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A large amount of evidence shows that after a cancer diagnosis, patients significantly
reduce their level of physical activity. Usually, this reduction is attributed to cancer-related
fatigue. However, to our knowledge, no study has clearly demonstrated that fatigue alters
effort-based decision-making in cancer. This mini-review aimed to provide evidence that
chronic fatigue in cancer patients causes changes in brain connectivity that impact effort-
based decision-making. Indeed, three patterns of activation to compensate for
dysfunctional networks have been reported: greater variability in the executive network
and hyperactivation in the executive network, which account for less efficient and costly
processes in the frontal cortex, and reduced deactivation in the default mode network.
Nevertheless, these activation patterns are also observed with other factors, such as
anticipatory stressors (worry, rumination or sleep loss), that might also cause reluctance to
engage in physical activity. Effort-based decision-making involving weighing costs against
benefits and physical activity interventions should increase immediate benefits to facilitate
engagement in effortful activities.

Keywords: chronic fatigue, immediate benefits, functional connectivity, physical activity, effort-based decision
making, cost-benefit analysis
INTRODUCTION

Cancer-related fatigue (CRF) is one of the most common and distressing side effects and can persist
for years after treatment has ended in otherwise healthy survivors (1). This feeling of fatigue is
generally perceived as the main impediment to physical activity (PA), which requires physical and
mental effort. Indeed, walking regularly, muscle-strengthening activities, maintaining intensity
throughout a physical activity program and planning exercise for the following weeks are mentally
and physically costly. Moreover, a general belief among cancer patients, family caregivers and some
health professionals is that fatigue is recovered by rest rather than activity (2). Therefore,
unsurprisingly, the literature on PA and CRF frequently reports that the level of PA after a
cancer diagnosis or during cancer treatment is significantly reduced, all cancer combined
[e.g (3–5)].
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However, the special hallmark of fatigue in cancer is that it is
not recovered by rest but rather by activity. Indeed, an increasing
number of meta-analyses and systematic reviews report that PA
is more effective than rest for reducing fatigue, suggesting a
moderate effect [e.g (6, 7)]. Specifically, beneficial effects of
exercise on fatigue have been observed in trials conducted with
patients during and after treatment (8–10), indicating that
resistance and moderate-to-high-intensity exercises can be
helpful at different stages of the disease trajectory. During
treatment, exercise may buffer treatment-related increases in
fatigue, whereas exercise may reduce fatigue in patients after
treatment completion [e.g (6, 11)]. In other words, PA allows
maintenance of a baseline level of fatigue (generally measured
after diagnosis) and faster recovery from treatment (8–10, 12–
17). However, exercise programs require effortful engagement,
which may explain the low level of adherence and the high level
of attrition observed in clinical trials (18–21).

If cancer patients are reluctant to engage in PA despite being
aware of the long-term benefits of PA, something may be missing
in our understanding of CRF and its role in effort-based decision-
making regarding participation in PA (22–24). The decision to
engage in PA relies on the computation of several costs of effort
and expected benefits of PA (25, 26), and chronic fatigue might
be a key aspect of unwillingness to expend any effort (24, 27, 28).
Chronic fatigue can hinder motivation or self-regulatory
capacities, leading cancer patients to choose effortless activities
such as rest rather than effortful activities such as PA.

An interesting opportunity to achieve substantial progress in
PA-based interventions for fatigued cancer patients would be to
examine brain connectivity and its effect on effort-based
decision-making. Indeed, to date, concerns have focused on the
role of inflammation in the development of CRF (24, 29–32), but
its implication in the reluctance of cancer patients to engage in
PA has not been established. Even if several factors can cause
durable changes in brain functional connectivity (See Figure 1),
we propose that brain connectivity dysfunction in case of chronic
fatigue alters effort-based decision-making useful to engage in
PA. This hypothesis has never been proposed.

