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Background and Purpose:Machine learning (ML) is emerging as a feasible approach to
optimize patients’ care path in Radiation Oncology. Applications include
autosegmentation, treatment planning optimization, and prediction of oncological and
toxicity outcomes. The purpose of this clinically oriented systematic review is to illustrate
the potential and limitations of the most commonly used ML models in solving everyday
clinical issues in head and neck cancer (HNC) radiotherapy (RT).

Materials and Methods: Electronic databases were screened up to May 2021. Studies
dealing with ML and radiomics were considered eligible. The quality of the included
studies was rated by an adapted version of the qualitative checklist originally developed by
Luo et al. All statistical analyses were performed using R version 3.6.1.

Results: Forty-eight studies (21 on autosegmentation, four on treatment planning, 12 on
oncological outcome prediction, 10 on toxicity prediction, and one on determinants of
postoperative RT) were included in the analysis. The most common imaging modality was
computed tomography (CT) (40%) followed by magnetic resonance (MR) (10%).
Quantitative image features were considered in nine studies (19%). No significant
differences were identified in global and methodological scores when works were
stratified per their task (i.e., autosegmentation).

Discussion and Conclusion: The range of possible applications of ML in the field of HN
Radiation Oncology is wide, albeit this area of research is relatively young. Overall, if not
safe yet, ML is most probably a bet worth making.
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INTRODUCTION

Cancers of the head and neck (HN) region involve anatomically
complex and functionally essential structures, whose damage may
severely compromise quality of life, especially in long-surviving
patients (1). If the management of HN cancers (HNCs) has always
been challenging in Radiation Oncology, in the last years, the
clinical scenario has rapidly evolved, due to changes in the
epidemiology of the disease (2–4), to the introduction of novel
systemic therapies and surgical procedures (5–8) and to the
availability of more sophisticated irradiation techniques (9–11).
Additionally, as for other cancer sites, understanding on HN
neoplasms is taking advantage from progresses in the fields of
radiogenomics and quantitative imaging analysis (12–15). Such
“big data”-based approaches are progressively being integrated into
a more traditional body of knowledge on tumor biology and inter-
patient variability which, arguably, may represent a concrete step
toward a personalized medicine approach (16).

Nevertheless, this increasing amount of information is hardly
manageable by single practitioners, and there is an unprecedented
demand of novel, informatics-based tools to structure and solve
complex clinical questions. To this aim, machine learning (ML)—a
branch of artificial intelligence (AI) relying on patterns and
inference to execute a specific task—could provide Radiation
Oncologists (ROs) with accurate models to optimize patients’
care paths (17).

As compared with statistical methods, ML focuses on the
identification of predictive patterns rather than on drawing
inferences from a sample. Starting from sampling and power
calculations, statistical models aim to assess whether a
relationship between two or more variables describes a true effect
and to interpret the extent of the above-mentioned relationship. A
quantitativemeasure of confidence can therefore beprovided to test
hypothesis and/or verify assumptions (18). By contrast, ML makes
useof general-purpose algorithmswithnoorminimal assumptions.
While this may produce hardly interpretable and generalizable
results,ML can be useful in case of poorly understood and complex
phenomena, when the number of input variable exceeds the
number of subjects and complicated nonlinear interactions are
present (19). However, statistics- andML-basedmodels should not
Abbreviations: AI, artificial intelligence; ANN, Artificial Neural Network; ART,
adaptive RT; AUC, area under the curve; CBCT, cone-beam CT; CI, confidence
interval; CNN, Convolutional Neural Network; CT, computed tomography;
CTCAE, common terminology criteria of adverse events; CTV, clinical target
volume; DMFS, distant metastasis-free survival; DSC, Dice Similarity Coefficient;
FDR, false-discovery rate; GTV, gross tumor volume; GTV-N, GTV-nodal; GTV-
T, GTV-tumor; HD U-net, Hierarchically Densely connected U-net; HN, head
and neck; HNC, HN cancer; IMRT, intensity-modulated RT; IQR, interquartile
range; LASSO, Least Absolute Shrinkage and Selection Operator; LRC, loco-
regional control; MAE, mean absolute error; ML, machine learning; MR, magnetic
resonance; NCDB, National Cancer Database; NPC, nasopharyngeal carcinoma;
NTCP, normal tissue complication probability; OAR, organ at risk; OPC,
oropharyngeal cancer; OS, overall survival; PET, positron emission tomography;
PG, parotid gland; PRISMA, Preferred Reporting Items for Systematic Reviews
and Meta-Analysis; RO, radiation oncologist; ROI, region of interest; RT,
radiotherapy; sCT, synthetic CT; SVM, support vector machine; VGG-16,
Visual Geometry Group-16.
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be regarded as antagonistic andmutually exclusive. As an example,
somemethods (i.e., bootstrapping) canbeused for both the purpose
of statistical inference and for the development ofMLmodels, and a
distinct boundary between the two is not always easily traceable.

The choice of the most suitable ML algorithm to solve a given
problem starts with the characterization of available data, which
can be either labeled (e.g., implemented with additional
information, such as: “this computed tomography (CT) slice
contains the contour of the tumor”) or unlabeled (e.g., data do
not contain any supplementary tag, such as a collection of CT
slices). In the first case, the learning problem is of supervised
nature, meaning that the algorithm uses labeled data (training
set) to assign a class label to unseen, unlabeled instances (test
set). Conversely, unsupervised learning uses unlabeled data to
identify previously undetected patterns in the data set and reacts
to the existence or absence of such patterns in new instances,
without the need of human supervision. However, the aim of the
model is the same: to assign similar, contiguous pixels with the
correct label (PG vs. non-PG) by a computationally efficient and
generalizable algorithm. Other than by input data type, models
can be categorized according to their output. Broadly, if the
output is a number (i.e., grade of acute toxicity per the Common
Terminology Criteria of Adverse Events (CTCAE) system), the
task is defined as a regression problem, if it is a class (i.e., tumor
vs. nontumor), the task is called a classification problem, and if it
is a set of input groups (i.e., clinical and dosimetric variables), it
is a clustering problem.

Following the idea of a “big-data” approach for cancer care,
several publications in the field of Radiation Oncology have
come to life, with algorithms encompassing segmentation
accuracy, treatment planning optimization, and prediction of
both oncological and toxicity outcomes (17, 20–22). A visual
representation of the ML workflow applied in this clinical setting
is provided in Figure 1. Given the lack of comparable efforts in
current literature and the hotness of the topic, we decided to
perform a clinically oriented systematic review of the available
evidence for ML applications in HNCs. In doing so, we also
chose to focus on the methodology of published works and to
rate their quality according to a ML-dedicated checklist by Luo
et al. (23), generated in 2016 by a multidisciplinary panel of
experts in compliance with the Delphi method (24). Ultimately,
our goal is to propagate awareness of ROs on ML applications in
HNCs. Expectantly, this would contribute to fostering further
research and collaboration among different professionals, and to
define a novel, data-driven approach to clinical Radiation
Oncology for this subset of patients.

Autosegmentation
Segmentation of target volumes and organs at risk (OARs) is a
critical component in the Radiation Oncology workflow.
Following the recognition of intensity-modulated radiotherapy
(IMRT) as a standard of care for HNC (25), accurate delineation
has been associated with improved oncological and toxicity
outcomes (26–28). Consequently, minimizing inter- and
intraoperator variability in segmentation is crucial, and several
guidelines have been published and updated to foster
standardization in HNC contouring. Another relevant issue in
November 2021 | Volume 11 | Article 772663
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the current clinical management is the time needed for
completing the segmentation of an HNC case, which
approximates 3.0 h (29): other than representing a significant
commitment to the RO, time represents a limitation toward a
more systematic use of adaptive radiotherapy (ART), which
requires rapid recontouring and replanning (30). In this
context, ML-based autosegmentation holds the promise of
optimizing the clinical management for HNC patients and to
increase consistency and reproducibility of delineated structures.
ML can be implemented to either single or multiple
autosegmentation atlases in order to improve registration and
segmentation performance. Specifically, such model-based
approaches can compare patient’s images with a reference gold
standard (ground truth) and overcome acquired imaging
limitations including low soft tissue contrast and presence of
dental metal artifacts. However, inter- and intrapatient
variability and large computational time for registration
represent two significant pitfalls of the atlas-based approach
(31). Deep learning has the potential to overcome these
limitations and has already found several applications in the
field of computer vision tasks which, as a whole, can be defined as
the automatic extraction, analysis, and understanding of any
relevant information from either a single image or a series of
images through the construction of dedicated datasets (21, 32).

