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The ontogeny and evolution of chronic lymphocytic leukemia (CLL) are critically dependent
on interactions between leukemic cells and their microenvironment, including antigens,
the latter recognized through the clonotypic B-cell receptor immunoglobulin (BcR IG).
Antigen selection is key to the pathogenesis of CLL, as evidenced by the remarkable
skewing of the BcR IG gene repertoire, culminating in BcR IG stereotypy, referring to the
existence of subsets of patients with (quasi)identical BcR IG. Notably, certain of these
subsets have been found to display distinct, subset-biased biological background, clinical
presentation, and outcome, including the response to treatment. This points to BcR IG
centrality while also emphasizing the need to dissect the signaling pathways triggered by
the distinctive BcR IG expressed by different subsets, particularly those with aggressive
clinical behavior. In this mini-review, we discuss the current knowledge on the implicated
signaling pathways as well as the recurrent gene mutations in these pathways that
characterize major aggressive stereotyped subsets. Special emphasis is given on the
intertwining of BcR IG and Toll-like receptor (TLR) signaling and the molecular
characterization of signaling activation, which has revealed novel players implicated in
shaping clinical aggressiveness in CLL, e.g., the histone methyltransferase EZH2 and the
transcription factor p63.

Keywords: stereotyped subsets, signaling, mutations, expression profiles, high-risk chronic lymphocytic leukemia
INTRODUCTION

Chronic lymphocytic leukemia (CLL) is a chronic B-cell malignancy, the most common adult
hematologic malignancy in Western countries. CLL displays remarkable clinical heterogeneity
regarding both the clinical presentation and the course of the disease, including the response to
treatment, likely reflecting the underlying biological diversity (1–4). That notwithstanding, a
ubiquitous theme in the natural history of CLL concerns the crosstalk of leukemic cells with the
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microenvironment (5), including antigens, thus placing the
clonotypic B-cell receptor immunoglobulin (BcR IG) in
the spotlight.

The first immunogenetic evidence regarding the involvement
of antigens in the pathogenesis of CLL emerged from studies
from the 1990s reporting significant biases in the BcR
immunoglobulin (IG) gene repertoire, strongly implying a role
of antigen selection in disease ontogeny (6). Moreover, it was
found that approximately half of CLL patients carried BcR IG
with somatic hypermutations (SHM), corroborating the notion
of antigen involvement in disease pathogenesis (7, 8).

An in-depth study of SHMmechanism in CLL resulted in the
classification of patients in two distinct subgroups based on the
SHM imprint within both the rearranged immunoglobulin heavy
variable (IGHV) gene and immunoglobulin kappa/lambda
variable gene (IGKV/IGLV) of the clonotypic BcR IG. In
particular, patients that express rearranged IGHV genes with
no or few SHM (≥98% sequence identity between the clonotypic
rearranged IGHV gene and its closest germline counterpart;
unmutated CLL, U-CLL) generally experience more aggressive
disease course with immediate or early need for treatment
compared with those with mutated IGHV genes (<98%;
mutated CLL, M-CLL) who display a considerably more
indolent disease (7, 8). The SHM status of the clonotypic
IGHV gene is perhaps the most robust prognostic marker in
CLL, independent of the clinical stage or disease evolution (9).
Importantly, it is also predictive of the clinical response to
therapy (10, 11).

Perhaps the strongest molecular evidence for antigen
selection in CLL emerged from the observation that a large
proportion of CLL patients carry (quasi)identical, otherwise
termed stereotyped, BcR IG (12). The term “stereotyped” is
derived from Greek and refers to a form repeated with limited
or no variation; hence, it is truly appropriate for describing the
remarkable restrictions in the primary amino sequence
documented in the clonotypic BcR IG of different patients with
CLL. The first striking observation concerned the fact that almost
half of CLL patients utilizing the IGHV3-21 gene displayed
highly similar variable heavy complementarity determining
region 3 (VH CDR3) and, additionally, carried restricted,
IGLV3-21-encoded light chains (13, 14). This finding is at
odds with classic immunological thinking, whereby the
probability of finding identical BcR IG in different B-cell clones
is negligible (~10−12–10−16), cementing the concept of antigen
selection as a major driver of CLL development.

BcR IG stereotypy is remarkably common in the CLL BcR IG
repertoire (15–24), accounting for almost 41% of all CLL, as
revealed in our large-scale study comprising ~30,000 patients
(25). Based on shared amino acid motifs within the VH CDR3,
cases are classified in groups termed “stereotyped subsets” (17,
23, 25): cases belonging to the same subset exhibit several other
restricted immunogenetic features besides a highly homologous
VH CDR3, extending from the use of phylogenetically related
IGHV genes to restricted light chain gene rearrangements (at
least for many major subsets), to shared SHM imprints in both
the heavy and the light chain variable domains (16, 17, 23, 25,
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26). Moreover, accumulating evidence indicates that patients
assigned to the same stereotyped subset display consistent
antigenic recognition profiles (26) as well as similar landscapes
of antigen reactivity (27), BcR IG 3D structure (28), genomic
aberrations (29), gene expression (30), epigenetic modifications
(31), Toll-like receptor signaling (32, 33), and “classic” (27) and
cell-autonomous BcR signaling (34), among others. Moreover,
BcR IG stereotypy defines subgroups with shared clinical features
and similar outcome (9, 25, 35, 36).