Here, we demonstrate that CRF is associated with alterations
in brain connectivity related to effort-based decision-making and
can thus hinder attempts to engage in regular PA. Accordingly,
we demonstrate that fatigue in cancer alters such brain
connectivity by examining studies using functional magnetic
resonance imaging (fMRI). The discussion section highlights
that interventions targeting chronic fatigue in cancer should
consider individual differences in lost or depleted inner resources
rather than symptoms alone, as in previous cancer research.
Clinical and interventional implications are then proposed.
DEFINITION OF CHRONIC FATIGUE
IN CANCER

Although no definition of CRF has been established, the concept
has been described. According to the National Comprehensive
Cancer Network (33), CRF is described as “a distressing,
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persistent, subjective sense of physical, emotional, and/or
cognitive tiredness or exhaustion related to cancer or cancer
treatment that is not proportional to recent activity and
interferes with functioning”. Cancer-related fatigue should be
distinguished from everyday fatigue, which can be easily
recovered by rest. According to Bootsma et al. (34), CRF is
chronic and should be considered a permanent symptom.
Nevertheless, CRF is increasingly regarded as a multisymptom
concept generally associated with physical and mental fatigue
rather than a single symptom (35, 36). Thus, fatigue in cancer
refers to a failure to initiate and/or sustain attentional tasks
(mental fatigue) and physical activities (physical fatigue)
requiring self-motivation (as opposed to external stimulation)
in the absence of any clinically detectable motor weakness or
dementia (37).
BRAIN NETWORK AND FUNCTIONAL
CONNECTIVITY IN CHRONIC FATIGUE

Three Large-Scale Brain Networks
Deciding to practice regular PA according to recommendations
requires efficient cognitive control and self-regulatory capacities.
Neuroimaging studies analyzing resting-state functional
connectivity have suggested the existence of at least three
large-scale brain networks related to different aspects of high-
level cognitive functions and self-regulation (38–41), including
the default-mode network (DMN), the central executive network
(CEN) and the salience network (SN).

The DMN plays a key role in self-related processes,
introspection, self-awareness, metacognition, prospective self-
projection, and autobiographic memory recall (42–47) and is
deactivated during cognitively demanding tasks (48–51). The
DMN thus allows the construction of mental models or
simulations having an adaptive function and facilitating future
behavior. These simulations therefore represent a means of
anticipating and evaluating future events to react to them as
best as possible, to build a stable identity over time and to adapt
to the social world. The DMN mainly includes the ventromedial
prefrontal cortex, the posterior cingulate cortex, the precuneus,
the retrosplenial cortex, the lateral parietal lobes and the medial
temporal lobes (52).

The CEN and SN are activated during a wide variety of tasks
(40, 49). The CEN (36, 53), a frontoparietal cognitive system that
controls and manages executive functions, contributes to
executive control, particularly by maintaining and updating
information in working memory, sustained attention, response
selection, and response suppression. The CEN is also responsible
for decision-making and problem solving in the pursuit of goal-
directed behavior (41). The CEN is mainly anchored in the
dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex,
the dorsomedial prefrontal cortex, and the lateral posterior
parietal cortex (40, 53, 54).

The SN, a cingulated frontal operculum system, is involved in
identifying themost homeostatically relevant signals among amyriad
of internal and extrapersonal stimuli to make decisions (40, 55),
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manage errors and conflicts (56, 57), and ensure autonomic
control (58, 59). The salience network is a large functional
neuronal network involved in the generation of the effort
signal (22). This system mainly consists of the orbital
frontoinsular cortex, the dorsal anterior cingulated cortex
(dACC), the anterior insula, and the superior temporal gyrus
(40). Uddin et al. (60) reported that during task performance, the
salience network coordinates and controls deactivation of the
DMN and activation of the CEN.

