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The value of MR radiomic features at a microscopic scale has not been explored in ovarian
cancer. The objective of this study was to probe the associations of MR microscopy
(MRM) images and MRM-derived radiomic maps with histopathology in high-grade
serous ovarian cancer (HGSOC). Nine peritoneal implants from 9 patients with HGSOC
were imaged ex vivo with MRBM using a 9.4-T MR scanner. Al MRM images and
computed pixel-wise radiomics maps were correlated with the slice-matched stroma
and tumor proportion maps derived from whole histopathologic slide images (WHSI) of
corresponding peritoneal implants. Automated MRM-derived segmentation maps of
tumor and stroma were constructed using holdout test data and validated against the
histopathologic gold standard. Excellent correlation between MRM images and WHSI was
observed (Dice index = 0.77). Entropy, correlation, difference entropy, and sum entropy
radiomic features were positively associated with high stromal proportion (r = 0.97,0.88,
0.81, and 0.96 respectively, p < 0.05). MR signal intensity, energy, homogeneity, auto
correlation, difference variance, and sum average were negatively associated with low
stromal proportion (r = =0.91, -0.93, -0.94, -0.9, -0.89, -0.89, respectively, p < 0.05).
Using the automated model, MRM predicted stromal proportion with an accuracy ranging
from 61.4% to 71.9%. In this hypothesis-generating study, we showed that it is feasible to
resolve histologic structures in HGSOC using ex vivo MRM at 9.4 T and radiomics.
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1 INTRODUCTION

High-grade serous ovarian cancer (HGSOC) is the most prevalent
histological subtype of ovarian cancer (1). Advanced-stage
HGSOC is often approached with neoadjuvant chemotherapy to
reduce tumor burden followed by cytoreductive surgery with or
without hyperthermic intraperitoneal chemotherapy (HIPEC) (2,
3). Response to neoadjuvant treatment at histopathology manifests
as an increase in stromal tissue and decrease in tumor cells, but
those changes cannot be assessed on standard cross-sectional
imaging (4). Indeed, CT only provides anatomic information,
whereas MRI captures both anatomic and functional
data. Preliminary results in ovarian cancer suggest that the
quantitative parameters derived from diffusion-weighted MR
imaging (DWI-MRI) may serve as a biomarkers of cell density
(5-7). For example, the increase in ADC values in HGSOC
peritoneal implants (decrease in cell density) during neoadjuvant
chemotherapy was associated with good treatment response as
assessed by RECIST 1.1 criteria and CA125 level (8).

To date, few studies have explored the associations between
CT/MR images which interrogate tumor at macroscopic scale
and histopathologic images which depict tumor at microscopic
scale. In contrast, studies have recently focused on the role of
radiomics. Radiomic analysis extracts a large amount of
quantitative data and, thus, has the potential to uncover salient
features that are imperceptible to human observers yet possibly
reflective of microscopic changes in tumor in response to
treatment (9-13). Preliminary work in CT found that higher
image-based tumor heterogeneity was associated with worse
prognosis and greater risk of incomplete surgical resection in
HGSOC (14).

However, image-based tumor heterogeneity and radiomics
features have not yet been exactly correlated with findings at
histopathology. Exploring the associations between image-based
tumor heterogeneity and biologic underpinnings at histopathology
would offer an important avenue for monitoring response in time
and space non-invasively using imaging, as “virtual biopsy”. For
example, it has been recently reported that a high content of
stroma present in HGSOC was associated with a high pathologic
stage at diagnosis and displayed a reduced overall survival and
poor prognosis independently from the histology type (15, 16). For
a long time, the potential role in carcinogenesis of stromal cells has
been neglected, as they were regarded just as part of an
inflammatory reaction induced by necrotic cancer cells. It is
now recognized that the stroma composition and architecture,
in terms of vascularization, type of cells, and their secretion, play a
role in the establishment and progression of cancer cells. It is also
now well established that the stroma contributes to ovarian
tumorigenesis and progression (17). Concerning the recent
clinical radiomics model, Lu et al. found a radiomics model
associated with DFS and genomic pathway (18). This radiomic
model was positively correlated with a stroma marker, the
fibronectin, and associated with a proportion of tumor-
associated stromal cells and patient prognosis (18). Being able to
assess the stroma-tumor ratio in a non-invasive way with
radiomics may open a new pathway in assessing tumor response
in HGSOC.

