lesion. To progress to this final step, it requires
several specialized functions including cancer cell-autonomous
functions and the cooption of various components of the target
tissue stroma (24).
STRESSES IN THE METASTATIC
CASCADES

Metastasis is a highly inefficient process. Over a million cancer
cells can be released by the primary lesion into the circulation
every day, but only a very minor portion of them is capable of
colonizing a distant organ, even fewer can flourish into clinical
detectable macro-metastasis (25). For long, this phenomenon is
explained by the concept that metastasis emerges from the
somatic evolution of a genetically diversified cancer cell
population under selective pressures (1). In another word, it
suggests that metastasis is similar, at least phenotypically, to an
evolutionary process that enlists selection of genetically
heterogeneous lineages of cancer cells. However, the recent
efforts of genomic sequencing of metastatic lesions, as well as
their counterparts at the primary sites, did not reveal metastasis-
specific genes that can drive or sustain metastatic outgrowth (6).
While the evidence of selection during metastasis is obvious, the
cellular mechanism underlying the selection is unclear.

The metastatic cascade progresses in biological environment
that is drastically different than where it initiates at the first place.
Therefore, metastatic tumor cells will inevitably encounter
numerous stresses that force them to develop circuits or
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pathways to obtain improved aptness along the metastatic
marathon. It has been proposed that instead of behaving as
traditional driver oncogenes, the so-called “metastasis
adaptiveness genes” can increase the metastatic potential and
successful rates by relieving stresses that are not encountered in
physiological conditions (26). Thus, only a small subset of cancer
cells that are capable of adapting to the hostile, stressful
metastatic cascade can complete the whole process and develop
into macro-metastasis. Going beyond their functions in anti-
stress, some stress response pathways can directly drive
metastasis by increasing cell mobility, invasion, and additional
functions related to metastatic outgrowth. It is increasingly
appreciated that metastasis can be steered by the mechanisms
that tumor develop to cope with the stresses that they encounter
in the metastatic cascade. In this review, we will primarily focus
on one the major stress response pathway, the integrated stress
response (ISR) pathway.
MECHANISMS OF ISR ACTIVATION

The ISR responds to a variety of different stress conditions that
interfere with the cellular homeostasis (Figure 1) (27). So far,
these stresses are sensed, processed, and transduced by four
different kinases that phosphorylate Ser51 of eIF2a to activate
the ISR. In both yeast and mammalian cells, the ancestral kinase
GCN2 responds to amino acid deprivation, whereas in
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metazoans the repertoire of kinases expands to include PERK,
HRI, and PKR. All four kinases contain both conserved kinase
domains and divergent regulatory domains that enable them to
respond to different stimuli (27). Stress signals sensed by the
regulatory domains cause kinase activation by dimerization and
trans-autophosphorylation (28, 29). When extracellular amino
acids are deprived or low, intracellular deacylated His-tRNA will
increase and subsequently bind and activate GCN2. GCN2 can
also be activated by other stresses, including serum starvation
and oxidative stress (30). PERK is a transmembrane protein
locating on the ER membrane, and mediates UPR (28). In
specific, the N-terminal domain of the PERK protein resides in
the ER lumen and associates with the chaperone protein BiP.
During ER stress, the accumulated misfolded/unfolded protein
can replace BiP and directly activate PERK by binding to its ER
luminal domain. PKR contains a double-stranded RNA (dsRNA)
binding domain, therefore viral dsRNA and secondary structures
resembling dsRNA on mRNAs can directly activate PKR (31).
HRI contains an N-terminal heme-binding domain so that a low
level of heme can directly trigger the activation of HRI. For long
HRI was considered a specialized protein in erythroid cells and
mainly involving in hemoglobin synthesis (32). Recent studies
suggest that HRI is actually widely expressed in several cell types
other than red blood cells, and responds to multiple other forms
of stresses, such as oxidative and mitochondrial stress (33, 34).
Therefore, the mechanism of ISR activation appears increasing
complex and intertwined.
FIGURE 1 | Integrated stress response signaling, from a metastasis perspective. ER stress, viral infection, amino acid deprivation, and heme deficiency activate
PERK, PKR, GCN2 and HRI, respectively. These four kinases converge on phosphorylation of eIF2a, an initiation factor of protein synthesis, which leads to global
translation attenuation but promotes the translation of certain specific mRNAs, including ATF4. The PERK-ATF4 pathway is involved in oxidative resistance in two
manners. On one hand, PERK directly phosphorylates Nrf2, causing the latter to disassociate with Keap1 and translocate into the nucleus. On the other hand, ATF4
directly drive Nrf2 transcription. Nuclear accumulation of Nrf2 triggers the transcription of redox homeostasis genes, including HO-1. ATF4 also enhances CREB3L1
transcription to promote cancer cell migration and invasion. However, ATF3, another target of ATF4, usually represses cell migration and invasion. In addition,
LncRNA MALAT1 is a target of ATF4, which is critical for extravasation and subsequent outgrowth of cancer cells. MiR-708 can be up-regulated by CHOP, a
downstream target of ATF4.
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ISR, PROTEIN TRANSLATION, ANDCANCER

