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Objective: To build radiomics models using features extracted from DCE-MRI and
mammography for diagnosis of breast cancer.

Materials and Methods: 266 patients receiving MRI and mammography, who had well-
enhanced lesions on MRI and histologically confirmed diagnosis were analyzed. Training
dataset had 146 malignant and 56 benign, and testing dataset had 48 malignant and 18
benign lesions. Fuzzy-C-means clustering algorithm was used to segment the enhanced
lesion on subtraction MRI maps. Two radiologists manually outlined the corresponding
lesion on mammography by consensus, with the guidance of MRI maximum intensity
projection. Features were extracted using PyRadiomics from three DCE-MRI parametric
maps, and from the lesion and a 2-cm bandshell margin on mammography. The support
vector machine (SVM) was applied for feature selection and model building, using 5
datasets: DCE-MRI, mammography lesion-ROIl, mammography margin-ROl,
mammography lesion+margin, and all combined.

Results: In the training dataset evaluated using 10-fold cross-validation, the diagnostic
accuracy of the individual model was 83.2% for DCE-MRI, 75.7% for mammography lesion,
64.4% for mammography margin, and 77.2% for lesion+margin. When all features were
combined, the accuracy was improved 1o 89.6%. By adding mammography features to MR,
the specificity was significantly improved from 69.6% (39/56) to 82.1% (46/56), p<0.01. When
the developed models were applied to the independent testing dataset, the accuracy was
78.8% for DCE-MRI and 83.3% for combined MRI+Mammography.

Conclusion: The radiomics model built from the combined MRI and mammography has
the potential to provide a machine learning-based diagnostic tool and decrease the false
positive diagnosis of contrast-enhanced benign lesions on MRI.
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INTRODUCTION

Breast cancer is the most common cancer in women, and one
main cause of cancer deaths (1, 2). Mammography, ultrasound,
and magnetic resonance imaging (MRI) are well-established
diagnostic modalities, which are known to reveal different
aspects of underlying abnormalities and provide complementary
information for diagnosis (3, 4). Dynamic contrast-enhanced
MRI (DCE-MRI) can assess angiogenesis (5, 6), which is
essential for cancer development and progression (7, 8). The
high spatial resolution and 3D imaging capability of MRI allow
for detecting early small cancers, and for evaluating the extent of
the disease for pre-operative staging and treatment planning.
However, some benign diseases may show strong contrast
enhancements and lead to a false positive diagnosis (9).

Mammography can detect breast cancer based on the
presence of mass, microcalcifications, architectural distortion,
or asymmetric density. It is a widely used imaging modality for
screening and diagnosis, and crucial for detecting breast cancer
at an early, curable, stage to decrease mortality (10). However,
mammography is limited by breast density, which may
compromise the detection sensitivity. For women with a high-
risk of developing breast cancer, the screening is recommended
to start from a young age, and to mitigate the problem of high
density in mammography MRI is commonly used as a
supplementary modality. Since different imaging can evaluate
different pathological characteristics of the abnormal tissue,
combining them may improve the diagnostic accuracy (3).
MRI is also commonly used for problem-solving when other
imaging shows equivocal findings. For example, in patients with
category 4 mammographic microcalcifications, MRI can
decrease false positive findings and unnecessary biopsy (11).

Breast Imaging Reporting and Data System (BI-RADS) (12) is
used to indicate the level of suspicion in detected abnormality.
However, subjective reading using the BI-RADS lexicon only
achieved moderate levels of inter-reader agreement (13). For
MR, intra-/inter-observer agreement was particularly worse for
non-mass enhancement compared to mass lesions (14, 15). To
circumvent this problem, computer-aided diagnosis (CAD)
systems have been proposed to develop quantitative models
that are not subject to high variations to serve as potential
diagnostic tools (16, 17).