Treatment Planning
Treatment planning for HNC is challenging: expertise in both the
medical (i.e., knowledge of complex HN anatomy and patterns of
disease recurrence, awareness of tolerance of healthy tissues to
irradiation) and in the physical field (i.e., coverage of irregularly
shaped target volumes, multiple dose prescription levels) is
required, and timely delivery of radiotherapy (RT) is mandatory
not to compromise oncological outcomes (33). In recent years, an
increasing body of evidence has demonstrated that geometrical and
anatomical variations canoccurduring the courseof curative-intent
Frontiers in Oncology | www.frontiersin.org 3
treatments for HNC, thus leading to potentially meaningful
modifications in dose distribution. Several variables have been
investigated, and include, but are not limited to, patients’ weight
loss, tumor response, and PG shrinkage (34, 35). The use of ART
can quantify and overcome the dosimetric impact of these
modifications and restore the desirable therapeutic ratio in this
subset of patients (36). Yet, routine implementation of ART in
clinical practice is limited by temporal and logistic issues: CT
rescanning, recontouring, and replanning require efficient
scheduling and execution and involve the whole staff of a
Radiation Oncology Department, from radiation therapists to
medical physicists.

Oncological Outcome Prediction
Outcome prediction is crucial in the field of Radiation Oncology,
especially in the era of personalized treatments. As
deintensification strategies are being tested in clinical trials
(37), and biological and quantitative imaging parameters are
gaining the spotlight as promising prognosticators (38, 39), there
is an increasing need for effective models integrating this growing
body of information (13). A typical problem in outcomes
prediction with ML is the management of time-dependent
endpoints (i.e., overall survival (OS), local control, progression-
free survival). These outcomes, often referred to as “right
censored”, may not have yet occurred at the time of the last
follow-up, but still require to be considered, as they could present
at a later time. Although the pre-processing method for such
variables is often influenced by the ML algorithm of choice, it has
been recognized that inappropriate recognition of right-censored
events may lead to poorly calibrated models (40–43).

Toxicity Outcomes Prediction
Other than achieving disease control by the irradiation of the
gross and clinical tumor volumes (GTV and CTV, respectively),
the optimal radiation treatment plan aims at the preservation of
FIGURE 1 | Machine learning workflow and current applications in Radiation Oncology.
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healthy surrounding structures. Although the introduction of
modern RT techniques has ameliorated the therapeutic ratio,
acute and chronic RT-related toxicities still represent a
significant burden for patients’ quality of life and may
compromise timely treatment delivery (25). In recent years,
refined anatomical knowledge of normal tissues (i.e., the
coexistence of serial and parallel components in architecturally
complex patterns in salivary glands) and the recognition of a
stem cell compartment in healthy organs have shed light on the
need of further improving dose distribution, especially when
curative-intent treatments are delivered (44).

To this aim, the use of spatial dose metrics, such as gradient
and direction, may provide more comprehensive information
than the sole absolute mean and maximum doses (45, 46).
Additionally, genetic determinants are thought to impact on
individual radiosensitivity/radioresistance of healthy tissues as
much as for the 80% (47). ML may combine these emerging
factors with more established determinants of toxicity, such as
patient factors, administration of systemic therapies and absolute
dosimetric parameters (48, 49). Adequate consideration of these
covariables in dedicated algorithms could discriminate the
probability for a given patient to experience a specific toxicity,
and therefore contribute to refine clinical decisions (i.e.,
prophylactic feeding tube positioning in patients at high risk
for severe weight loss) (47, 50).
MATERIALS AND METHODS

Study methodology complied with the outlines of the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) (51). Original manuscripts on ML applications for
HNC were considered eligible for the analysis; publications
encompassing any other cancers were excluded. Interventions
included investigations on (auto)segmentation, treatment
planning, and outcome prediction (either oncological or
toxicity); works whose focus was exclusively diagnostic were
Frontiers in Oncology | www.frontiersin.org 4
considered beyond the scope of the current review. Full papers of
any study design except systematic reviews and case reports were
considered; only works written in English were included.

Search Strategy
Electronic databases (namely, National Center for Biotechnology
Information PubMed, Elsevier EMBASE and Elsevier Scopus)
were screened up to May 2021 without date restrictions by an
author experienced in bibliographic search (SV). Free text,
Boolean operators, truncation, and proximity operators were
tested. No filters were applied, in order not to exclude potentially
relevant publications. The full-search strategy is provided in
Supplementary Materials S1.

Findings from the above-reported search were independently
screened and selected based on titles by two Authors (SV, RS);
disagreements were subsequently discussed in presence of three
other authors (FB, MP, MZ). All types of ML algorithms were
considered eligible for the analysis, as well as studies
encompassing the use of extracted quantitative imaging
features. The selection process is shown in Figure 2, while
Figure 3 provides an overview of the algorithms considered for
the analysis. A more detailed insight of ML models/algorithms
included is provided in Table 1.

Quality Assessment of the
Included Studies
The quality of the studies included in the analysis was rated by an
adapted version of the qualitative checklist originally developed
by Luo et al. for the reporting of predictive modeling in
biomedical research (23). This checklist, compared with others
present in the literature, provides a multidisciplinary overview of
ML models, as it was developed taking into account inputs from
different professional figures usually involved in medical
research, such as clinicians, statisticians, and ML experts. The
organization of the checklist was maintained, and the following
subsections were rated for each study: “Title and abstract”,
“Introduction”, “Methods”, “Results”, and “Discussion”.
FIGURE 2 | Study selection process per the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines.
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Each of the 55 items required a dichotomous answer (yes or no,
coded as 1 and 0, respectively); two items were divided into three
subsections, thus allowing for a maximum achievable score of 58.
The complete adapted Luo scoring system can be reviewed in
detail in Supplementary Materials S2.

Statistical Analysis
Descriptive statistics (median, mean, interquartile range (IQR),
min, max, standard deviation) were provided for global score and
methodological score from the modified Luo classification (23).
Score differences across study groups (per task and use of
quantitative imaging analysis) were assessed with Wilcoxon
sum-rank test (when groups = 2) or Kruskal-Wallis test (when
groups >2) and graphically evaluated with boxplots. p-values
corrected for false-discovery rate (FDR) were also provided to
account for multiple testing, considering a threshold of 0.05. All
statistical analyses were carried out using R version 3.6.1.
RESULTS

Forty-eight studies were included in the analysis: publication
years ranged between 1998 and 2021; with more than a half
having been published after 2018 (56%). Twenty-one (44%)
focused on ML algorithms for autosegmentation, four (8%)
Frontiers in Oncology | www.frontiersin.org 5
were dedicated to treatment planning, 12 (25%) to oncological
outcomes prediction, 10 (21%) to RT-related toxicity, and one
(2%) to the determinants of postoperative RT delays following
surgery for HNC.

Twenty-one works (44%) considered more than one HNC
subsite, while the most common single primary site was the
nasopharynx, which was the focus of seven studies (15%). Of
note, this information was missing in six cases (12%). The most
common imaging modality was CT (40%), followed by magnetic
resonance (MR) (10%). Quantitative image features were
considered in nine studies (19%) and were mainly CT based
(75%). Dosimetric parameters were used in six of the analyzed
works, five on toxicity outcomes prediction, and one on the
identification of candidates to replanning.

Here follows a detailed description of the studies sorted by
main topic, with each topic representing a critical step in the
modern workflow for HNC patients in Radiation Oncology.

Autosegmentation
The majority of the included studies (21/48) focused on the design
of ML algorithms for autosegmentation: seven were for the
segmentation of treating volumes (either CTV or GTV) and 13
for OARs. Considering the former, tumor GTV (GTV-T) was the
target of prediction for six studies; in one of these, the algorithmwas
used for the delineationof thenodalGTV(GTV-N) and theCTVas
FIGURE 3 | Classification of the machine-learning algorithms included in the analysis. *Comprehend: ANN, CNN and FCNN. ANN, Artificial Neural Network; CNN,
Convolutional Neural Network; FCNN, Fully CNN; HMM, Hidden Markov Model; k-NN, k-Nearest Neighbour; MARS, Multiadaptive Regression Splines; PCA, principal
component analysis; PCR, principal component regression; SVC, support vector classifier; SVM, support vector machine.
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TABLE 1 | Summary and definitions of most common machine learning (ML) models.