The link between ISR and cancer has been long appreciated. Not
surprisingly, as a pathological process, which inevitably interferes
with normal homeostasis, cancer development enlists a great
number of different types of stresses. Oncogene activation,
including cancer-specific mutation or overexpression, could
elicit stresses on transformed cells that normal cells usually do
not encounter. For instance, mutations in tumor suppressor
genes, such as PTEN, or the over-production of oncogenes,
such as c-MYC, results in increased protein synthesis, which
can saturate the proteostasis machinery and activate the ISR (35,
36). For virus-related tumors, such as liver and cervical cancers,
chronic viral infection can be sensed by PKR and activates ISR
(37). During tumor expansion, nutrient deficiency is a major
hurdle that constrains the uncontrolled growth of tumors. ISR is
activated upon nutrient deprivation and could be pro-survival
and pro-apoptotic for cancer cells (27). In addition, the balance
between oxidation and reduction of cancer cells usually goes
awry, leading to cellular stresses including oxidative stress,
unfolded protein stress, and mitochondrial stress (38). These
stresses will converge to activate ISR and, in turn, greatly
influence tumor development.

Aberrant cell survival and reduced cell death are hallmarks of
cancer cell. For long, the role of ISR in cancer development has
been largely linked to and explained by the function of protein
translation regulation on cell death/survival balance. Indeed, the
ISR kinases have been implicated in cancer regarding cell death
and proliferation. Activation of the ISR by PERK promotes
tumor initiation and progression (35). Consistently, in PTEN
loss and MYC-driven prostate cancer models, the PERK branch
of the ISR is activated and limits protein synthesis rates.
Paradoxically, inhibition of either the PKR branch of the ISR
or phosphorylation of eIF2 led to transformation of mouse
fibroblasts and increased tumor formation in immune-deficient
mice (39). These seemingly contradictory results could be
explained by the complexity of ISR functions, which manage
both pro-survival and pro-death mechanisms, including the
activation of NFkB, PI3K, and JNK pathways (40). In addition,
the dependency of cancer cells on protein translation, as well as
the tolerance of cancer cells to protein synthesis restriction,
varies greatly among different types of cancers.
TRANSCRIPTIONAL CONTROL OF
METASTASIS BY ISR

While the majority of current studies attribute the role of ISR in
cancer to its function in protein translation regulation, emerging
evidences demonstrate that ISR could affect tumor progression via
translation-independentmechanisms.Metastasis, as a complicated,
multi-step process, requires the many faces of the ISR to support
and facilitate cancer cells to survive this challenging journey. In
particular, the role of the ISR in transcriptional reprogramming has
been increasingly appreciated (Figure 1).
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ISR TRANSCRIPTIONALLY CONTROLS
CANCER CELL MOTILITY AND
INVASIVENESS

Increased motility, along with heightened invasiveness,
represents the first hallmark that allows the initiation of
metastasis. Many of the ISR-related transcription factors
regulate cell migration and invasion. Selectively activated and
upregulated by the ISR, ATF4 is an essential transcription factor
that transduces the signal of ISR. In addition to its canonical
roles, ATF4 can promote migration and invasion in different
types of cancers, including breast cancer, esophageal cancers, and
bladder cancers (41, 42). This critical roles of ATF4 in cancer can
explain the pro-metastatic function of PERK in breast cancers, as
PERK depletion effectively mitigates the metastatic lesions
developed in a Her2-driven breast cancer model (43). A recent
study suggested that ATF4 is downstream of the TGFb signaling
pathway and facilitates the latter’s pro-migratory function in
triple negative breast cancers (TNBC) (44). Modulation of
extracellular matrix (ECM) has been attributed to the
mechanism of ATF4-driven invasion, since ATF4, with the
help of Fra-1, directly drives the expression of CREB3L1, a
transcription factor critical in remodeling ECM (45). CREB3L1
can regulate the FAK signaling during cancer cell migration and
invasion. This CREB3L1-mediated signaling program is
specifically activated in breast cancer cells when compared to
their normal counterparts, representing a non-stress-dependent
mechanism of the PERK branch of the ISR in cancer metastasis
(45, 46). Importantly, the unique mode of activation, namely
proteolytic cleavage, of CREB3L1 announces itself as potentially
targetable transcription factor in treating metastasis (45).