Artificial intelligence (AI) based radiomics study has been
widely applied for medical applications. The method allows for
high-throughput extraction of quantitative features from
radiographic images (18), and it has been shown as a feasible
approach for diagnosis of breast cancer using mammography

Abbreviations: Al artificial intelligence; AUC, the area under the curve; BI-
RADS, Breast Imaging Report and Data System; CAD, computer-aided diagnosis;
CC, cranio-caudal; DCE, dynamic contrast enhanced; DCIS, ductal carcinoma in-
situ; GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence
matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone
matrix; IDC, invasive ductal cancer; MIP, maximum intensity projection; MLO,
medio-lateral oblique; MRI, magnetic resonance imaging; NGTDM, neighboring
gray tone difference matrix; NPV, negative predicting value; PPV, positive
predicting value; ROC, receiver operating characteristic; ROI, region of interest;
SE, signal enhancement; SVM, support vector machine.

(19-22) and MRI (23-25). However, the combined model using
different imaging modalities was rarely reported. Features from
corresponding lesions on each modality can be extracted, and
then combined in the selection process to develop better models
based on their complementary information.

The purpose of this study was to evaluate the diagnostic
performance of radiomics models built based on DCE-MRI and
mammography. The motivation was coming from the high false
positive diagnosis of contrast-enhanced benign lesions
commonly seen on MRI. It is anticipated that the
complementary information provided by the radiomics
analysis of the lesion on mammography may help to improve
the diagnostic accuracy. In mammography, features extracted
from the lesion and the margin were used to build separate
models. The complementary role of MRI and mammography
was first evaluated by the selected features, and then by
comparing the performance of final models built using each
modality alone and in combination.

MATERIAL AND METHODS
Study Population

This retrospective study was approved by Institutional Review
Board and written informed consent was waived. Earlier patients
who received DCE-MRI and mammography for diagnosis
between July 2017 and August 2019 and had confirmed
pathology were retrospectively identified as the training set.
Later patients from September 2019 to July 2020 were used as
the independent testing set. The exclusion criteria were: (1) no
pathology result; (2) not visible on MRI or mammography; (3)
having prior surgery, chemotherapy, or other treatment; (4) the
interval between the two examinations longer than one month;
(5) poor image quality. Finally, a total of 268 lesions were
included, 202 lesions (146 malignant and 56 benign) in the
training set, and 66 lesions (48 malignant and 18 benign) in the
testing set. The BI-RADS scores of MRI and mammography were
obtained from the radiology reports, classified into 2, 3, 4A, 4B,
4C, and 5. In our institution, BI-RADS 4 MRI cases were routinely
subdivided to 4A, 4B, and 4C, as validated in Strigel et al. (26).

Image Acquisition

Mammography was performed using Fujifilm Amulet Innovality
Digital Mammography System with a resolution of 5828x4728
pixels, including craniocaudal (CC) and mediolateral oblique
(MLO) view. MRI was performed on a 3.0T scanner (GE SIGNA
HDx) using a dedicated 8-channel bilateral breast coil. The
imaging protocol included axial and sagittal T2- and T1-
weighted sequences, and the DCE acquisition performed
using the volume imaging for breast assessment (VIBRANT)
sequence. The parameters were: repetition time= 5msec, echo
time= 2msec, flip angle= 10°, slice thickness= 1.2mm, field of
view= 34x34cm?, matrix size= 416x416, temporal resolution=
90sec, and total scan time= 9min. The DCE series consisted of 6
frames: one pre-contrast and 5 post-contrast. The contrast agent,
0.1 mmol/kg body weight of gadopentetate dimeglumine
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(Magnevist; Bayer Schering Pharma), was injected after the pre-
contrast images were acquired, with a flow rate of 2 mL/s
followed by a flush of 20 mL saline.

Tumor Segmentation

For MRI, the tumor region of interest (ROI) segmentation was
done using computer algorithms, according to the location and
the range of slices. The fuzzy-C-means clustering algorithm was
applied to perform segmentation on each DCE slice containing
the lesion. The automatic segmentation results were evaluated by
two radiologists separately, and adjusted if necessary. Then, the
ROIs from all slices were combined, and the 3D connected-
component labeling and the hole-filling algorithms were applied
to generate the final 3D mask (27, 28). For the corresponding
mammography, two radiologists manually outlined the lesion on
craniocaudal (CC) or mediolateral oblique (MLO) view by
consensus using ITK-SNAP software (version 3.8, www.
itksnap.org), with the guidance of the lesion shown on the
maximum intensity projection (MIP) of MRI, projected from
different angles. The choice of CC or MLO was determined
according to the lesion visibility, and only one view was used.