ML model Abbreviations Application Definition

Artificial
Neural
Network

ANN, NN Classification,
regression,
and clustering

Any set of algorithms modeled on human brain neuronal connections

Active Shape
Model

ASM Segmentation Model-based method to compare an image reference model with the image of interest

Bayesian
Bagging
(Bootstrap
AGGregatING)

BB Classification
and
regression

Bayesian analog of the original bootstrap. Bootstrap samples of the data are taken, the model is fit to each sample,
and the predictions are averaged over all of the fitted models to get the bagged prediction

Boosting – Classification
and
regression

Boosting is a generic algorithm rather than a specific model. Boosting needs a weak model (e.g., regression, shallow
decision trees, etc.) as a starting point and then improves it

Bootstrap
aggregating

– Classification
and
regression

Meta-algorithm designed to improve the stability and accuracy of ML algorithms used in statistical classification and
regression. It also reduces variance and helps to avoid overfitting. Although it is usually applied to decision tree
methods, it can be used with any type of method

Classification
and
Regression
Tree

CART Classification
and
regression

Predictive model which predicts an outcome variable value based on other values. A CART output is a decision tree
where each fork is a split in a predictor variable and each end node contains a prediction for the outcome variable

Convolutional
Neural
Network
(CNN)

CNN, NN Classification,
regression,
and clustering

Ordinary NN which implements convolution (mathematical operation on 2 functions producing a third function
expressing how the shape of the first one is modified by the second one), in at least 1 of its layers. Most commonly,
inputs are images

C4.5 – Classification An algorithm used to generate a decision tree. The decision trees generated by C4.5 can be used for classification,
and for this reason, this algorithm is often referred to as a statistical classifier

Decision tree DT Classification
and
regression

Algorithm containing conditional control statements organized in the form of a flowchart-like structure, also called
tree-like model. Paths from roots to leaves represent classification rules, while each node is a class label (decision
based on the computation of the attributes)

Decision
stump

DS Classification
and
regression

Model consisting of a 1-level decision tree, a tree with an internal node (root) immediately connected to the terminal
nodes (its leaves). A DS makes a prediction based on the value of just a single input feature. Sometimes they are
also called 1xrules

Fully
Convolutional
Neural
Network

FCNN Classification,
regression,
and clustering

A deep learning model based on traditional CNN model. A FCNN is one where all the learnable layers are
convolutional, so it does not have any fully connected layer.

Incremental
Association
Markov
Blanket

IAMB Features
selection

Feature selection method

Least
Absolute
Shrinkage
and Selection
Operator

LASSO Feature
selection

A regression analysis method that performs both variable selection and regularization in order to enhance the
prediction accuracy and interpretability of the statistical model

Likelihood-
Fuzzy
Analysis

LFA Classification A method used for translating statistical information coming from labeled data into a fuzzy classification system with
good confidence measure in terms of class probabilities and interpretability of the fuzzy classification model, by
means of semantically interpretable fuzzy partitions and if–then rule

Linear
discriminant
analysis

LDA Classification A method used to find a linear combination of features that characterizes or separates 2 or more classes of objects
or events

Logistic
regression

LR Classification A statistical model that uses a logistic function to model a binary dependent variable

k-Nearest
Neighbors

k-NN Classification
and
regression

Non-parametric algorithm that classifies data points based on their similarity (also called distance or proximity) with
the objects (feature vectors) contained in the collection of known objects (vector space or feature space)

Multiadaptive
Regression
Splines

MARS Regression It is a nonparametric regression technique, extension of linear models that automatically models nonlinearities and
interactions between variables

Multivariate
Regression
Model for
Reserving

MRMR Features
selection

Supervised feature selection algorithm which requires both the input features, and the output class labels of data.
Using the input features and output class labels, MRMR attempts to find the set of features which associate best
with the output class labels, while minimizing the redundancy between the selected features

(Continued)
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well. Additionally, one study aimed at the sole segmentation of the
left and right II–IV nodal levels. A fully automated approach was
used in all but one study (52). Overall, all models included in the
analysis compared favorably with either competing, previously
published algorithms, or with the ground truth represented by
manual segmentation (52–55). Specifically, the latter showed an
overlap with the manual contours measured by the Dice Similarity
Coefficient (DSC) ranging from0.766 to 0.809 forGTV-T and from
0.623 to 0.698 forGTV-N(54, 55).Theonly study inwhich theCTV
was autosegmented showed a good agreement with manual
delineation, achieving a DSC of 0.826, and outperforming the
results of the previously published convolutional neural network
(CNN), visual geometry group-16 (VGG-16) (55). Notably, the use
of a semiautomatedmethod for GTV-T segmentation proved to be
less time consuming and correlated with an increase in the intra-
and interoperator agreement when compared with fully manual
segmentation (52).

Among algorithms for OAR delineation, studies were
heterogeneous in the choice of the target(s) of segmentation.
Frontiers in Oncology | www.frontiersin.org 7
The majority of studies (12/13) considered PG segmentation as a
primary endpoint (56–68), with the PG being the only
considered region of interest (ROI) in four of the selected
works (63, 65–67). The segmentation performance assessed by
the DSC for all OARs investigated in the included studies is
provided in Table 2.

Overall, autosegmentation studies were mainly CT based (13/
21); in decreasing order of frequency were MR (three of 21), CT +
MR (two of 21), positron emission tomography (PET, two of 21),
and CT + PET (one of 21). Sample size varied considerably,
ranging from 5 to 486 (median: 46, IQR: 15–166).

A complete description of individual studies characteristics is
provided in Table 3.

Treatment Planning
Of the included studies, two focused on the identification of
predictive factors for replanning (74, 75). Guidi et al. (74) used
support vector machine (SVM) on a retrospectively collected
cohort of 40 HNC patients and 1,200 megavoltage CTs to
TABLE 1 | Continued

ML model Abbreviations Application Definition

Naive Bayes NB Classification Applies Bayes’ theorem to calculate the probability of an hypothesis to be true assuming prior knowledge and a
strong (therefore, naive) degree of independence between the features

Partial least
squares and
principal
component
regression

PLSR and
PCR

Regression Both methods model a response variable when there are a large number of predictor variables, and those predictors
are highly correlated. Both methods construct new predictor variables, known as components, as linear
combinations of the original predictor variables. PCR creates components to explain the observed variability in the
predictor variables, without considering the response variable at all. PLSR does take the response variable into
account, and therefore often leads to models that are able to fit the response variable with fewer components

Principal
component
analysis

PCA Clustering Captures the maximum variance in the data into a new coordinate system whose axes are called “principal
components,” to reduce data dimensionality, favor their exploration, and reduce computational cost

Penalized
logistic
regression

PLR Classification PLR imposes a penalty to the logistic model for having too many variables. This results in shrinking the coefficients of
the less contributive variables toward zero. This is also known as regularization

Random
forest (RF)/
Random
forest
classification
(RFC)

RF, RFC Classification
and
regression

Operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of
the classes (classification) or mean prediction (regression) of the individual trees

Relief – Features
selection

An algorithm that takes a filter-method approach to feature selection that is notably sensitive to feature interactions.
Relief calculates a feature score for each feature which can then be applied to rank and select top scoring features
for feature selection

Random
survival forest

RSF Survival A nonparametric method for ensemble estimation constructed by bagging of classification trees for survival data, has
been proposed as an alternative method for better survival prediction and variable selection

Rescorla
Wagner
model

RW Classification,
clustering

Rescorla Wagner model is a model of classical conditioning, in which learning is conceptualized in terms of
associations between conditioned and unconditioned stimuli

Stochastic/
Gradient
Boosting

– Classification
and
regression

A ML technique which produces a prediction model in the form of an ensemble of weak prediction models, typically
decision trees

Support
Vector
Classifier

SVC Classification The objective linear SVC is to fit to the provided data and returns a “best-fit” hyperplane that divides, or categorizes
them

Support
vector
machine

SVM Classification
and
regression

The SVM is based on the idea of finding a hyperplane that best divides the support vectors into classes. The SVM
algorithm achieves maximum performance in binary classification problems, even if it is used for multiclass
classification problems

U-net
architecture

– Segmentation U-Net is a CNN that was developed for biomedical image segmentation. The main idea is to supplement a usual
contracting network by successive layers, where pooling operations are replaced by up sampling operators. Hence,
these layers increase the resolution of the output. A successive convolutional layer can then learn to assemble a
precise output based on this information
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recognize those who could benefit from ART based on weekly
anatomical and dosimetric divergences in CTV and OARs
(namely, spinal cord, mandible, and PGs) during the course of
treatment. Specifically, the authors could demonstrate that from
the fourth week, 77% of patients underwent significant
morphological and dosimetric changes, advocating the need for
replanning. Of note, PGs were the most prone to modifications,
with significant variations from the original plan occurring as
early as from the third week of treatment. In the second study, Yu
et al. (75) used radiomic features from contrast-enhanced T1-
weighted and T2-weighted pre-RT MR images and Least
Absolute Shrinkage and Selection Operator (LASSO) logistic
regression to build models predicting the need of treatment
replanning in a retrospective cohort of 70 patients with
nasopharyngeal carcinoma (NPC). The combined T1–T2
model outperformed the ones based on either single MR
sequence, with average areas under the curve (AUCs) in the
training and testing sets of 0.984 (95% confidence interval (CI):
0.983–0.984) and 0.930 (95% CI: 0.928–0.933), respectively, and
six radiomic features selected as significant.