Importantly, certain subsets have also emerged as distinct
clinical variants, exemplified by stereotyped subsets #1, #2, #6,
and #8, that exhibit particularly aggressive clinical course and
outcome (Figure 1) (12). On these grounds, BcR IG stereotypy is
currently being considered as a means for improved risk
stratification of patients with CLL, at least for the best
characterized subsets (i.e., subsets #2 and #8) (37).
CLL SUBSET #1

Subset #1 represents almost 2.2% of all CLL and is defined by
rearrangements utilizing different yet phylogenetically related
IGHV genes belonging to IGHV clan I (IGHV1, IGHV5,
IGHV7 subgroups), thus displaying highly similar primary
sequences (28). The heavy chain IGHV clan I/IGHD6-19/IGHJ4
gene rearrangements are characterized by the presence of no or
little SHM and display a ubiquitous QWL (glutamine-aspartate-
leucine) motif within the VH CDR3; furthermore, they are
combined with a light chain encoded by an IGKV1(D)-39/
IGKJ1-2 gene rearrangement (23, 26). Recently, we documented
a close immunogenetic similarity between stereotyped subset #1
and minor subset #99, reflected in highly similar clinical
prognosis (25).

Regarding the latter, subset #1 is associated with a poor
outcome, displaying shorter time-to-first-treatment (TTFT)
and overall survival in comparison to U-CLL with BcR IG
using the same IGHV genes albeit in different configurations
(38–40). Regarding genomic alterations, a high frequency of
NOTCH1 mutations has been reported (16% to 27% of cases,
depending on the series) (35, 41). Moreover, TP53 mutations
(16%) (41) as well as NFKBIE aberrations (15%) (42) and del
(11q) (35) were all found enriched in subset #1, contributing to
the poor prognosis of patients assigned to this subset. NFKBIE
mutations result in reduced IkBϵ protein levels, which in turn
implies decreased IkBϵ–p65 interactions, increased p65
phosphorylation, and nuclear translocation, leading ultimately
to prolonged CLL cell survival (42).

Regarding signaling pathways, there is significant evidence of
distinct expression profiles of TLR pathway-associated genes in
subset #1 when compared with other subset or non-subset CLL.
More particularly, increased expression of TLR7 and NFKBIA
and, in contrast, reduced expression of CD86 and TLR4 have
been reported in subset #1 versus clinically indolent CLL subset
#4 cases (32). These differences are also functionally relevant,
considering that TLR stimulation results in distinct regulation of
expression of immune-related molecules but also distinct cellular
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activation outcomes. For example, TLR7 stimulation with
imiquimod induces CD25 upregulation in subset #1, albeit not
the case in subset #4, whereas TLR9 stimulation leads to
antiapoptotic effects preferentially in subset #1 versus all other
U-CLL (33).

Subset #1 cases display a unique transcriptional profile even
when compared with other CLL cases with concordant SHM
status: differentially expressed genes are implicated in apoptosis
(e.g., ATM, PARP1), cell proliferation (e.g., KRAS), and oxidative
processes favoring the survival of CLL cells (39). In line with
these findings, BcR stimulation with anti-IgM led to a higher
proliferation rate in both basal state and after 24–48 h of
stimulation in subset #1 versus non-subset U-CLL cases (39).

CLL subset #1 is also notable for elevated expression of the
histone methyltranferase Enhancer of Zeste Homolog 2 (EZH2),
the catalytic core protein of the Polycomb Repressive Complex 2
(PRC2) (43). EZH2 represses genes involved in various cellular
processes, such us cell cycle regulation and cell differentiation,
through trimethylation of histone H3 at lysine 27 (H3K27me3)
(43). In a previous study of our group, we showed that EZH2
mRNA levels are increased in subset #1 when compared with
indolent subset #4, thus implicating for the first time EZH2 in the
pathophysiology of aggressive CLL (43). Of note, EZH2
expression appeared to be partially modulated by miR-101, an
“epi-miRNA” that inhibits the function of EZH2 and was found
downregulated in subset #1, inversely correlating with EZH2
protein and mRNA levels; this conclusion was supported by the
fact that forced overexpression or downregulation of miR-101 in
primary cells of subset #1 cases affected EZH2 protein levels in
the exact reverse way (43).