MRI and Mammography Radiomics
Feature Extraction

The analysis flowchart is demonstrated in Figure 1. For DCE-
MRI, three heuristic DCE parametric maps were generated
according to: the early wash-in signal enhancement (SE) ratio
((F2-F1)/F1); the maximum SE ratio = ((F3-F1)/F1); the wash-out
slope ((F6-F3)/F3) (25), as illustrated in case examples in
Figures 2-5. The intensity was normalized to mean=0 and
standard deviation=1. In the segmented 3D ROI, pixels were
transformed into isotropic 0.82x0.82x0.82 mm by B-spline
interpolation. The radiomics analysis was performed using the
PyRadiomics, an open-source radiomics library written in Python

(29). On each parametric map, a total of 107 features were
extracted, including 14 shape, 18 first-order, 24 gray-level co-
occurrence matrix (GLCM), 14 gray-level dependence matrix
(GLDM), 16 gray-level run length matrix (GLRLM), 16 gray-
level size zone matrix (GLSZM), and 5 neighboring gray tone
difference matrix (NGTDM) features, so there was a total of 321
parameters from 3 maps. Only 268 features showing intra-class
coefficient (ICC) 20.8 were included in the final analysis, which
was determined using two sets of separately segmented tumor ROI
to evaluate the reproducibility of extracted radiomics features (30).

For mammography, two different feature sets were analyzed.
Considering that the ROI was manually drawn by tracing the
visible lesion area based on density, it might not reveal the
margin information. To specifically focus on the margin, a 2-cm
bandshell was created, by shrinking and expanding the
manually-drawn tumor boundary by 1 cm, as shown in
Figure 1. Because the margin could not be well defined on
mammography, shrinking the boundary followed by region
growing has been shown as a feasible segmentation method
(31), and the method was adopted here to generate the bandshell
for analysis of margin features. Similarly, the intensity was
normalized to mean=0 and standard deviation=1, and a total
of 107 PyRadiomics features were extracted from the outlined
lesion mask and also from the bandshell on mammography. The
radiomics model was first performed using lesion features alone,
margin features alone, and then a combined model was built by
considering all lesion and margin features.

Feature Selection and Model

Building in Training Set

The procedures are also shown in Figure 1. In addition to the
normalization on images, each feature extracted from all cases
was normalized to mean=0 and standard deviation=1 before
training. To evaluate the importance of these features in
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testing of the 5 developed models in the testing set.
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FIGURE 1 | The analysis flowchart. The training and testing sets are assembled according to the time of case enroliment. The analysis starts with ROl segmentation,
followed by radiomics feature extraction using Pyradiomics, feature selection and model building in the training set using SVM with cross-validation, and lastly, the
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diagnosis, a sequential forward feature selection method using
the support vector machine (SVM) was applied (32, 33). In this
process, we used SVM with Gaussian kernel as the objective
function to test the performance of models built with a subset of
features. In the beginning, an empty candidate set was presented,
and features were sequentially added. The 10-fold cross-
validation was applied to test the model performance. In each
iteration, the training process was repeated 1,000 times to
explore the robustness of each feature. After each iteration, the

FIGURE 2 | A 50-year-old patient with invasive ductal cancer, showing a strongly enhanced 1.8 x 1.0 cm lesion, with MRI BI-RADS score of 5. (A) F1 Pre-contrast
image. (B) F2 post-contrast image. (C-I) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1 pre-contrast, (D) F2 post-
contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal enhancement map,

(I) The wash-out F6-F3 map. (J) A mass lesion with spiculation is clearly noted on mammography as BI-RADS 4C, and manually outlined by a radiologist. The
radiomics malignancy probability predicted by MRI, mammography, and combined models were: 0.83, 0.77, 0.88, respectively, true positive.

feature which led to the best performance was added to the
candidate set. When the addition of features no longer met the
criterion, the selection process stopped. Here, we used 10*e/-6 as
termination tolerance for the objective function value.