A third study on ML for RT planning was published by
Nguyen et al. (76) and focused on the use of a hierarchically
densely connected U-net architecture (HD U-net) to predict
three-dimensional dose distribution for the planning target
volume and 22 OARs in a retrospectively retrieved population
of 120 HNC patients. When compared with two variant net
architectures (namely, Standard U-net and DenseNet), the
proposed algorithm showed better performance in the
prediction of the maximum and mean dose to the OARs,
better dose homogeneity, conformity, and coverage on the test
Frontiers in Oncology | www.frontiersin.org 8
data. Additionally, the HD U-net requires fewer trainable
parameters and a reduced computational time when compared
with the Standard U-net and with the DenseNet, respectively.

Finally, Thummerer et al. (77) in their study compared
synthetic CT images (sCTs) derived from cone-beam CTs
(CBCTs) and MRs for HN patients in terms of both image
quality and accuracy in proton dose calculation, considering
planning CTs as the ground truth. Image quality was quantified
through mean absolute error (MAE) and DSC. The sCTs from
CBCTs provided higher image quality with an average MAE of
40 ± 4 HU and a DSC of 0.95, while for MR-based sCTs a MAE
of 65 ± 4 HU and a DSC of 0.89 were observed. Overall, the study
reports that CBCT- and MR-based sCTs have the potential to be
reliably implemented into the ART workflow for proton therapy
application, thus overcoming the need of performing multiple
planning CTs.

Oncological Outcome Prediction
Overall, 12 of the included studies considered oncological
outcomes following curative-intent treatment as their target of
prediction. In details, six studies (40, 42, 78–81) aimed at
predicting OS, while five (40, 82–85) considered loco-regional
control (LRC) and one (86) distant metastasis-free survival
(DMFS). Only two works focused on more than one
oncological outcomes (40, 87). Feature selection methods were
applied in two cases (40, 42), both studies used radiomic features
extracted from the GTV as input parameters for outcome
prediction. Other than these works, four additional
publications included texture analysis; overall, features were
derived from CT images in two works (40, 86), from MR
TABLE 2 | Reported Dice Similarity Coefficient (DSC) in literature for different organs.

Organ No. of studies (N = 14) Reference papers DSC (median, IQR range)

PG 13 56–67, 100 0.84 (0.83–0.86)
Mandible 9 56–61, 64, 67, 100 0.93 (0.90–0.94)
Brainstem 8 56–61, 67, 100 0.86 (0.84–0.89)
Optic nerves 7 56, 58–61, 64, 67 0.69 (0.67–0.71)
Submandibular glands 7 56, 58–61, 64, 67, 100 0.80 (0.76–0.81)
Chiasm 5 56, 59, 61, 64, 68 0.532 (0.412–0.581)
Spinal cord 4 57, 58, 60, 64 0.88 (0.77–0.96)
Oral cavity 3 57, 58, 100 0.90 (0.80- 0.91)
Eyeballs 2 57, 64 0.91
Lenses 2 57, 60 0.86
Temporomandibular joint 2 57, 64 0.85
Cochleae 2 58, 60 0.82a

Pharyngeal constrictors 2 58 0.57b

Glottic region 2 58, 100 0.57c

Brain 1 60 0.99c

Lacrimal glands 1 60 0.65c

Orbits 1 60 0.93c

Spinal canal 1 60 0.84c

Lungs 1 60 0.98
Upper esophagus 1 58 0.69
Supraglottic larynx 1 58 0.77
Larynx 1 57 0.87
Mastoids 1 57 0.82
Whole pharynx 1 64 0.69
November 2021 |
aVandewinckele et al. (57) achieved a DSC of 0.65 with the use of CNN and Nikolov et al. (59) a DSC of 0.982 by a 3D U-Net.
bThe reported DSC was computed as an average of inferior, medial and superior.
cThe average value of two (in some cases three) models was considered.
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TABLE 3 | Characteristics for machine-learning studies on autosegmentation.

Author, year
of publication

Study
population

HN
subsite

Imaging
modality

Textural
and

dosimetric
parameters

ROI(s) Tested ML
algorithm(s)

Statistical findings and model performance

Brunenberg
et al., 2020
(68)

58 pts Mixed CT – PGs, SMGs, thyroid,
buccal mucosa,
extended OC,
pharynx constrictors,
cricopharyngeal inlet,
supraglottic area,
MNDB, BS

Commercially
available DL
model; external
validation

The best performance was reached for the MNDB
(DSC 0.90; HD95 3.6 mm); the agreement was
moderate for the aerodigestive tract with the
exception of the OC. The largest variations were in
the caudal and/or caudal directions (binned
measurements).

Ma et al., 2019
(69)

90 pts NPC CT and
MR

– GTVs CNNs Both M-CNN and C-CNN showed better
performance on MR than on CT. C-CNN
outperformed M-CNN in both CTs (higher mean Sn,
DSC, and ASSD, comparable mean PPV) and MR
applications (higher mean PPV, DSC, and ASSD,
comparable mean Sn)

Vandewinckele
et al., 2019
(58)

9 pts Mixed CT – Cochlea, BS, upper
esophagus, glottis
area, MNDB, OC,
PGs, inferior, medial
and superior PCMs,
SC, SMGs,
supraglottic Lar

CNN The longitudinal CNN is able to improve the
segmentation results in terms of DSC compared with
the DIR for 6/13 considered OARs. The longitudinal
approach outperforms the cross-sectional one in
terms of both DSC and ASSD for 6 different organs
(BS, upper esophagus, OC, PGs, PCM medial, and
SMGs)

Hänsch et al.,
2018 (63)

254 pts, 254 R
PGs, 253 L
PGs

Mixed CT – Ipsi- and
contralateral PGs

DL U-net The 3 ANNs showed comparable performance for
training and internal validation sets (DSC ≈0.83). The
2-D ensemble and 3-D U-net showed satisfactory
performance when externally validated (AUC and
DSC: 0. 865 and 0.880, respectively; 2-D U-net
omitted)

Mocnik et al.,
2018 (62)

44 pts Not
specified

CT and
MR

– PGs CNN The multimodal CNN (CT + MR) compared favorably
with the single modality CNN (CT only) in the 80.6%
of cases. Overall, DSCs value were 78.8 and 76.5,
respectively. Both multi- and single-modality CNNs
showed satisfactory registration performance

Nikolov et al.,
2018 (60)

486 pts, 838
CT scans for
training, test
and internal
validation; 46
pts and 45 CT
scans for
external
validation

Mixed CT – Brain, BS, L and R
cochlea, L and R
LG, L and R Lens, L
and R Lung, MNDB,
L and R ON, L and
R Orbit, L and R
PGs, SC, L and R
SMG

3D U-Net The segmentation algorithm showed good
generalizability across different datasets and has the
potential of improving segmentation efficiency. For
19/21 performance metrics (surface and volumetric
DSC) were comparable with experienced
radiographers; less accuracy was demonstrated for
brainstem and R-lens

Ren et al.,
2018 (70)

48 pts Not
specified

CT – Chiasm, L and R ON 3D-CNNs The proposed segmentation method outperformed the
one developed by the MICCAI 2015 challenge winner
for all the considered ROIs (DSC chiasm: 0.58 ± 0.17
vs. 0.38; DSC ONs 0.71 ± 0.08 vs. 0.68)

Tong et al.,
2018 (61)

32 pts Not
specified

CT – L and R PGs, BS,
Chiasm, L and R
ONs, MNDB, L and
R SMG

FCNN with and
without SRM

Accuracy and robustness of the model were
improved when incorporating shapes prior to SRM
use for all considered ROIs. Segmentation results
were satisfactory, ranging from DSC values of 0.583
for the chiasm to 0.937 for the MNDB. Average time
for segmenting the whole structure set was 9.5 s

Zhu et al.,
2018 (59)

271 CT scans Not
specified

CT – BS, Chiasma,
MNDB, L and R ON,
L and R PG, L and
R SMG

Implemented
3D U-Net
(AnatomyNet)

The AnatomyNet allowed for an average improvement
in segmentation performance of 3.3% (DSC) as
compared with previously published data of the
MICCAI 2015 challenge. Segmentation time was 0.12
s for the whole structure set.