Beyond the analysis of standard and functional MR imaging,
ex vivo high-field MRI (i.e, magnetic resonance microscopy,
MRM) offers a unique opportunity to probe the tumor at the
microscopic scale because MRM can reach a resolution of 40 pum.
Although much lower than that of optical microscopy (0.25 pm),
this resolution is significantly higher compared to standard MRI
(1 mm) allowing the visualization of histological details. Work
performed ex vivo at 7.0 T was able to visualize distinctive
features of both benign and malignant lesions in breast tissue
(19). In prostate, Fan et al. have evaluated the feasibility of 9.4-T
ex vivo MRI to guide pathologists’ examination in the evaluation
of prostate cancer (20). They demonstrated excellent anatomical
detail as well as significant T2 values and ADC differences
between cancer and normal prostatic tissues (20). Durand et al.
performed ex vivo MRI with direct histological correlation of the
prostate gland that approached histological spatial resolution
enabling the visualization of gland microanatomy with MRM
(21). More recently, a study has investigated the ability of ex vivo
7.0-T MRI to localize prostate cancer and to predict the margin
status in fresh radical prostatectomy specimens using histology
as the reference standard (22). The author found that ex vivo
MRI was able to accurately localize prostate cancer in radical
prostatectomy specimens, and the technique provided
information on the margin status (22). In brain tumors,
Martinez-Bisbal et al. combined MRM with MR spectroscopy
to study metabolites of ex vivo tumors at high resolution (23).
However, to our knowledge the role of MRM in ovarian cancer
remains unexplored.

The aim of this proof-of-concept study was to evaluate the
correlation between tumor-stroma maps derived from MRM and
whole histopathology slide images (WHSI) of histopathologic
specimens and to develop an automated visual map of stromal
proportion in HGSOC peritoneal implants using quantitative
analysis of MRM images.

2 MATERIALS AND METHODS

2.1 Patient Inclusion

Nine patients (mean age 65.6 + 8.2 years) with advanced HGSOC
referred to surgery were included in the study; among them, 2
had primary debulking surgery and 7 had interval debulking
surgery after neoadjuvant chemotherapy. Patient characteristics
are summarized in Table 1. The Institutional Review Board
approved this prospective study, and all patients signed the
written informed consent form prior to enrollment. Figure 1
shows the study experimental workflow.

2.2 Biopsy Preparation and Evaluation

For each patient, index peritoneal implant was selected a priori
based on the review of preoperative MRI in conjunction with the
surgeon. Resected implants were transported from the operating
room to the pathology laboratory per routine procedure where
they were transformed into 3 x 1.5 x 1 cm’ blocks and fixed in
formalin solution. Prior to MRM acquisitions, fixed specimens
were soaked in saline solution with 1% Gd-BOPTA (MultiHance;
Bracco Imaging, Milan, Italy) during 1 h. The implants were then
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TABLE 1 | Patients characteristics.

Patient age (mean + SD) 65.6 + 8.2
BRCA-mutant

Yes 1

No 8
Neoadjuvant chemotherapy

Yes 7

No 2

laid on a plastic plate inside a tube filled with a perfluorocarbon
solution (Fluorinert FC-40, 3M™ Electronic Liquids, Saint Paul,
USA) to reduce susceptibility artifacts induced by air. After
imaging, the specimens were transported back to the pathology
laboratory for histological evaluation.