The selected features were used to build the SVM
classification model with Gaussian kernel to classify the benign
and malignant groups. The diagnostic performance was tested
using 10-fold cross-validation. Each case had only one chance to
be included in the validation set. The probability of all cases in

FIGURE 3 | A 58-year-old patient with ductal carcinoma in situ, showing a strongly enhanced heterogeneous 1.4 x 0.9 cm lesion, with MRI BI-RADS score of 5.

(A) F1 Pre-contrast image. (B) F2 post-contrast image. (C~l) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1
pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal
enhancement map, (I) The wash-out F6-F3 map. (J) A suspicious BI-RADS 4A mass is seen on mammography. The lesion ROI is outlined with the guidance of MRI.
The probability predicted by MRI, mammography, and combined radiomics models were: 0.53, 0.49, 0.62, respectively, true positive.
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FIGURE 4 | A 63-year-old patient with a 0.7 x 0.7 cm benign adenosis, showing a persistent DCE-MRI enhancement kinetics and determined as BI-RADS 3 on
MRI. (A) F1 Pre-contrast image. (B) F2 post-contrast image. (C-l) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1
pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast, (F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal
enhancement map, (I) The wash-out F6-F3 map. (J) The lesion is not seen on mammography, determined as BI-RADS 2, and an area is outlined with the guidance
of MRI. The probability predicted by MRI, mammography, and combined radiomics models were: 0.42, 0.44, 0.15, respectively, true negative.

the validation set was combined to perform the receiver
operating characteristic curve (ROC) analysis, and the area
under the curve (AUC) was calculated. Five models were built
using features extracted from: 1) DCE-MRI; 2) mammography -
lesion ROI; 3) mammography — margin RO], i.e., the bandshell;
4) mammography lesion+margin; and 5) all combined. The
developed model gave a radiomics score, i.e., the malignancy
probability, for each case.

Applying the Trained Models

to the Testing Set

The developed models from the training set were applied to test
their performances in the testing set. The model gave each lesion a
radiomics score, and they were used to generate the ROC curves.
The sensitivity, specificity, positive predicting value (PPV), negative
predicting value (NPV), and overall accuracy of each model were
calculated using the threshold of probability >0.5 as malignant.

FIGURE 5 | A 46-year-old patient with a 2.7 x 1.3 cm benign adenosis. This is a young woman with extremely dense breasts showing substantial parenchymal
enhancements. The lesion shows a persistent DCE-MRI pattern and determined as BI-RADS 4A on MRI. (A) F1 Pre-contrast image. (B) F2 post-contrast image.
(C-1) Magnified images to demonstrate the margin and internal enhancements within the lesion. (C) F1 pre-contrast, (D) F2 post-contrast, (E) F3 post-contrast,

(F) The last F6 post-contrast image. (G) The wash-in signal enhancement map F2-F1, (H) The F3-F1 signal enhancement map, (I) The wash-out F6-F3 map. (J) The
lesion is not seen on mammography, determined as BI-RADS 2, and an area is outlined with the guidance of MRI. The probability predicted by MRI, mammography,
and combined radiomics models were: 0.3, 0.41, 0.11, respectively, true negative.
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The Delong test was used to compare the difference between paired
ROC curves. The difference in proportions between malignant and
benign groups was compared by using the Chi-square ()?) test or
Fisher’s Exact Test.

RESULTS

Patients’ Characteristics and

BI-RADS Scores

In the training set, the mean age was 50.0 + 9.6 in the malignant,
and 46.6 * 9.7 in the benign groups. The 1-D longest dimension
tumor size measured on MRI was 2.4 + 1.4 cm (median 2.0 cm)
in the malignant, and 2.0 + 2.3 cm (median 1.5 cm) in the benign
groups. In the testing set, the mean age was 51.8 £ 11.2 in the
malignant, and 43.5 + 10.8 in the benign groups. The 1-D longest
dimension tumor size measured on MRI was 3.2 + 1.9 cm
(median 2.8 cm) in the malignant, and 2.0 + 1.4 cm (median
1.5 cm) in the benign groups. The pathological types and BI-
RADS distributions in both datasets are listed in Table 1. In the
training set, the majority of malignant lesions had BI-RADS
scores of 4B, 4C, 5 on MRI (132/146 = 90.4%) and
mammography (120/146 = 82.2%). In the benign group, a
substantial number of patients also had high BI-RADS >
diagnosed by MRI (20/56 = 35.7%) and mammography (16/56 =
28.6%). Although the number of patients with BI-RADS > 4B
lesions was significantly smaller in the benign compared to the
malignant groups (p < 0.001), these cases would be
recommended for biopsy and led to false positive diagnosis.
Similar BI-RADS distributions were also noted in the testing set.