Doshi et al.,
2017 (53)

10 pts/102 MR
slices

Mixed MR – GTVs FCLSM PLCSF showed a good performance vs the
consensus manual outline (DSC: 0.79, RAD: 39.5%,
MHD: 2.15, PCC: 0.89, p < 0.05) and outperformed

(Continued)
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TABLE 3 | Continued

Author, year
of publication

Study
population

HN
subsite

Imaging
modality

Textural
and

dosimetric
parameters

ROI(s) Tested ML
algorithm(s)

Statistical findings and model performance

2 Ncut and MS clustering algorithms (the former
being less accurate for small lesions and for low-
contrast regions and more computationally
demanding, the latter leading to more frequent over-
segmentation)

Ibragimov
et al., 2017
(64)

50 pts Not
specified

CT – SC, MNDB, PGs,
SMGs, Lar, Phar, R
and L EB, R and L
ON, optic chiasm

CNN-MRF Model performance was satisfactory for almost all
considered OARs (DSC values as follows—spinal
cord: 87 ± 3.2; mandible: 89.5 ± 3.6; PGs DSC: 77.3
± 5.8; submandibular glands DSC: 71.4 ± 11.6; Lar
DSC: 85.6 ± 4.2; phar DSC: 69.3 ± 6.3; eye globes
DSC: 88.0 ± 3.2; optic ONs DSC: 62.2 ± 7.2; optic
chiasm: 37.4 ± 13.4)

Liang et al.,
2017 (55)

185 pts NPC CT – BS, R and L EB, R
and L lens, Lar, R
and L MNDB, OC, R
and L MAS, SC, R
and left PG, R and L
T-M, R and L ON

CNNs (ODS-
net)

ODS-net showed satisfactory Sn and Sp for most
OARs (range: 0.997–1.000 and 0.983–0.999,
respectively), with DSC >0.85 when compared with
manually segmented contours. ODS-net
outperformed a competing FCNN (p < 0.001 for all
organs). Image delineation was faster in ODS than in
FNC, as well, with average time of 30 vs. 52 s,
respectively

Men et al.,
2017 (55)

230 pts NPC CT – GTV-T, GTV-N, CTV DDNN DDNN generated accurate segmentations for GTV-T
and CTV (ground truth: manual segmentation), with
DSC of 0.809 and 0.826, respectively, Performance
for GTV-N was less satisfactory (DSC: 0.623). DDNN
outperformed a competing model (VGG-16) for all the
analyzed segmentations

Stefano et al.,
2017 (72)

4 phantom
experiments+
18 pts/40
lesions

Mixed PET – GTVs RW Both the K-RW and the AW-RW compare favorably
with previously developed methods in delineating
complex-shaped lesions; accuracy on phantom
studies was satisfactory

Wang et al.,
2017 (56)

111 pts Mixed CT – Cochlea, BS, upper
esophagus, glottis
area, MNDB, OC,
PGs, inferior, medial
and superior PCMs,
SC, SMGs,
supraglottic Lar

3D U-Net The model showed satisfactory performance for most
of the 9 considered ROIs; when compared with other
models, it ranked first in 5/9 cases (L and R PG, L
and R ON, L SMG), and second in 4/9 cases

Beichel et al.,
2016 (52)

59 pts/230
lesions

Mixed PET – GTVs Semiautomated
segmentation
(LOGISMOS)

Segmentation accuracy measured by the DSC was
comparable for semiautomated and manual
segmentation (DSC: 0.766 and 0.764, respectively)

Yang et al.,
2014 (65)

15 pts/30 PGs/
57 MRs

Mixed MR – Ipsi- and
contralateral PGs

SVM Average DSC between automated and manual
contours were 91.1% ± 1.6% for the L PG and
90.5% ± 2.4% for the R PG. Performance was
slightly better for the L PG, also when assessed per
the averaged maximum and average surface distance

Cheng G et al.,
2013 (66)

5 pts, 10 PGs NPC MR – Ipsi- and
controlateral PGs

SVM Mean DSC between automated and physician’s PG
contours was 0.853 (range: 0.818–0.891)

Qazi et al.,
2011 (67)

25 pts Not
specified

CT I MNDB, BS, L and R
PG, L and R SMG, L
and R node level IB,
L and R node levels
II–IV

Atlas based
segmentation

As compared with manual delineations by an expert,
the automated segmentation framework showed high
accuracy with DSC of 0.93 for the MNDB, 0.83 for
the PGs,.83 for SMGs and 0,.74 for nodal levels

Chen et al.,
2010 (54)

15 pts/15 neck
nodal levels

Mixed CT – II, III, and IV neck
nodal levels

ASM The ASM outperformed the atlas-based method
(ground truth: manually segmented contours), with
higher DSC (10.7%) and lower mean and median
surface errors (−13.6% and −12.0%, respectively)
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images in one (84) and from multiple diagnostic modalities in
the remaining three cases (42, 82, 83).

A single disease subsite was considered by two studies, with
Zdilar et al. (40) including only patients with oropharyngeal
cancer (OPC), and Jiang et al. focusing on patients diagnosed
with neoplasms of the nasopharynx. Conversely, Bryce et al. (79)
and Parmar et al. (42) applied ML to mixed HNC populations;
information on subsite distribution could be retrieved in only
one case (79). Despite relevant heterogeneity in the choice of ML
algorithms and populations, the best performing models in each
study reached an AUC between 0.72 and 0.78; the best
performance was reached by the only study using Artificial
Neural Networks (ANNs) (79).

LRC was the target of prediction in four cases (40, 82–84);
population size varied considerably, from the 32 NPC patients
included in the study by Tran et al. (82) to the 529 patients
diagnosed with OPC in the study published by Zdilar et al. (40).
All studies considered the radiomic features extracted from the
pretreatment GTV as input parameters for model construction.
Three studies evaluated ML models through AUC values (40, 82,
83), with the best performing models being k-nearest neighbors
and ANNs; Fujima et al. (84) assessed the performance of their
nonlinear SVM models by sensibility, specificity, and positive
and negative predictive values (for further details, please refer
to Table 4).

Lastly, the prediction of DMFS was the objective of one study
(86). Wu et al. proved that the incorporation of pre- and mid-
treatment radiomic features extracted from both the primary and
nodal GTVs improved the performance of random survival
forest models trained and validated on a cohort of 140 locally
advanced OPC patients (86).

Toxicity Outcome Prediction
A total of 11 studies focused on RT-induced toxicities; in each
publication algorithms were developed for addressing the
prediction task on a single outcome (i.e., xerostomia, dysphagia).

Four studies (), predominantly encompassing multiple HN
subsites, focused on xerostomia prediction; all but one included
Frontiers in Oncology | www.frontiersin.org 11
dosimetric parameters in the data set (88). The PGs were the only
considered ROI except for the work by Guo et al. (89), where the
submandibular glands were included. Despite the common
clinical focus, different endpoints for the task of xerostomia
prediction were considered. Acute xerostomia was the focus of
one study, which aimed to predict parotid shrinkage (88), late
xerostomia was investigated in one publication (45), while the
development of xerostomia at any time following RT was
considered by Soares et al. (90). Gabrys et al. built distinct
algorithms for the prediction of early, late, and long-term
xerostomia; longitudinal models were developed as well (91).
Notably, ML-based classifiers outperformed classic Normal
Tissue Complication Probability (NTCP) models based on the
sole mean dose to the parotids, thus underlying the need of
incorporating multiple parameters for accurate outcome
prediction (i.e., gland volume and dose gradients in the right-
left and anterior-posterior direction for long-term xerostomia).
Overall, sample size was comparable across studies focusing on
xerostomia prediction (138–153), except for the one by Pota
et al., which analyzed 21 patients (88).

The remaining studies presented different toxicity outcomes
(namely, acute dysphagia, weight loss at 3 months following the
end of RT, osteoradionecrosis, sensorineural loss, and brain
injury) (46, 92–95). A full list of the developed algorithms and
statistical findings for all studies included in this subsection is
provided in Table 5.