While CREB3L1 can mediate the function of ATF4 in
promoting metastasis, other downstream factors of ATF4 seem
to antagonize the pro-invasive role of ATF4. ATF3 is a classical
ISR TF that is regulated by ATF4 during ISR activation (47).
However, ATF3 has been reported to inhibit migration and
invasion in multiple types of cancers, including squamous cell
carcinoma, glioma, colon cancer and renal cell carcinoma (48–
50). Interestingly, the anti-migration function of ATF3 is not
linked to its canonical role in stress signaling or proteostasis.
ISR FACILITATES DISTANT
COLONIZATION

While the role of many ISR-TFs in the initiation step of
metastasis has been well studied, their functions in the steps
onwards are much less appreciated. Surviving a non-adherent
condition in blood stream is a prerequisite of cancer cells to
proceed their journey of metastasis. In fibrosarcoma, ATF4 is
induced upon detachment and suspension of cancer cell, and it is
critical to protect cancer cells from anoikis. Mechanistically,
ATF4 directly drives NRF2 transcription and nuclear
accumulation, which in turn triggers the transcription of redox
homeostasis genes, including HO-1 (51). In fact, NRF2 is critical
October 2021 | Volume 11 | Article 770843
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in regulating the expression of many important genes involved in
oxidative stress response (52). This important function of ATF4
makes it indispensable for successful colonization of
fibrosarcoma cells in the lung of the mouse models. It is
known that an appropriate anti-oxidant response is essential
for human melanoma cells to survive distant metastasis, the
potential role of other ISR-TFs should be further investigated
from this perspective.

In addition to regulating gene transcription via its canonical
downstream factors, the ISR can modulate metastatic colonization
and outgrowth via certain LncRNAs. Malat1 is a LncRNA induced
upon PERK activation (53). In a human lung cancermodel, Malat1
is critical for extravasation and subsequent outgrowth of cancer
cells. Importantly, inhibition of this LncRNA by its antisense
oligonucleotides (ASO) can effectively abolish lung metastasis
(54). In addition, miR-708, a CHOP-regulated miRNA (55), also
serves as a potential therapeutic agent for breast cancermetastasis as
it can regulate calcium-mediated cell migration (56). It will be of
interest to further investigate the potential crosstalk between the
ISR-TFs and ISR-LncRNAs in metastasis regulation.
ISR AND METASTASIS-RELATED CELL
STATE TRANSITION

Other than obtaining different capacities for metastasis by
activating different signal pathways, cancer cells can equip
themselves with metastatic potential by turning on cell-state
transition programs, which can comprehensively and robustly
change the cell phenotype in a coordinated, efficient manner.
EMT represents one of these programs. It has been shown that
the PERK-eIF2a-ATF4 cascade is activated and implicated during
an EMT (57). Tumor cells acquiring an EMT, characterized as loss
of epithelial markers and gain of mesenchymal markers, become
more invasive, metastatic, stem-like and drug-resistant. The PERK
branch of the UPR is activated upon EMT-induction, likely due to
the reason that cancer cells of an EMT state hyper-activate the
secretory pathway, which requires the UPR to accommodate an
increase in both protein production and secretion. The correlation
between EMT and PERK-ATF4 activation is also confirmed in
Frontiers in Oncology | www.frontiersin.org 5
primary breast cancer, colon cancer, lung cancer, as well as
metastatic cancers spanning hundreds of clinical samples. In
addition to the canonical PERK-ATF4 pathway, the non-
canonical PERK-NRF2 pathway is also activated in cancer cells
that undergo dedifferentiation. The change of NRF2 signal can
render cancer cells a higher ability to resist chemotherapy drugs,
which is a hallmark of many metastatic diseases (58, 59).
CONCLUSION AND PERSPECTIVE

It remains a central question in cancer research how cancer cells
acquire the competence to colonize distant organs. Tumors can
release large numbers of cancer cells into the circulation, but only
a small proportion of these cells survive on infiltrating distant
organs and even fewer form clinically meaningful metastases.
Many predictive gene signatures and specific mediators of
metastasis have been identified, yet how cancer cells acquire
these traits has remained obscure. Given the highly hostile nature
of the metastatic cascades, the ISR signaling is activated and
participates in every single steps during metastatic progression.
The discoveries of essential transcription factors induced by the
ISR open a window on an entirely new avenue of investigation of
metastasis, and will provide valuable potential targets for treating
this currently incurable disease.
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