2.3 MRM Technique and Radiomic

Feature Extraction

MRM acquisitions were performed on a 9.4-T MR scanner
(Agilent Varian 9.4/160/ASR, CA, USA) associated with the
Vnmr] imaging acquisition system (Agilent, Palo Alto,
California, USA) and using a dedicated ribbon solenoid coil
(24). MRI experiments included two sets of acquisitions: a high-
resolution and a 90 x 90 x 180 um’ T1-weighted fat-suppressed
gradient echo images. The later set of images was selected to
facilitate radiomic analysis by allowing to interpolate images to
an isotropic voxel spacing with a minimum interpolation factor
(25, 26). All MRM image acquisition parameters are summarized

in Table 2. Prior to radiomic analysis, MRM images were
preprocessed using the open-source software 3D slicer (27)
(http://www.slicer.org) and by following IBSI guidelines (26).
Briefly, noise filtering, bias field correction, image interpolation
to isotropic voxel size, and intensity outlier filtering [y + 30]
were performed. Texture feature maps were then extracted on a
per-pixel basis with an in-house software implemented in Matlab
(The MathWorks, Natick, MA, USA). The gray-level co-
occurrence matrix (GLCM) (28) was computed in 2D for each
pixel using the 3 neighboring pixels of each direction around it.
The dynamic range of signal intensities was reduced to 64 gray
levels. The GLCM, p(i,j), represents the spatial relationship of
pixels by measuring the occurrence between a pixel i with a
certain intensity with a pixel j of another intensity along the 13
directions in 3D. Thirteen Haralick feature maps were extracted
from GLCM: energy, contrast, entropy, homogeneity,
dissimilarity, correlation, variance, sum average, sum entropy,
difference variance, difference entropy, autocorrelation, and
cluster tendency. The total time acquisition was 1 h, and
images were obtained usually within 3 h of resection.

2.3.1 Tissue Scanning

After MRM experiments, each block was sent to the pathology
laboratory and cut into 4-pm sections parallel to MR sections,
discerned by the plastic plate. Histologic specimens were stained
using hematoxylin-eosin-saffron (HES) stain, and whole-slice
sections were then scanned into digital data with an automated

Histology

Tissue scanning

Acquisition

Tumor stroma segmentation

Data pre-processing

Noise filtering
Bias field correction

Image interpolation
Intensity discretization

Feature map extraction

FIGURE 1 | llustration of the study experimental workflow.
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TABLE 2 | Sequences parameters.

Acquisition name

High-resolution

For radiomics analysis

Tr/TE (ms) 2000/9.14

Flip angle 60°

Averages 4

Matrix 512 x 256

FOV From 26 x 13 to 32 x 16 mm? 46 x 23 mm?
Resolution From 51 x 51 to 62.5 x 62.5 ym? 90 x 90 pm?
Slice/thickness 30/300 pm 40/180 pm
Scan time 34min12s 17 min 8's

whole-slide scanner (NanoZoomer-XR scanner C12000,
Hamamatsu, Japan), at x20 magnification and a pixel size
of 0.46 pm.

2.3.2 Tumor Stroma Segmentation

Stoma and tumor regions on WHSI were identified and
segmented with the open-source software QuPath (29). In
order to correlate MRM and WHSI, as MR texture features
were estimated for each pixel, stromal proportion was also locally
calculated. Thus, from the tumor-stroma segmentation WHSI
map, stromal proportion was assigned to each pixel by
measuring this proportion in a circular neighborhood with a
radius of 3 pixels. Stromal proportion calculation was not
possible for two of the nine specimens. One of them had
mostly fat tissue, causing too few tumor and stroma tissues to
be correlated with corresponding MRM slices (specimen iii. on
Supplementary Material Figure S1). The second tumor was
resected after chemotherapy and had a significant necrosis, with
the consequence that neither tumor tissue nor stroma remained
(specimen iv. on Supplementary Material Figure S1).