Checklist Scores
Considering a maximum achievable score of 58 in the adapted
Luo rating system for ML applications in biomedical research,
median score of the included studies was 39 (IQR: 36–44), with
minimum and maximum values being 27 and 53, respectively.
When analyzing the Methods items only, median rank was 22
(IQR: 20–25), with the worst and best scores being 15 and 32,
respectively. As it can be noted in Figure 4, the groups achieved
comparable scores and no statistically significant difference was
noted in studies global and methodological ranking (p = 0.48 and
0.67, respectively; FDR-corrected p = 0.62 and 0.67, respectively).
TABLE 3 | Continued

Author, year
of publication

Study
population

HN
subsite

Imaging
modality

Textural
and

dosimetric
parameters

ROI(s) Tested ML
algorithm(s)

Statistical findings and model performance

Yu et al., 2009
(73)

10 pts/10 GTV-
T and 19 GTV-
N

Mixed PET and
CT

I GTVs KNN The feature-based classifier showed better
performance than other delineation methods (e.g.
standard uptake value of 2.5, 50% maximal intensity
and signal/background ratio)
2D/3D, 2/3-dimensional; ANN, Artificial Neural Network; ASM, active shape model; ASSD, average symmetric surface distance; AW-RW, K-RW algorithm with adaptive probability
threshold; BS, brainstem; CNN, convolutional neural network; C-CNN, combined CNN, CT, computed tomography; CTV, clinical target volume; D, dosimetric; DDNN, deep
deconvolutional neural network; DIR, deformable image registration; DL, deep learning; DSC, Dice Similarity Coefficient; EB, eyeball; FCLSM, modified fuzzy c-means clustering
integrated with the level set method; FCNN, fully convolutional neural network; GTV-N, nodal-gross tumor volume; GTV-T, tumor-gross tumor volume; HD, Hausdorff distance; I, imaging;
KNN, k-nearest neighbors; K-RW, RW algorithm with K-means; L, left; Lar, larynx; LG, lacrimal gland; LOGISMOS, layered optimal graph image segmentation of multiple objects and
surfaces; M-CNN, multimodality convolutional neural network; MHD, modified Hausdorff distance; MICCAI, Medical Image Computing and Computer Assisted Intervention; MNDB,
mandible; MR, magnetic resonance; MRF, Markov random field; MAS, mastoid; MS, mean shift; Ncut, normalized cut; NPC, nasopharyngeal carcinoma; OAR, organ at risk; LG, lacrimal
gland; OC, oral cavity; ODS-net, organs at risk detection and segmentation network; ON, optic nerve; p, p-value; PCC, Pearson correlation coefficient; PCM, pharyngeal constrictors
muscles; PET, positron emission tomography; PG, parotid gland; Phar, pharynx; PLCSF, pharyngeal and laryngeal cancer segmentation framework; PPV, positive predictive value; pt,
patient; R, right; RAD, relative area difference; ROI, region of interest; RW, Rescola Wagner; SC, spinal cord; s, second; SMG, submandibular gland; Sn, sensitivity; Sp, specificity; SRM,
shape representation model; SVM, support vector machine; VGG-16, visual geometry group-16.
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TABLE 4 | Characteristics for machine-learning studies on oncological outcome.

Authors,
publication
year

Sample
study

population

HN
subsite

Clinical
endpoint

Imaging
modality

Textural
and

dosimetric
parameters

ROI(s) Tested ML
algorithm(s)

Statistical findings and model performance

De Felice et
al, 2020 (80)

273 pts OPC OS prediction
in OPC pts
treated with
IMRT

None – None Decision trees The most relevant clinical variables identified were HPV
status, nodal stage and early complete response to
IMRT

Howard et
al, 2020 (81)

33,527 pts Mixed OS prediction
in HNC pts
with
intermediate
risk factors
treated with
adjuvant CHT-
RT or RT;
identification
of which pts
may benefit
from CHT-RT

None – None DeepSurv,
RSF, N-MLTR

Indication to treatment according to model
recommendations was associated with a survival benefit;
the best performance was achieved by DeepSurv, with
an HR of 0.79 (95% CI, 0.72–0.85; p < 0.001). No
survival benefit was observed for CHT in case pts were
recommended for RT alone

Starke et al,
2020 (85)

291 pts Mixed LRC in locally-
advanced HN
SCC treated
with primary
CHT-RT

CT – GTVs 3D- and 2D-
CNNs (from
scratch,
transfer
learning and
extraction of
deep
autoencoder
features)

The best performance was achieved by an ensemble of
3D-CNNs (C-index = 0.31 on the external validation
cohort); the model yielded a satisfactory performance in
discriminating high- vs. low-risk LRC (p = 0.001)

Tseng et al,
2020 (87)

334 pts OC Risk
stratification of
locally-
advanced OC
pts treated
with surgery

None – None Elastic net
penalized

The incorporation of genetic information to
clinicopathologic data led to better model performance
for the prediction of both CSS and LRC, as compared
with models using clinicopathologic variables alone
(mean C index, 0.689 vs. 0.673; p = 0.02 for CSS and
0.693 vs. 0.678; p = 0.004 for LRC). No such difference
was noted for the prediction of DMFS

Cox
proportional
hazards
regression-
based risk
stratification
model

Fujima et al.,
2019 (84)

36 pts SNC LC following
superselective
arterial CDDP
infusion and
concomitant
RT

MR I GTVs
(necrotic
and cystic
areas
excluded)

Nonlinear SVM Mean Sn: 1.0, Sp 0.82, PPV 0.86, NPV 1.0 (on validation
data sets, 9-fold crossvalidation scheme used)

Tran et al.,
2019 (82)

32 pts NPC RT response
of metastatic
nodes by
ultrasound-
derived
radiomic
markers

CT, MR,
EUS

– GTVs LR, naive
Bayes, and k-
NN

There was a statistically significant difference in the
pretreatment QUS-radiomic parameters between
radiological complete responders vs. partial responders
(p < 0.05). The best classification was achieved by k-NN
with a single feature, SS-contrast (AUC = 0.866 [0.73;
1.01]); %Sn = 85.8; %Sp = 97.3; %Acc = 91.5)

Wu et al.,
2019 (86)

140 pts OPC DMFS CT I Baseline
and mid-
treatment
GTV-T
and GTV-
N

RSF Better performance on testing set was achieved by the
model incorporating mid-treatment characteristics (C-
index: 0.73, p = 0.008) vs. the model based on
pretreatment CT features alone. The main features for
DMFS prediction were: maximum distance among
nodes, maximum distance between tumor and nodes
(mid-treatment), and pretreatment tumor sphericity

Li et al.,
2018 (83)

306 pts NPC Analyze the
recurrence
patterns in pts
with NPC
treated with
IMRT

CT, MR
and PET

I GTVs ANN, k-NN,
and SVM

NPC-IFRs vs NPC-NPDs could be differentiated by 8
features (AUCs: 0.727–0.835). The classification models
showed potential in prediction of NPC-IFR with higher
accuracies (ANN: 0.812, KNN: 0.775, SVM: 0.732)
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TABLE 4 | Continued

Authors,
publication
year

Sample
study

population

HN
subsite

Clinical
endpoint

Imaging
modality

Textural
and

dosimetric
parameters

ROI(s) Tested ML
algorithm(s)

Statistical findings and model performance

Zdilar et al.,
2018 (40)

529 pts,
>3,800
radiomic
features

OPC OS and RFS CT I GTVs Feature
selectors:
MRMR,
Wilcoxon rank
sum test, RF,
RrliefF, RRF,
IAMB, RSF,
PCA

RF features selectors achieved the best performance for
both OS prediction (AUC: 0.75, C-index: 0.76,
calibration: 0.87) and. RFS (AUC: 0.71, C-index 0.68,
calibration: 19.1). The ensemble model (clinical+
radiomic) yielded the best scores for AUC and C-index in
all cases

Predictive
models: LR,
CPH, RF, RSF,
logistic elastic
net, ensemble
models

Jiang et al.,
2015 (78)

347 pts NPC OS prediction
in pts with ab
initio
metastatic
NPC (M1a vs.
M1b)

None – None SVM The SVM classifier showed good performance at internal
validation (AUC: 0.761, Sn 80.7%, Sp: 71.3%), while
performance was less satisfactory when externally
validated (AUC: 0.633)

Parmar
et al., 2015
(42)

136 pts Mixed OS CT and
PET

– GTVs Feature
selectors:
RELF, FSCR,
Gini, JMI,
CIFE, DISR,
MIM, CMIM,
ICAP, TSCR,
MRMR, MIFS,
Wilcoxon

The three feature selection methods minimum
redundancy maximum relevance (AUC = 0.69, stability =
0.66), mutual information feature selection (AUC = 0.66,
stability = 0.69) and conditional infomax feature
extraction (AUC = 0.68, stability = 0.7) had high
prognostic performance and stability. The highest
prognostic performance was achieved by GLM (median
AUC ± SD: 0.72 ± 0.08) and PLSR (median AUC ± sd:
0.73 ± 0.07), whereas BAG (AUC = 0.55 ± 0.06), DT
(AUC: 0.56 ± 0.05), and BST (AUC = 0.56 ± 0.07)
showed lower AUC values. RF (RSD = 7.36%) and BAG
(9.27%) were more stable classification methods,
whereas PLSR (RSD = 12.75%) and SVM (RSD =
12.69%) showed lower stability

Predictive
models: NN,
Decision tree,
Boosting,
Bayesian
Bagging, RF,
Multi adaptive
regression
splines
(MARS), SVM,
k-NN, GLM,
partial least
squares, and
principal
component
regression