Functional Connectivity in Chronic Fatigue
Several studies using brain imaging in humans confirm that the
within-network connectivity of the SN is weakened in the case of
chronic fatigue syndrome/myalgic encephalomyelitis and
depression (61–66). In addition, these disorders are associated
with persistent weakened connectivity between the SN and CEN
and persistent strengthened connectivity between the SN and
DMN (66–68). This deterioration in effort capacity results in a
persistent weakening of SN connectivity through negative long-
term structural changes requiring several weeks or months to
occur and a brain connectivity less coordinated across area of the
DMN (69, 70). The following section provides evidence that
altered brain connectivity in chronic fatigue in cancer hinders
effort-based decision-making.
TASK-RELATED FUNCTIONAL
CONNECTIVITY AND CHRONIC FATIGUE
IN CANCER

The question is whether chronic fatigue in cancer alters
functional brain connectivity implied in effort-based decision-
Frontiers in Oncology | www.frontiersin.org 3
making; if so, a new mechanism related to brain connectivity
explaining disengagement from PA by cancer patients warrants
investigation. Based on six studies examining the relationship
between chronic fatigue and task-related fMRI (71–76), three
patterns of connectivity have been identified as plausible neural
biomarkers of chronic fatigue in cancer patients (See Table 1).

Spatial Variance in the Executive Network
First, using verbal working memory task-related fMRI, Askren
et al. (71) and Jung et al. (72) compared women with breast
cancer treated with chemotherapy to women who received no
adjuvant treatment. They both reported increased variance in the
BOLD signal in the executive network in women with adjuvant
treatment. Typically, the neural response in healthy people is
lower spatial variance in executive network activity during task
activation, reflecting strong attentional engagement.
Interestingly, this greater spatial variance was still higher in the
posttreatment chemotherapy group than in the nontreatment
group in both studies. In contrast, this change in variance
predicted posttreatment fatigue only in the study by Askren
et al. (71). Engagement of the executive (or frontoparietal)
network in the case of chemotherapy was found to be more
variable/idiosyncratic (77) in chemotherapy-treated women.
Generally, this pattern of spatial activation is often considered
a compensatory mechanism such that when a given neural
system is dysfunctional, other systems (regions/networks) may
become engaged in an attempt to support task performance.
However, this variability consumes more biological resources
and is costly.

Hyperactivation of the Executive Network
In addition to the variability in the executive network, Menning
et al. (74, 75) and De Dreu et al. (73) reported hyperactivation in
FIGURE 1 | Relationships between chronic fatigue and brain connectivity. The figure represents the links between cancer-related factors and effort-based decision-
making to practice PA. The causal relationship between chronic fatigue and brain connectivity (BC) can be of three types: [1] fatigue causes changes in BC; [2] the
change in BC causes fatigue; [1&2] a bidirectional relationship. Moreover, factors such as cancer itself, diagnosis and treatment of cancer may directly alter the brain
connectivity [3].
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the CEN using task-related fMRI (verbal working memory and
planning tasks, respectively). This hyperactivation was mainly
observed before and during treatment but not posttreatment.
Pretreatment hyperactivity was higher in women awaiting
chemotherapy than in those without chemotherapy. This
pattern of connectivity was explained by fatigue only in the
studies by Menning et al. (74, 75). In these three studies,
chemotherapy-treated women had increased brain activation in
the dorsolateral prefrontal cortex during the tasks, suggesting
that the hub of the executive network may be overengaged
during task processing. The hyperactivation in the CEN can be
explained by increased recruitment of expanded neural circuitry
to support structural functioning (78). Here, again, this pattern
may be associated with a compensatory mechanism.
Interestingly, CEN hyperactivation decreased over time in the
chemotherapy group (i.e., in the posttreatment group), with
increasing task loads corresponding to more difficulties
sustaining mental effort.

These results suggest that during a task targeting executive
functions, women with breast cancer must expend more effort
due to greater inner resource depletion. This widespread
activation may lead to an increased demand for neural
resources such as oxygen and glucose, in turn leading to
fatigue (79). Fatigue and lower performance have been
associated with increased brain activity while performing a
high-effort cognitive task (80–82). Severe fatigue has been
hypothesized to consume a significant amount of attentional
resources in terms of recruiting additional brain regions for
cognitive compensation to perform better in tasks depending on
the degree of mental effort (82).