Radiomics Diagnostic Models
in Training Set
The selected radiomics features for each model are listed in
Table 2. The diagnostic sensitivity, specificity, PPV, NPV,
accuracy, and AUC obtained from the cross-validation results
are summarized in Table 3. The overall accuracy was 83.2% for
DCE-MRI. In mammography, the accuracy was 75.7% for lesion-
ROI, 64.4% for margin-ROI, and when combining both of them
it was improved to 77.2%. When all MRI and mammography
features were combined to build a model, the accuracy was
improved to 89.6%, which was significantly better than the
mammography model (77.2%, p=0.001). The combined model
was also better than the MRI model (83.2%, p=0.059), but not
reaching significance. By adding mammography features to MRI,
the specificity was significantly improved from 69.6% (39/56) to
82.1% (46/56) (p<0.01), while sensitivity was also improved from
88.4% (129/146) to 92.5% (135/146). Figure 6 plots the
malignant probability predicted by the combined MRI+
Mammography radiomics model in the training set of 146
malignant and 56 benign lesions. Using the threshold of 0.5 as
the cut-off, there are 135 true positive, 46 true negative, 11 false
negative, and 10 false positive cases, with an overall accuracy of
181/202 = 89.6%.

Four case examples are shown. Figure 2 is an IDC with BI-
RADS 5 MRI and BI-RADS 4C mammography, and the
malignancy probability predicted by MRI, mammography, and

TABLE 1 | Pathological types and BI-RADS scores of lesions in training and
testing datasets.
Characteristics

Training (N = 202) Testing (N = 66)

Benign 56 18
Fibroadenoma 3 (23.2%) 5 (27.8%)
Adenosis 5 (44.6%) 10 (55.6%)
Intraductal papilloma 0(17.9%) 1(5.6%)
Inflammation 2 (3.6%) 0 (0.0%)
Others 6 (10.7%) 2 (11.1%)

MRI BI-RADS
2 9 (16.1%) 1(5.6%)
3 13 (23.2%) 3(16.7)
4A 14 (25%) 9 (50%)
4B 14 (25%) 4 (22.2%)
4C 5 (8.9%) 1(5.6%)
5 1(1.8%) 0 (0.0%)

Mammography BI-RADS
2 3 (23.2%) 5(27.8)
3 6 (28.6%) 6 (33.3%)
4A 11 (19.6%) 4 (22.2%)
4B 2 (21.4%) 3 (16.7%)
4C 4(7.1%) 0 (0.0%)
5 0 (0%) 0 (0.0%)

Malignant 146 48
Invasive ductal cancer 113 (77.4%) 39 (81.3%)
Ductal carcinoma in-situ 3 (15.8%) 3 (6.3%)
Intraductal papillary carcinoma 4 (2.7%) 0 (0.0%)
Mucinous carcinoma 3(2.1%) 1(2.1%)
Others 3(2.1%) 5(10.4%)

MRI BI-RADS
3 1(0.7%) 0 (0.0%)
4A 13 (8.9%) 1(2.1%)
4B 17 (11.6%) 4 (8.3%)
4C 39 (26.7%) 18 (37.5%)
5 76 (52.1%) 25 (52.1%)

Mammography BI-RADS
2 0 4 (8.3%)
3 9 (6.2%) 1(2.1%)
4A 17 (11.6%) 2 (4.2%)
4B 2 (21.9%) 1(22.9%)
4C 8 (32.9%) 1(43.8%)
5 0 (27.4%) (1 8.8%)

BI-RADS, Breast Imaging Report and Data System.

combined models are: 0.83, 0.77, 0.88, respectively; thus, true
positive. Figure 3 is a DCIS, also with BI-RADS 5 MRI and a
lower BI-RADS 4A mammography, and the combined radiomics
probability is 0.62, true positive. Figure 4 is a very small 0.7 cm
benign adenosis with BI-RADS 3 MRI and BI-RADS 2
mammography, and the combined radiomics probability is
0.15, true negative. Figure 5 is another adenosis in a younger
woman with BI-RADS 4A MRI and BI-RADS 2 mammography,
and the combined radiomics probability is 0.11, true negative.
These cases demonstrate that the malignancy probability
predicted by radiomics models was consistent with BI-RADS
reading, and elaborate how the model may help to improve the
diagnostic confidence.