2.3.3 Elastic Registration

Due to histological fixation and sectioning, elastic deformations
existed between histology sections and corresponding MRM
slices. To remedy this and compare those images at the
corresponding pixel, manual 3D non-linear co-registration was
performed using the 3D slicer. Three specimens could not be
precisely co-registered: deformations were too important,
making the precise pixel-wise registration impossible between
WHSI and MRM images (specimen ii. on Figure 2 and
specimens ii. and v. on Supplementary Material Figure S1).

2.4 Statistical Analysis

2.4.1 MRM Image and WHSI Comparison

A qualitative visual assessment of high-resolution MR images and
texture maps with their corresponding WHSI of the nine ex vivo
peritoneal implants was evaluated by the pathologist and the
radiologist. Spatial overlaps between WHSI and MRM images
were measured and quantified using the Dice similarity coefficient
using the following formula: DSC =2 (AN B) / (A + B).

2.4.2 MRM Radiomics and Histopathology
Pixel-Wise Correlation

For the MRM and histology correlation, 5 implants had to be
excluded: three of them could not be precisely co-registered, two
for which the stromal proportion maps could not be extracted.

Clinical characteristics of these four remaining tumors were 0
BRCA mutant and 2 obtained after neoadjuvant chemotherapy.
MRM signal intensity (SI) and texture maps were compared pixel
by pixel to the stromal proportion map from WHSI. Stromal
proportion maps from WHSI were divided into increments of 10
equal percentage points, and mean SI and texture values were
computed for these 10 regions. Pearson coefficients were
calculated to evaluate the correlation between mean texture
feature values and stromal proportion. p-values less than 0.05
were considered statistically significant. All statistical analyses
were performed with R software version 4.0.0.

2.4.3 Predicted MR Segmentation Maps

Pixels of the four remaining tumors were classified as stroma-rich,
i.e,, stromal proportion >50%, and stroma-poor, i.e., stromal
proportion <50%, Of these pixels, 30% were randomly selected
from the four tumors, to generate a classification table of 58,945
pixels associated with 14 inputs (13 texture features and the label).
Of these selected pixels, 50% were randomly chosen to train the
machine learning model with balanced number of stroma-rich and
-poor pixels; the 50% remaining pixels were used to test the
algorithm (29,473 pixels). The classification model was completed
using the support vector machine (SVM) classifier and 20-fold
cross-validation, with the classification learner toolbox of Matlab
2020a. SVM is a supervised learning model that classifies by
mapping the input data into a higher-dimensional space allowing
to find a hyperplane separator. The SVM training model was
exported and used to measure the confusion matrix and accuracy
value on the test set. Finally, this trained algorithm was applied to
the 4 tumors separately to generate predicted segmentation maps
and were compared to the stroma-rich and -poor segmentations,
extracted from the histopathologic images.

3 RESULTS

3.1 Comparison Between MRM and
Histopathology Reading

3.1.1 Visual Assessment, Qualitative Analysis

All nine implants were evaluated for visual MRM assessment and
subsequently compared with histopathology. In all 9 cases, the
pathologist was able to identify different relevant histological
structures (i.e., tumor, stroma and fat) on MRM images. On
MRM images, tumor cells appeared as high signal intensity areas
separated by lower signal intensity foci representing fibrous
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stroma (Figure 2.i). In some cases, massive tumor infiltration
appeared clustered in lobules separated by stroma, giving the
appearance of a cauliflower (Figure 2.ii), well recognized on both
MRM and histology images. Interestingly, three histological
structures resulted on signal loss on MRM images. Glandular
lumens, forming slit-like spaces inside dense tumor regions
(Figure 2.iii), and psammoma bodies that are round
collections of calcium did not produce any MR signal
(Figure 2.iv, white arrow). Finally, regions of hyaline stroma,
composed of hypocellular old collagen, were also associated with
a signal loss area in MRM images (Figure 2.iv, blue arrow).
Histology and MRM images of the implants not shown in
Figure 2 are presented on Supplementary Material Figure S1.