Reduced Deactivation of the DMN
A third pattern of connectivity emerged in three studies (73, 75,
76) on brain tumors and breast cancer during treatment and
before chemotherapy. They all reported a reduced capacity to
inhibit DMN activation, which was correlated with measures of
fatigue. Given the role of the DMN in disrupting attentional and
engagement processes (38), failure to suppress DMN regions
during tasks should be related to decreased attention and/or
motivation toward the task. Nevertheless, within the DMN,
hyperactivation was also observed on resting-state fMRI (62).
Chemotherapy can induce white matter disruption (83) and a
reduction in gray matter density in several brain regions,
including the DMN (84). Specifically, the precuneus, cingulate,
lateral parietal cortex, medial frontal gyrus, cerebellum and
hippocampus appear to be the structures most impacted by
cancer treatments. Since the DMN is thought to be involved in
contemplation, remembering, and rumination, the authors
suggested that enhanced connectivity between the DMN and
the frontal gyrus may be related to more cogitation (62) and
partially responsible for mental fatigue.

This failure to suppress default mode activity during tasks has
been linked to decreased activity in task-related regions leading
to attentional lapses and decreases in performance (85–87). This
disengagement of brain regions associated with mental effort
(higher spatial variance) favoring of brain regions linked to
resting activity (the default network) might be intended to
Frontiers in Oncology | www.frontiersin.org 4
conserve mental resources for the maintenance of engagement
in the task (88).

These results show that the hypothesized pattern of
connectivity is partly corroborated, that is, a reduced capacity of
the SN to deactivate the DMN. In contrast, no clear weakening of
the connectivity between the SN and the CEN has been reported.
Nevertheless, the increasing activation of the CEN may be
associated with a compensatory mechanism. Finally, reduced
connectivity in the executive network is associated with fatigue
and task performance failure after chemotherapy completion.
DISCUSSION

This mini-review aimed to explore the relationship between
chronic fatigue in cancer and functional connectivity patterns
during task-related fMRI. Our literature review suggests that
effort-based decision-making may be altered by the changes in
brain connectivity, specifically within DMN and between DMN
and other networks. These results do not provide information on
the direction of the relationships between chronic fatigue and
network connectivity. Nevertheless, the direction of this
relationship between these two variables can be conceived in
three ways: a unilateral effect of chronic fatigue on network
connectivity, a unilateral effect of changes in connectivity that
induce chronic fatigue, or a bidirectional relationship between
these two variables.

Chronic fatigue might result in difficulty concentrating (i.e., a
symptom), which is explained by different brain activation
patterns. First, the pattern of chronic fatigue without treatment
or before treatment resembles alterations caused by anticipatory
stress. Andreotti et al. (89) emphasized neurocognitive
alterations in cancer populations independent of treatments,
supporting the role of the allostatic load induced by recurrent
and continuous stressors such as cancer diagnoses, negative
recurrent thoughts, and chronic pain but also by remembering
novel medication regimens and medical appointments. The
allostatic system includes two established large-scale brain
networks containing most of the limbic cortices: the SN and
the DMN. According to the authors, the allostatic mechanisms
are not tuned to help an individual respond effectively to
prolonged and repetitive psychological stressors that lead to
overactivity and dysregulation of the allostatic network.
Interestingly, Brosschot et al. (90) proposed that this prolonged
activation can also be generated by prolonged active cognitive
representations of stressors, also called perseverative cognition,
and that it occurs by phenomena such as worry, rumination and
anticipatory stress, such as a lack of sleep.

The dysfunctional activation of the executive network (i.e.,
greater spatial variance and hyperactivation of the executive
network) validates the ability of cancer patients to use
compensatory mechanisms to successfully engage in effortful
activities but at the cost of significant effort. This capacity is
reduced during treatment and at the end of the treatment,
suggesting that the toxicity of the molecules during
chemotherapy modifies the structure of the brain at the gray
December 2021 | Volume 11 | Article 774347
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TABLE 1 | Characteristics of included studies.