Performance of the Trained

Models in Testing Set

The developed models were then applied to cases in the
independent testing set to test the performance. The results are
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TABLE 2 | Selected radiomics features for modeling using MRI, mammography, and both combined.

Models Selected Radiomic Features Numbers
DCE-MRI Maximum signal enhancement ratio: 8
entropy, GLCM sum average, GLCM IMC1,
GLDM high gray level emphasis, skewness
Wash-in ratio:
GLRLM RLN
Wash-out ratio:
GLRLM small area emphasis, GLCM sum entropy
Mammography 90% value, entropy, GLCM maximum probability, GLDM high gray level emphasis 4
(Lesion)
Mammography 10% value, GLSZM zone entropy, GLCM IDN 3
(Margin)
Combination of DCE-MRI and mammography Maximum signal enhancement ratio: 9

kurtosis, GLCM IMC1

Wash-in ratio:

skewness, GLRLM RLN, NGTDM complexity

Wash-out ratio:

GLCM IMC1, GLCM sum entropy

Mammography lesion:

GLCM maximum probability, GLCM IDN

GLCM, gray level co-occurrence matrix; GLDM, gray level dependence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone matrix; NGTDM, neighboring gray tone
difference matrix; IMC, informational measure of correlation; IDN, inverse difference normalized; RLN, run length non-uniformity.

listed in Table 3. In general, the performance of these 5 models
was consistent with the validation results in the training set. The
accuracy was 78.8% for DCE-MRI, 69.7% for mammography,
and improved to 83.3% when using the combined MRI and
mammography model.

Performance of the Combined Model in
Each BI-RADS Category

In order to further evaluate the performance of the model in each
BI-RADS category, the results from the training and testing sets are

combined and listed in Table 4. The cases with BI-RADS score of 2,
3, 4A, 4B, 4C, and 5 based on MRI and mammography were
separately tabulated. It can be seen clearly that malignant lesions
have higher BI-RADS scores compared to benign lesions, but many
benign lesions also have >4B scores. First, in the malignant group, if
we used 2, 3, and 4A as more likely benign, 15 MRI and 33
mammography cases would be diagnosed as benign. The results
showed that the model could reach 14/15 = 93.3% accuracy for MRI
and 31/33 = 93.9% for mammography lesions, still with a high
sensitivity. On the other hand, in the benign group, if we used 4B,

TABLE 3 | The diagnostic performance of developed radiomics models in training and testing datasets.

Models Sensitivity Specificity PPV NPV Accuracy AUC
Training Dataset
DCE-MRI 88.4% 69.6% 88.4% 69.6% 83.2% 0.77
(129/146) (39/56) (129/146) (39/56)
Mammography 84.9% 51.8% 82.1% 56.9% 75.7% 0.69
(Lesion) (124/146) (29/56) (124/151) (29/51)
Mammography 73.3% 41.1% 76.4% 37.1% 64.4% 0.62
(Margin) (107/146) (23/56) (107/140) (23/62)
Mammography 84.9% 57.1% 83.8% 59.3% 77.2% 0.70
(Lesion+Margin) (124/146) (32/56) (124/148) (32/54)
All Combination 92.5% 82.1% 93.1% 80.7% 89.6% 0.83
(135/146) (46/56) (135/145) (46/57)
Testing Dataset
DCE-MRI 87.5% 55.6% 84% 62.5% 78.8% 0.80
(42/48) (10/18) (42/50) (10/16)
Mammography 81.3% 38.9% 78% 43.8% 69.7% 0.65
(Lesion) (39/48) (7/18) (39/50) (7/16)
Mammography 66.7% 33.3% 59.3% 27.3% 57.6% 0.53
(Margin) (32/48) (6/18) (32/54) (6/22)
Mammography 81.3% 38.9% 78% 43.8% 69.7% 0.64
(Lesion+Margin) (39/48) (7/18) (39/50) (7/16)
All Combination 91.7% 61.1% 86.3% 73.3% 83.3% 0.81
(44/48) (11/18) (44/51) (11/15)