3.1.2 Quantitative Analysis

A spatial overlap between tumor, stroma, and fat regions on
MRM images and at histopathology was measured (Figure 3).
The Dice similarity coefficient was 77% for the entire dataset.

3.2 Association Between Radiomics and
Histopathology Features: Quantitative
Assessment

Ex vivo MRM radiomics features were extracted, and texture maps
were generated for each of the four implants. Figure 4 illustrates

FIGURE 2 | H&E-stained histological images (A), left) with corresponding high-resolution MR images (A), right), for 4 of the 9 resected peritoneal implants (i-iv).
Magnified regions (B) of histological (left) and high-resolution MR (right) images, indicating by red and green boxes on (A). Scale bar at top right of histological
images (A) is 1 mm. White and blue arrows on the histologically magnified region (B). (iv) Indicated respectively psammoma bodies and hyaline stroma.

energy, entropy, and homogeneity maps from a representative
peritoneal carcinomatosis implant, with corresponding tumor-
stroma segmentation and stromal proportion maps. The stromal
proportion map was divided into increments of 10 percentage
points, and mean texture values were calculated for these 10
regions. Correlation plots between mean texture feature values
and stromal proportion were constructed (Figure 5), and
Pearson’s correlation coefficients with corresponding p-values
were then determined (Table 3). Pearson correlation coefficients
ranged from 0.47 to 0.97 with p-values significant for 10 of 13
features. Entropy, correlation, difference entropy, and sum entropy
radiomic features were positively associated with high stromal
proportion (r = 0.97, 0.88, 0.81, and 0.96, respectively, p < 0.05).
MR signal intensity, energy, homogeneity, auto correlation,
difference variance, and sum average radiomic features were
negatively associated with low stromal proportion and as such
linked with higher tumor proportion (r = -0.91, -0.93, -0.94, -0.9, -
0.89, and -0.89, respectively, p < 0.05).

3.3 Estimated Segmentation Map

Stroma-rich and -poor histological segmentations (proportion of
stroma >50% and <50%) were defined from the stromal proportion
map, allowing to train an SVM model with MR texture maps as
inputs. Boxplots showing classified features values between >50%
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with higher entropy score (from 5.87 + 1.00 to 6.47 + 0.883, t-test p = 0.0002).

and <50% are presented in supplementary material Figure S2. The
estimated segmentation maps were performed for the 4 samples,
using the training SVM model, and are presented in Figure 6 with
their corresponding stroma-rich and -poor histological
segmentations, allowing confusion matrix calculation (Table 4).
An accuracy for predicting stromal proportion from MRM images
ranged from 61.4% to 71.9% on the holdout test data.

|ROIs_| DSC__| %Stroma | I
77% 934+9% 92424
#2  54%  79+14% 120425
#3  88%  72+14% 136425
85%  83+16% 132425
#5  70%  55+19% 123427

FIGURE 3 | Spatial overlaps between histological images (A) and MR images (B) for stroma and tumor portion. ROls were manually drawn on MRM and whole slide
images and then superposed in (C). Dice similarity index (DSI), stroma proportion, and signal intensity are presented in a table (D) for each ROI.