Prompted by these observations, we next investigated at the
preclinical level the impact of EZH2 inhibition in aggressive CLL
cases, particularly subset #1. We found that combined inhibition
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of EZH2 activity and BcR signaling had synergistic antitumor
effects while EZH2 inhibitors exhibited ex vivo efficacy in CLL
cases unresponsive to signaling inhibitors (44). These results
should be interpreted clinically considering that EZH2 was also
found to regulate the PI3K/AKT prosurvival pathway in a PRC2-
independent, non-canonical way by directly binding to the
IGF1R promoter (45). On these grounds, EZH2 emerges as a
potential therapeutic target in CLL, warranting further
preclinical and clinical investigation.
CLL SUBSET #2

Subset #2 represents the largest stereotyped subset in CLL,
accounting for ~2.5%–3% of all patients and ~5.5% of patients
requiring treatment (9, 25, 40). The particular BcR IG of subset
#2 is composed of heavy and light chains encoded by the IGHV3-
21 and the IGLV3-21 genes, respectively. The clonotypic
IGHV3-21 genes bear a variable SHM load, with most cases
(~60%–65%) classified as M-CLL (23, 25). The SHM patterns in
both the heavy and light chains of subset #2 supported antigen
pressure, with some SHMs revealed as critical for self-association
leading to cell-autonomous signaling (36, 46). Relevant to
mention, we recently demonstrated that stereotyped subset
#169, a minor CLL subset (~0.2% of all CLL), bears striking
immunogenetic but also biological and clinical similarities to
subset #2 (25).

Independent of the SHM status, subset #2 cases have a
particularly dismal clinical outcome (9, 40, 47) similar to that
of patients with TP53 aberrations, although they very rarely
harbor such aberrations (29, 40, 41, 47–51). Instead, subset #2
and subset #169 display a remarkably high frequency of
mutations in SF3B1, which encodes a splicing factor with a
FIGURE 1 | Summary of the biological features of aggressive CLL subsets.
November 2021 | Volume 11 | Article 771454

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gerousi et al. Signaling in Aggressive CLL Subsets
crucial role in the spliceosome machinery (52). Indeed,
approximately half of the subset #2 patients carry SF3B1
mutations (41, 48, 49), in contrast with patients belonging to
other aggressive CLL subsets, namely #1 and #8 (4.6% and 0%,
respectively) or non-subset CLL, where such mutations are
present in 5%–8% of cases (48). The exact functional role of
spliceosome deregulation in subset #2 remains to be fully
elucidated. ATM mutations and del(11q) are also significantly
enriched in subset #2 cases (40, 51). ATM disruption is
associated with short telomeres which in turn correlates with
reduced TTFT and overall survival (OS) in subset #2 (51).

Uniquely among B-cell malignancies, CLL has been found to
display an alternative mode of cell activation that is independent
of antigen and results from homotypic interactions between two
different BcR IG molecules (34). Studies from our group have
dissected the molecular basis of cell-autonomous signaling in
CLL, revealing distinct modes of homotypic interactions in
different CLL subsets (36, 46). Particularly for subsets #2 and
#169, it has been demonstrated that BcR–BcR interactions
critically rely on light chain-mediated contacts, with a specific
mutation from the germline sequence in the linker region
between the variable and the constant domain of the light
chains, namely, the substitution of arginine for glycine (termed
R110) in the clonotypic light chain encoded by the IGLV3-21*01
allele (IGLV3-21R110), identified as key to the capacity for
homodimerization underlying cell-autonomous signaling
(36, 46).

More recently, the expression of IGLV3-21R110 immunoglobulin
light chains was documented in CLL cases beyond subsets #2 and
#169 (53, 54). Such cases have been reported to be associated with a
distinct gene expression profile and aggressive clinical courses,
regardless of IGHV gene usage, SHM status, and classic
cytogenetic abnormalities (53, 54). Altogether, these findings
highlight the critical role of IG light chains in shaping the
functional status and, eventually, the clinical behavior of CLL
clones, while also pointing to another form of stereotypy, mainly
defined by IG light chain restrictions.
CLL SUBSET #6

Subset #6 is another well-characterized clinically aggressive CLL
subgroup (0.8% of all CLL), concerning cases bearing unmutated
BcR IG (25). The clonotypic IGHV1-69/IGHD3-16/IGHJ3 gene
rearrangements are combined with restricted IGKV2-30 gene
light chain rearrangements (20).

An integrated epigenomic and transcriptomic comparison of
subset #6 versus subset #8, another well-characterized U-CLL
subset (see next paragraph), has revealed that IL21R and CTLA4
are hypomethylated in both groups, however showing increased
mRNA expression in subset #6 versus subset #8 (55). These
findings are relevant, considering that the interleukin-21
receptor (IL-21R) is upregulated by CD40 stimulation and
mediates proapoptotic signaling in CLL (56), while CTLA4
augmented expression results in decreased proliferation and
cell survival (57, 58). Moreover, these results appear to be in
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line with the more indolent disease course of subset #6 compared
with subset #8 (55).