PPV, positive predicting value; NPV, negative predicting value; AUC, the area under the curve; DCE, dynamic contrast enhanced.
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FIGURE 6 | The malignant probability predicted by the combined MRI+Mammography radiomics model in 202 lesions, 146 malignant and 56 benign, in the training
set. Using the threshold of 0.5 as the cut-off, there are 135 true positive, 11 false negative, 46 true negative, and 10 false positive cases, with an overall accuracy of
181/202 = 89.6%.

4C and 5 as possibly malignant, 25 MRI and 19 mammography
cases would be diagnosed as malignant. The model could achieve
18/25 = 72% accuracy for MRI and 15/19 = 78.9% for
mammography lesions. The correct benign diagnosis for these
cases may help to avoid unnecessary biopsy.

DISCUSSION

In this study, we developed the radiomics models for diagnosis of
breast cancer using DCE-MRI alone, mammography alone, and
the combined MRI and mammography. While quite a few studies
have reported the radiomics models developed using MRI (23, 24,
34) or mammography (19-22), the combined analysis was rarely
reported (35). We further investigated the complementary role of
MRI and mammography features in diagnostic sensitivity and
specificity. In the training set, the combined model (89.6%) had a
higher accuracy than individual ones (83.2% for mammography,
77.2% for mammography). When mammography features were
added to MRI features, it could significantly improve specificity
from 69.6% (39/56) to 82.1% (46/56); and thus, have the potential

to decrease unnecessary biopsy. Interestingly, the sensitivity was
also improved, so the higher specificity was not at the expense of
compromised sensitivity. Similar findings were seen in the testing
set, with slightly lower overall accuracy from 89.6% to 83.3%.

For mammography, we further separated the analysis using
features extracted from the lesion-ROI alone, and from the
margin-ROI alone by using a bandshell. The results showed
that the accuracy was much better for the lesion model than
the margin model, but the margin information could help to
improve the accuracy. The results were consistent with the
knowledge that margin plays an important role in
characterization of a lesion for diagnosis.

Since MRI is more expensive than mammography, the most
established clinical indication is for pre-operative staging and
high-risk screening. It is not always included in the standard
diagnostic workup. It has been shown that in the mammography
4 category, particularly in non-palpable lesions presenting only
with microcalcifications, MRI can be used to reduce false positives
and avoid unnecessary biopsy (11, 36, 37). On the other hand,
benign lesions may show enhancements on MRI, and the

TABLE 4 | The number of correctly diagnosed cases made by the combined radiomics model in each BI-RADS category.

BI-RADS Score Malignant Cases (N = 194)

Benign Cases (N = 74)

MRI Mammography MRI Mammography
2 0 3/4 8/10 15/18
3 11 9/10 11/16 18/22
4A 13/14 19/19 20/23 9/15
4B 19/21 38/43 13/18 1115
4C 51/57 67/69 4/6 4/4
5 95/101 43/49 il 0
BI-RADS, Breast Imaging Report and Data System.
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information from mammography may help to rule out
malignancy (38). As in the case examples shown in Figures 4
and 5, the benign lesions might be inconspicuous on
mammography and had low BI-RADS score of 2, and we had
to use MIP generated from MRI as a reference to locate them.
Since MRI and mammography evaluate different aspects of the
underlying pathology, they should be reviewed together to
determine which information needs to be weighted more.