FIGURE 4 | High-resolution MR image (A) of resected peritoneal implant with corresponding tissue segmentation map (B) and stromal proportion map (C), in %).
Corresponding texture maps (D) for energy (i), entropy (i), and homogeneity (i) features. For this implant, high tumor proportion (low proportion of stroma) was
associated with higher energy (from 0.029 + 0.020 to 0.019 + 0.014, t-test p = 0.0002), homogeneity (from 0.44 + 0.10 to 0.38 + 0.10, t-test p = 0.0001) and signal
intensity (from 141.41 + 28.30 to 116.09 + 41.52, t-test p = 0.0002) scores (Figure 3). In contrast, high stromal proportion (low tumor proportion) was associated

4 DISCUSSION

This study demonstrates the feasibility of obtaining ex vivo images
of peritoneal implants from HGSOC at 94 T at a resolution of
40 pm. Slice-matched MRM demonstrated strong structural
similarities compared to whole-slide histology specimens. Tumor,
stroma, and adipose tissues were all apparent on MRM images,
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FIGURE 5 | Pearson’s correlation plots between texture features and proportion of stroma (%), extracted from resected peritoneal implant from Figure 2. Stromal
proportion map was divided into increments of 10 percentage points and mean texture values were calculated for these 10 regions. r indicates the correlation coefficient.

TABLE 3 | Pearson’s correlation (r) between texture features and stromal proportion.

S Constrat Dissimilarity Energy Entropy
r -0.91 -0.76 0.47 -0.93 0.97
p-value <0.0001 0.011 0.17 <0.0001 <0.0001
Homogeneity AutoCorrel ClusterTend Correlation DiffEntropy
r -0.94 -0.9 0.68 0.88 0.81
p-value <0.0001 0.0005 0.029 0.0007 0.0046
DiffVariance SumAver SumEntropy Variance
r -0.89 -0.89 0.96 0.56
p-value 0.0005 0.0006 <0.0001 0.093

confirmed on their slice-matched histological samples. In addition,
we found that MRM-derived radiomic features were able to
discriminate tumor tissue, stroma, and adipose structures and
could evaluate the stroma—tumor ratio.

To date, few studies have imaged tumor at a microscopic scale.
Preliminary studies in breast, prostate and brain cancer
demonstrated excellent correlation between MRM images and
histopathologic characteristics of malignant tissue (19-23, 30, 31).
Similarly, for the first time in HGSOC, we were able to obtain a
direct correlation between histology and MRM images at 9.4 T.

In our study, we also correlated radiomics features with the
tumor/stromal proportion pixel by pixel, from four tumors.
Besides the extensive work performed in MRI on radiomics in
all fields of study, the link between data extracted from the image
and the pathology results is still lacking as radiomics has never
been evaluated at a microscopic scale. For example, Vargas et al.
found with CT that inter- and intratumor heterogeneity was
linked to poor prognosis in HGSOC (14). Rizzo et al. evaluated
whether CT radiomics features extracted from the primary tumor
alone or combined with clinical data were associated with residual
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Proportion of stroma >50%

and incorrectly classified in blue. For four tumors from (i-iv).

I Proportion of stroma <50%

Pixels correctly classified

P Pixels incorrectly classified

FIGURE 6 | Stroma-rich (>50%) and -poor (<50%) histological segmentations (A) and predicted segmentation map from MR feature maps (B), with pixels in green
where stromal proportion >50% (stroma-rich) and in red where stromal proportion <50% (stroma-poor). (C) Evaluation map with pixels correctly classified in yellow

TABLE 4 | Confusion matrix results with TPR, true positive rate; TNR, true negative rate; FPR, false positive rate; FNR, false negative rate.

Accuracy TPR
Test set 66.6% 70.6%
i. 63.3% 65.9%
ii. 71.9% 82.5%
ii. 62.1% 60.9%
V. 61.4% 71.3%

tumor at surgery in 101 patients with ovarian cancer. They were
able to predict the risk of disease progression within 12 months
(11). The authors found that along with other features,
homogeneity was associated with residual tumor at surgery. In
our study, entropy, correlation, difference entropy, and sum
entropy radiomics features were positively associated with
stromal proportion while MR signal intensity, energy,
homogeneity, auto correlation, difference variance, and sum
radiomics features were positively associated with tumor
proportion. The energy feature is high when GLCM contains
only a few high-intensity pixels, which means that the MR image
grayscale is uniform. In our study, the energy feature is high when
the tumor region is mostly composed of high density of tumor