Regarding the genetic landscape, CLL cases assigned to
stereotyped #6 display low frequency of TP53 mutations (4%),
low-to-intermediate frequency of SF3B1mutations (13%) and, in
contrast, high frequency of NOTCH1 mutations (22%) which,
interestingly, was not accompanied by trisomy 12 in almost none
of the cases (41). Moreover, there is a strong evidence for
selection by a common antigen in subset #6: in fact, it has
been conclusively demonstrated that subset #6 BcR IG recognizes
non-muscle myosin heavy chain IIA (MYHIIA), which appears
on the surface of cells undergoing stress or apoptosis, with this
recognition driving CLL cell survival and proliferation (59).
CLL SUBSET #8

Subset #8 accounts for approximately 0.5% of all CLL and
includes cases bearing unmutated IGHV4-39/IGHD6-13/
IGHJ5 gene rearrangements paired with IGKV1(D)-39/IGKJ2
gene rearrangements (17, 60). Notably, the stereotyped heavy
chains of subset #8 are IgG-switched, itself a rarity in CLL (61).
From a clinical perspective, subset #8 has emerged as a prototype
of clinical aggressiveness as it displays the highest risk for
Richter’s transformation among all CLL (35).

Subset #8 cases exhibit a unique constellation of genomic
abnormalities including high frequency of trisomy 12 (63%–
87%) (40, 49) as well as NOTCH1 mutations (from 14% to 62%,
depending on the studied cohort) (41, 48, 49). From a different
perspective, subset #8 cases display excessive (promiscuous)
antigen reactivity as the corresponding BcR IG, expressed as
recombinant monoclonal antibodies (rmAbs), bound a plethora
of antigens, including autoantigens and neo-epitopes, in contrast
with other aggressive CLL subsets, namely #1 and #2, that did not
exhibit such polyreactivity (27).

Probably as a result of the broad antigen reactivity, subset #8
CLL cells also displayed pronounced signaling capacity
responding to triggering through both adaptive and innate
immunity receptors. In particular, BcR and TLR stimulation
induced a significant increase in the phosphorylation of ERK and
PLCg2 in subset #8 compared with subsets #1 and #2 (27). These
results are in keeping with our observation that subset #8 exhibits
intense responses to TLR1/2, 2/6, 7, and 9 stimulation, including
upregulation of the costimulatory molecules CD25 and CD86
(33). On these grounds, we propose that the transformation
propensity of subset #8 CLL clones may be linked to both the
extreme antigen polyreactivity of the clonotypic BcR IG and the
excessive signaling capacity of the malignant cells.

Cases assigned to subset #8 exhibit distinct epigenetic profiles
compared with other subset and non-subset U-CLL cases (55). In
fact, comparison of the DNA methylation profiles between
subsets #8 and #6 revealed mainly hypomethylated sites in the
former, particularly in gene bodies and promoters of genes
implicated in several pathways including cancer cell signaling
(55). Integrated transcriptome and methylation analysis of these
two subsets highlighted the TP63 gene as hypomethylated and
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overexpressed in subset #8 versus subset #6 cases (55). p63, the
protein encoded by the TP63 gene, is a transcription factor of the
p53–p63–p73 family which regulates several cellular processes,
e.g., apoptosis, proliferation, cell adhesion, and differentiation
(62). mRNA and protein expression analysis confirmed that
subset #8 cases displayed the highest TP63 expression among
all CLL cases examined (55). Of note, p63 expression was found
to be modulated by immune signaling through the BcR with
differential effects between subsets. In more detail, BcR
stimulation resulted in significant upregulation of p63 levels
and cell viability in subset #8 cases, while it did not affect the
corresponding expression levels in subset #6 cases (55).
Confirmation of the prosurvival role of p63 was achieved by
RNA silencing of the TP63 gene which led to notable
downregulation of p63 levels and decrease of the number of
viable cells providing evidence for the contribution of p63 in
clinical aggressiveness of CLL subset #8 cases (55).
CONCLUSIONS

BcR IG stereotypy allows the subdivision of CLL patients into
subsets with homogeneous profiles, allowing to consider targeted
therapeutic approaches tailored to each subset. This is clinically
relevant, given that CLL remains incurable despite major
therapeutic advances achieved in recent years thanks to the
introduction of signaling and BCL2 inhibitors in the clinical
practice. This highlights the urgent need to further dissect the
heterogeneity of CLL toward identifying additional mechanisms
Frontiers in Oncology | www.frontiersin.org 5
of resistance: arguably, zooming on subsets is a plausible strategy
toward this aim.
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