Radiomics is becoming an active research field in breast cancer
diagnosis. Due to the large number of images acquired using
different MR sequences, radiomics provides an efficient analysis
method to extract information. Therefore, more MRI radiomics
studies were reported than ultrasound, mammography, and 18F
FDG PET/CT (34). MRI radiomics was shown to provide better
discrimination than conventional parameters for the diagnosis of
breast cancer (23, 24). Mammography radiomics analysis has also
been performed in several diagnostic studies (19-22). However,
since the patient cohort is different, the diagnostic accuracy will be
highly dependent on the inclusion/exclusion criteria, and not
directly comparable among studies. Mao et al. (19) used four
modeling algorithms, including SVM, naive Bayes classifier, k-NN
classifier, and logistic regression to differentiate between benign and
malignant cases, and showed a high vibration of 0.629-0.978 in the
obtained accuracy. The radiologists’ reading accuracy was 0.772. Lei
et al. (20) applied radiomics to diagnose patients showing BI-RADS
4 calcifications on mammography, and achieved AUC of 0.80 in
the validation cohort. For characterizing microcalcifications, since
the lesion area was not well-defined, the ROI drawing will affect the
extracted features, and thus, the diagnostic results. Huang et al. (21)
applied mammography radiomics for distinguishing male
malignant and benign lesions, and reported an AUC of 0.82 - a
very unique study in rarely reported male patients. Another study
by Niu et al. (22) also analyzed patients showing abnormal lesions
on mammography and MRI, close to our patient cohort, but their
goal was to evaluate the combined effect of mammography and
digital breast tomosynthesis (DBT), as well as the combined effect of
DCE and diffusion weighted MRI. The reported accuracy based on
the mammography was close to ours, around 0.70. Multi-modal
radiomics combining different imaging modalities are rarely
reported. In a study by Chen et al, the multimodal classifier
achieved a better diagnostic performance than any single modality
(35). Since each imaging modality is unique in its acquisition
method and parameter setting, the extracted features from a
lesion may be different and provide complementary information
to improve diagnostic accuracy.

In this study, the cases were identified from the MRI database
first, and then only those with mammography performed within
one month were further selected for analysis. All lesions showed
strong enhancements on MRI, and the information was used to
determine a corresponding ROI on mammography. Co-
registration of MRI and mammography to ensure that the traced
ROI is indeed coming from the same suspicious tissue is not a
trivial task. We used maximum intensity projection of MRI as
guidance, and it could be projected from different angles to simulate
CC view and MLO view to guide the tracing of the suspicious
tissues on mammography. Some computer techniques have been
proposed for registration between MRI and mammography,

e.g., using finite element methods by Hopp et al. (39) and
Mertzanidou et al. (40), and the thin-plate spline method by
Yang et al. (3). These registration techniques can be considered
in future multi-modality radiomics studies. However, since the
mammography was acquired using heavily compressed breast
tissues in a different body position, it might be difficult to find the
precise correspondence. Therefore, in this study we only analyzed
the CC or MLO view that had more clear presentation of the lesion.

There were several limitations in this study. First, the models
were developed using a dataset from a single institution. The earlier
cases were used for training, and the performance was evaluated
using 10-fold cross-validation. We assembled an independent
testing set using later cases according to time of enrollment, so
the developed models from training can be independently tested.
Another limitation is that the sample size was relatively small. In our
dataset, all benign lesions had to show visible enhancements on
MRI and were histologically confirmed, which were very strict
criteria and limited the number of eligible cases. However, since the
major goal of this study is to investigate whether and how much the
addition of mammography radiomics features can complement
MR, using a strict rule to identify eligible cases with histologically
confirmed lesions is needed. Third, while all lesions showed
enhancements on MRI, lesions not visible with the MRI-guidance
on mammography were not included in this study. Since the
boundary of these lesions could not be clearly defined, the
radiomics features might not be reliably extracted.

In conclusion, the radiomics models built based on combined
MRI and mammography had better diagnostic accuracy than
models built using single modality alone. The combined model
could reach the accuracy of 89.6% in the training and 83.3% in the
testing sets. The motivation of this study is to use the
complementary information extracted from radiomics analysis of
the lesion shown on mammogram to decrease the false positive
diagnosis of contrast-enhanced benign lesions on MRL In the
western countries, breast MRI is recommended as a clinical
modality for screening of women with a high risk of developing
breast cancer, and the false positive diagnosis in a screening
population will lead to many unnecessary procedures including
biopsy, and patient anxiety. Our study may provide a helpful
computer-aided diagnostic tool for such clinical indications. The
multimodality radiomics analysis by combining mammography
and MRI features has the potential to improve the specificity and
reduce unnecessary biopsies, while maintaining a high sensitivity for
diagnosis of breast cancer.
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