Bryce et al.,
1998 (79)

95 pts Mixed Survival
prediction in
pts with
advanced HN
SCC treated
with RT ±
chemotherapy

None – None LR, ANN ANNs compared favorably with LR models at survival
prediction, with a AUC of 0.78 ± 0.05 for the best ANN
and of 0.67 ± 0.05 for the best LR model. The best ANN
outperformed the modified AJCC TNM 4th edition in
survival prediction, as well. Incorporated clinical
parameters for the ANN were: tumor size, tumor
resectability, nodal stage, tumor stage, and baseline
hemoglobin levels
Frontiers in On
cology | www
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ANN, Artificial Neural Network; AUC, area under the curve; CDDP, cisplatin; CHT, chemotherapy; CIFE, conditional infomax feature extraction; CMIM, conditional mutual information
maximization; CNN, convolutional neural network; CSS, cancer-specific survival; CT, computed tomography; D, dosimetric; DISR, double input symmetric relevance; DMFS, distant
metastasis free survival; GTV, gross tumor volume; HN, head and neck; HR, Hazard ratio; I, imaging ICAP, interaction capping; IMRT, intensity modulated RT; JMI, joint mutual information;
k-NN, k-nearest neighbor; LC, local control; LR, logistic regression; LRC, loco-regional control; MARS, multiadaptive regression splines; MIFS, mutual information feature selection; MIM,
mutual information maximization; MR, magnetic resonance; MRMR, minimum redundancy maximum relevance; NN, neural network; N-MLTR, neural network multitask logistic regression;
NPC, nasopharyngeal cancer; OC, oral cavity cancer; OPC, oropharyngeal cancer; OS, overall survival; PET, positron emission tomography; PLSR, partial least square regression; RF,
random forest; RFS, relapse-free survival; RSD, relative standard deviation; RSF, random survival forest; RT, radiotherapy; SCC, squamous cell carcinoma; SN, sinonasal cancer; SVM,
support vector machine; TSCR, t-test score.
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TABLE 5 | Characteristics for machine learning studies on toxicity outcome.

Author,
year of
publication

Study
population

HN subsite(s) Clinical endpoint Imaging
modality

Textural
and

dosimetric
parameters

ROI(s) Tested ML
algorithm(s)

Statistical findings and
model performance

Humbert-
Vidan et al,
2021 (95)

96 pts (of
these, 50%
controls)

Mixed Prediction of
osteoradionecrosis
of the mandible

CT D Mandible LR, SVM,
RF,
AdaBoost,
ANN

No statistically significant difference was
found among the models in terms of
either accuracy, TPR, TNR, PPV, NPV).

Zhang et al,
2020 (94)

242 pts NPC Early radiation-
induced brain
(temporal lobes)
injury prediction

MRI I Temporal lobes RF (3
models)

The incorporation of textural features
yielded to better model performance;
features derived from T2-w images
achieved higher performance than those
extracted from T1-w images. In the
testing cohort, models 1, 2, and 3,
yielded AUCs of 0.830 (95% CI: 0.823–
0.837), 0.773 (95% CI: 0.763–0.782),
and 0.716 (95% CI: 0.699–0.733),
respectively.

Guo et al.,
2019 (45)

146 pts PGs Correlation
between voxel
dose and
xerostomia
recovery 18
months after RT

None D PGs, SMGs LR with ridge
regularization

The AUC scores for the ridge logistic
regression model evaluated by 10-fold
crossvalidation for recovery and injury
prediction were 0.68 ± 0.07 and 0.74 ±
0.03, respectively.

Leng et al.,
2019 (93)

77 pts, 67
healthy
controls

NPC Identification of
biomarkers of WM
injury via MR DTI,
TBSS, and ML

MR – 116 brain regions
(90 for the brain
lobes and 26 for
the cerebellum)
per the AAL
method

SVM WM regions and WM connections were
involved in RBI. The SVM classifier
showed satisfactory performances (GR,
Sn, Sp) for both FA and WM
connections in discriminating patients
and controls at all-time points (0–6, 6–
12, >12 months)

Abdollahi
et al., 2018
(92)

47 pts, 94
cochleas,
490
radiomic
features

Mixed
subsites

Sensorineural
hearing loss
prediction following
chemoradiotherapy

CT I, D Cochlea Decision
stump,
Hoeffding,
C4.5,
Bayesian
network,
naive,
adaptive
boosting,
bootstrap
aggregating,
Classification
via
regression,
logistic
regression,
linear logistic

Predictive power was >70% for all
models, with Decision stump and
Hoeffding being the best-performing
models. Incorporation of the gEUD
improved both precision and AUC of all
models, while accuracy was not affected

Dean et al.,
2018 (46)

173 pts +
90 pts for
external
validation

Mixed
subsites

Peak grade of
acute dysphagia
prediction (severe
= CTCAE 3.0
grade ≥3 vs.
nonsevere =
CTCAE 3.0 grade
<3)

None D Pharyngeal
mucosa

PLR, SVC,
RFC (each
trained and
validated on
standard
dose-volume
metrics and
spatial dose-
metrics)

PLR was not outperformed by any of
the more complex models, on both
internal and external validation (AUC:
0.76 and 0.82 for the standard-dose
model and AUC: 0.75 and 0.73 for the
spatial model, respectively). Calibration
was superior for the RFC model.
Dosimetric parameters (DVH, DLH and
DCH) were relevant for accurate toxicity
prediction: the volume of pharyngeal
mucosa receiving ≥1 Gy should be
minimized

Gabrys
et al., 2018
(91)

153 pts, 24
selected
radiomic
features

Mixed
subsites

Evaluation of
xerostomia risk
prediction with
integrated ML

CT I, D Ipsi- and
contralateral PGs

LR-L1, LR-
L2, LR-EN,
kNN, SVM,
ET, GTB

SVMs were the top performing
classifiers in time-specific xerostomia
prediction (early, late, long term). In the
longitudinal approach, the best models

(Continued)
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Yet, studies dedicated to outcome modeling and treatment
planning achieved numerically lower scores in both the global
and methodological assessment.

The scores for studies implementing imaging data (n = 37)
categorized according to the use of texture analysis vs. other
imaging-derived metrics or deep learning (n = 10 and 27,
respectively) were evaluated. Since the analysis of quantitative
extracted features usually requires an intensive work of statistical
preprocessing, frequently lacking in deep learning studies, we tested
the hypothesis that studies extracting features are associated with
higher methodological scores. Even though no significant difference
Frontiers in Oncology | www.frontiersin.org 15
was found, a trend favoring texture analysis publications was noted
especially for methodological study quality (p = 0.45 [FDR-
corrected p = 0.67] vs. p = 0.62 [FDR-corrected p = 0.62] when
the global score was considered, as shown in Figure 5).

The complete evaluation of each study is provided in Figure 6.
DISCUSSION

Results from our systematic review show a wide range of possible
applications of ML in the field of HN Radiation Oncology,
TABLE 5 | Continued

Author,
year of
publication

Study
population

HN subsite(s) Clinical endpoint Imaging
modality

Textural
and

dosimetric
parameters

ROI(s) Tested ML
algorithm(s)

Statistical findings and
model performance

models (clinical,
dosimetric, and
radiomic features)
vs. NTCP models
based on mean RT
dose to the PGs

were GTB, ET and SVM. LR models
were the best in feature selection,
although selecting features did not
provide any improvement in predictive
performance. The NTCP mean dose-
based models failed to predict
xerostomia (AUC <0.60)

Cheng Z
et al., 2017
(96)

391 pts Mixed
subsites

Prediction of WL
≥5 kg at 3 months
post-RT

None D Pharyngeal
constrictors,
cricopharyngeus,
masticator,
temporalis,
pterygoids, oral
cavity, oral
mucosa, soft
palate, larynx,
parotid gland,
submandibular
glands

CART
algorithms

CART model encompassing toxicity and
QoL data performed better than the one
including baseline characteristics and
dosimetric data (AUC: 0.82 vs. 0.77, Sn:
0.98 vs. 0.77, Sp 0.59 vs. 0.67, PPV
0.46 vs. 0.43, NPV: 0.99 vs. 0.90,
respectively)

Soares
et al., 2017
(90)

138 pts Mixed
subsites

Predicting
xerostomia after
RT

None D PGs RF,
stochastic
boosting,
SVM, NN,
model-based
clustering
and LR

RF yielded the best model performance
(AUC: 0.73); the incorporation of clinical
(gender, age, baseline xerostomia) and
dosimetric parameters (PG Dmean)
outperformed all other RF combinations

Pota et al.,
2015 (88)