TNR FPR FNR
62.4% 37.6% 29.4%
60.5% 39.5% 34.1%
66.4% 33.6% 17.5%
73.4% 26.6% 39.1%
59.4% 40.7% 28.7%

cells. In contrast, entropy reflects the complexity of the MR image
and its value is high when the MR image is disorderly. In this
work, high entropy values matched with areas encircling tumor
cells, mostly composed of stroma. Thus, we found that areas of
tumor cells appeared uniform on MR images, while areas of
stroma appeared heterogeneous. Those radiomics features
associated with stroma heterogeneity may be explained by
stroma neoangiogenesis known to be disorderly and the
consistence of the stroma itself. Indeed, it mostly consists of
heterogeneous cell types and a mixture of amorphous
components. Various cell types are found in the stroma of
HGSOC, including immune and inflammatory cells, endothelial
cells, adipocytes, and the “cancer-associated fibroblasts”.
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In our study, we built a model allowing to compute a visualize
map of estimated stromal and tumor regions from MR images.
This model was trained on 29,473 pixels with SI and 13 texture
feature values as inputs and binary stromal proportion, extracted
from histopathologic data, as targets. The 4 generated predicted
segmentation maps were compared to the actual segmentation
maps measured from histology and found a good accuracy (61.4
to 71.9). Relative low accuracy values can be explained by the
presence of histological structures not taken into account in the
model training, such as glandular lumens resulting in signal loss
(Figures 2.iii, Figure 6.iii). These values can also be explained by
the difference of slice thickness between MR and histological
images, with a factor of 45%. Future studies will validate the
algorithm with new samples prior to and after chemotherapy to
assess tumor response and will try to translate it to clinical MRI.

Finally, predicted segmentation maps allowed us to assess the
stroma-tumor ratio by ex vivo imaging. Multiple studies have
demonstrated the importance of stroma in ovarian tumorigenesis,
progression, and reduced overall survival (15-17). Our interesting
results linking radiomics stroma heterogeneity and pathology may
explain some of the radiomics associations found by Lu et al,
where their radiomics model was correlated with fibronectin (18).
Future ongoing work will try to translate this ex vivo findings to in
vivo real-time evaluation from 1.5- or 3-T scanners used in
clinical routine.

Our study has several limitations that can be attributed to its
exploratory nature in which the feasibility of a new method was
evaluated. The total sample size was rather small, limiting the
statistical power. Moreover, from the 9 studied specimens, only
four were exploited for the MRM and histology pixel-wise
correlation, reducing this sample size. From the five excluded
samples, three were removed because of the impossibility to
precisely co-register WHSI and MRM images. One of the main
elements that could explain this impossibility concerns fatty
tissue. Indeed, intracellular fat droplets get dissolved during the
preparation of HES slides. While this fatty tissue participates in
maintaining the shape of the tumor, its dissolution can lead to
important deformation of the shape in 3D. However, performing
a pixel-wise correlation allowed us to compensate this weakness
by increasing the number of information.

Only one pathologist and radiologist reviewed the image.
Regarding radiomics analysis, we limited the number of features
extracted to relatively basic texture features giving the small number
of samples. Finally, we only evaluate the stroma tumor globally. As
the stromal component contains a mixture of cells of different
origins, the exact elements in the stroma measured by radiomics
remain unclear. A study to associate radiomics features with each
component in stroma including fibroblast activation, immune cell
infiltration, and extracellular matrix density is necessary to better
understand the link between radiomics and stromal proportion.

5 CONCLUSION

In conclusion, MRM can be optimized to achieve high-resolution
images of HGSOC with images obtained within 3 h of resection.

This technique offers the possibility of providing valuable
information to surgeons in the intraoperative setting.
Furthermore, MRM with radiomics analysis allowed us to
associate radiomics features to tumor and stromal proportion.
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