21 pts, 42
parotids

NPC Parotid gland
shrinkage
prediction

CT I Ipsi- and
controlateral PGs

LFA, LDA,
LR, 0-R
method

In some cases, with only one predictor,
the LR method presents the highest
accuracy but low specificity, while in
other cases with only one variable the
performances of LDA, LR, and LFA are
comparable. If more than one variable is
used, the LFA classifier is the best in
almost all the cases (best accuracy and
sensitivity), while specificity is
comparable with that of other classifiers.
Adding a variable to a model hardly
worsens the performances of both LDA
and LR, while LFA models tolerate the
noise
Novem
ANN, Artificial NN; AUC, area under the curve; CART, classification and regression tree; CT, computed tomography; CTCAE, common terminology criteria for adverse event; D, dosimetric;
DCH, dose coverage histogram; DLH, dose lymphocyte histogram; Dmean, mean (RT) dose; DTI, diffusion tensor imaging; DVH, dose volume histogram; ET, extra-trees; gEUD,
generalized equivalent uniform dose; GTB, gradient tree boosting; I, imaging; k-NN, k-nearest neighbor; LDA, linear discriminant analysis; LFA, logical framework approach; LR, logistic
regression; ML, machine learning; MR, magnetic resonance; NN, neural network; NPC, nasopharyngeal cancer; NPV, negative predictive value; NTCP, normal tissue complication
probability; OPC, oropharyngeal cancer; PG, parotid gland; PLR, penalized LR; PPV, positive predictive value; QoL, quality of life; RFC, random forest classification; SMG, submandibular
gland; Sn, sensitivity; Sp, specificity; SVM, support vector machine; TNR, true-negative rate; TPR, true-positive rate; T1/T2-w, T1/T2-weighted; TBSS, tract-based spatial statistics; WL,
weight loss; WM, white matter.
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although this area of research is relatively young, with the
majority of studies having been published in the last 3 years.
The implementation of quantitative imaging features and the use
of a longitudinally collected data as input parameters are both
promising in refining model performance and open doors to
further investigations.

The present analysis indicates a prevalence of algorithms
dedicated to autocontouring, which mirrors the still unmet
need for computationally affordable and user-friendly tools for
clinical practice implementation. Even if only some authors have
attempted to provide a full set of ROIs (56–61, 64, 67, 68), they
could demonstrate a general improvement over existing models,
with average times for task completion ranging between 0.12 and
30 s. However, the segmentation of small and/or low-contrasted
Frontiers in Oncology | www.frontiersin.org 16
areas, which are common in HN anatomy (e.g., optic chiasm,
lenses, brainstem) remains challenging, and more efforts are
warranted to equal, or at least to approximate, the performance
of semiautomated or fully manual segmentation.

Currently available works on ML for treatment planning are
scarce and show significant heterogeneity both in the choice of
algorithms and in the characteristics of patients’ populations.
Nevertheless, results are promising, as they pave the way to the
possibility of effectively reconstructing three-dimensional dose
distribution of integrating MR in ART and of predicting the need
for replanning based on geometrical and dosimetric
modifications during treatment. It is straightforward to
understand how the fulfillment of these objective may be
relevant in everyday clinical practice, especially in the era of
FIGURE 5 | Boxplots for global and methodological scores (modified Luo classification) for the studies included in the analysis, categorized according to imaging
data used as input parameters (texture analysis vs. no texture analysis).
FIGURE 4 | Boxplots for global and methodological scores (modified Luo classification) for the studies included in the analysis, categorized according to the task of
the proposed algorithm(s). Tr, treatment.
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image-guided IMRT for HNC (25). Additionally, reliable ML-
based predicting tools may be beneficial also for proton
treatment planning, as dose deposition is heavily influenced by
patient’s set-up and anatomical variations of both target volumes
and OARs (77, 97, 98).

Intriguing findings were reported for outcome prediction, as
well. Considering oncological outcomes, supervised and
unsupervised models were used with an overall satisfactory
performance in small- to medium-sized datasets. Notably, the use
of combinedmodels incorporating radiomics (40) and longitudinal
characteristics (86) yielded the best results. Moreover, neural
networks outperformed competing algorithms in the prediction
of recurrencepatterns inNPCand survival in apopulationof locally
advancedHNCs, respectively (79, 83). Conversely, only two studies
incorporated ANNs for the prediction of RT-related toxicities (90,
95), and a prevalence of binary classifiers using labelled data was
noticed, as expected. Gabrys et al. (91) were the only ones who
compared ML univariate and multivariate logistic regression
models to classical NTCP models based on the mean dose to the
PGs. In their study, the authors could demonstrate that clinical
characteristics and organ- and dose-shape features can improve
xerostomia prediction, thus emphasizing the need of
multidimensional input parameters to model complex outcomes.

Only one study focused on the use of ML for the analysis of
organizational features of RT. In detail, Shew et al. (99) used a
supervised classifier to discriminate risk factors correlating with
delays in adjuvant treatment delivery. Despite several
methodological limitations, the work is based on a large cohort
from the National Cancer Database (NCDB), and includes a total
of 76,573 patients. Another worth of this study relies in the use of
ML for optimizing treatment scheduling: while prediction
accuracy needs improving, the proposed model still provides a
valuable example on how ML could be used in Radiation
Oncology departments to facilitate executional tasks and,
ultimately, to improve the quality of care.

Despite desirable, it is not currently possible to perform a
reliable comparison among models, even for algorithms
designed for the same task (i.e., autosegmentation). Not only
was the choice of algorithms, features and variables widely
heterogeneous, but most studies considered small- to medium-
Frontiers in Oncology | www.frontiersin.org 17
sized datasets and mixed disease subsites. In particular, sample
size could strongly affect the quality of ML models as the
training sets size is widely recognized as one of the main
issues in pattern recognition studies. In fact, as the number of
considered features increases, larger training sets become
mandatory to avoid the so-called curse of dimensionality
(100). To partially overcome this issue, we have performed a
qualitative comparison based on a modified version of a
reporting guideline validated by Luo et al. (23), which was
previously introduced by Jethanandani et al. (12) in their
systematic review on MR-based radiomic studies in HNCs.
As pointed out by the authors, the checklist is not without
limitations, including difficult and/or subjective interpretability
of some items, as noted by our group as well.

Considering these pitfalls, and the fact that the checklist was
not designed to provide a quantitative assessment, relevant
findings still emerged. Firstly, studies aiming at toxicity
prediction resulted to have the highest quality in both global
and methodological scores as compared with those classified in
the other categories. Secondly, works incorporating quantitative
image features as input parameters had better median
methodological scores, which could be at least partially
explained by adequate reporting on the preprocessing on
imaging data. Finally, works having a nonclinician as first
author achieved a higher ranking, with a strong statistical
significance. This finding could derive from the scarcity of
dedicated educational training on ML and statistics in most
medical schools and residency programs.

The DSC was the performance evaluation metric used in all
works dedicated to autosegmentation, while the AUC was
implemented in one study only (63). Considering the
remaining publications, the AUC was the metric of choice in
17/27 (63%) cases. Despite its popularity for model assessment,
limitations of the AUC have been extensively discussed (101).
While a dissertation on the matter is beyond the scope of this
work, those approaching ML should consider that AUC
weights false positive and false negative predictions equally,
which can be extremely relevant in the clinical setting (i.e.,
when the aim is to predict if a patient will develop mild vs.
severe xerostomia).
FIGURE 6 | Boxplots representing global and methodological scores (modified Luo classification) for the studies included in the analysis, categorized per the
presence of texture analysis.
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Admittedly, our work presents some limitations. As for all
systematic reviews, eligible publications of the last months may
be missing, albeit the search was repeated regularly while the
manuscript was being written. Moreover, despite our attempt to
perform a comprehensive search, the lack of a common ontology
in ML may have led to the exclusion of some works: to overcome
this potential bias, cross-references from the included works
were screened for eligibility. To conclude, we provided the full
search strategy for future reference, as we are aware that several
additional works will be published in the upcoming months,
given the fast-growing nature of this field.

Acknowledging these issues, we do believe that, other than
being a full overview of existing literature, the value of our work
is to provide a systematic quality assessment of published works,
which could be informative for both general and advanced
readers. Large-scale datasets, common ontology, study design,
and performance reporting will most probably be needed to
concretely implement ML in clinical practice, and discussion on
this regard is both expected and encouraged. To this aim, the
inclusion of dedicated AI courses in the educational track of
future ROs would arguably foster the quality of scientific outputs
in the field.

Finally, ML-based modeling for HNC is a promising and
rapidly expanding field, even though more solidly constructed
and validated algorithms are warranted to overcome the
boundaries of speculative investigation and to open doors
to better tailored Radiation Oncology for this subset of
patients. Overall, if not safe yet, ML is most probably a bet
worth making.
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