References Population • Design
• Type of cancer
• Moment of the

treatment

Measure of
fatigue

fMRI
scanner
task

Patterns of brain
functional connectivity

Relationship with chronic fatigue

Churchill
et al. (76)

28 women
in pre-CHE
37 women
pre-RAD
32 healthy
control
N/A

• Cross-sectional
• Breast cancer
(24 to 34 days after
surgery)
• Pre-treatment

The Functional
Assessment of
Chronic Illness
Therapy -
Fatigue (FACIT-F)

Verbal
working
memory
task

↑ of the activation in posterior cingulate
cortex and precuneus activation and ↓ in
Hurst exponent (parietal lobes and
thalamus) in high distress profile
(patients with sleep problems and
worry).

No direct measure of fatigue but the
physical distress (fatigue and sleep
disorders) is correlated with the
decrease in Hurst exponent.

Askren
et al. (71)

28 women
with CHE
37 women
non CHE
32 healthy
control
51 years
old

• Cross-sectional
• Breast cancer
• During treatment

The Functional
Assessment of
Chronic Illness
Therapy - Fatigue
(FACIT-F)

Verbal
working
memory
task

↑ spatial variance in executive network
(left and right frontal cortex, anterior
cingulate, left and right parietal cortex)
for the CHE groups compared to the
two other groups.

The spatial variance in executive
network predicts post-treatment fatigue
severity and cognitive complaints for
CHE group

Menning
et al. (74)

32 women
in pre-CHE
33 women
pre-non
CHE
38 healthy
control
50.9 years
old

• Cross-sectional
• Breast cancer
• Pre-treatment

Fatigue subscale
of the EORTC
QLQ-C30
Fatigue subscale
of the POMS

• Planning
test (Tower
of London)
• Paired
Associates
memory
task

Pre-CHE vs Control groups:
hyperactivation of the dorsomedial
prefrontal cortex extending into the
DLPFC with increasing task difficulty for
pre-CHE.
Pre-non CHE vs Control groups:
subthreshold hyperactivation of the
dorsomedial prefrontal cortex extending
into the DLPFC for pre-non CHE.

Significant correlation between fatigue
and the activation of the dorsomedial
prefrontal cortex on the planning task
across all groups.

Menning
et al. (75)

28 women
with CHE
(with or
without
endocrine
treatment)
24 women
non CHE
31 healthy
control
50.6 years
old

• Cross-sectional
• Breast cancer
• During treatment

Fatigue subscale
of the EORTC
QLQ-C30

• Planning
test (Tower
of London)
• Paired
Associates
memory
task

CHE vs non CHE: ↑ of the activation in
the bilateral inferior parietal cortex and
the precuneus extending into the
superior parietal cortex with increasing
task load in the CHE compared to the
non CHE group.
Non CHE vs Control: ↓ over time of the
activation in the right inferior parietal
cortex in non CHE compared to Control
group with increasing task load.

The non CHE group showed a
correlation between baseline fatigue
and change in BOLD signal in the right
inferior parietal cortex during the
planning task.
A negative correlation was found
between change in fatigue and change
in BOLD signal in the right inferior
parietal cortex in the non CHE group.

Jung et al.
(72)

28 women
with CHE
34 women
non CHE
30 control
group
51.58 years
old

• Longitudinal
• Breast cancer
• 4 moments: 1
month post-surgery;
before any planned
adjuvant; five
months following
baseline; 1 year
post-baseline

Breast Cancer
Prevention Trial
Symptom Scales
(BCPTSS)

Verbal
working
memory
task

From baseline to Month 12: ↑ spatial
variance in the executive network during
task activation for the CHE group
compared to the other groups. In
healthy patient, the variance of the fMRI
signal decrease during task activation
(habituation).

No direct measures of fatigue but
persistent cognitive complaints are
correlated with physical symptom
severity and worry regardless of
treatment.

De Dreu
et al. (73)

23
participants
with
meningioma
21 low
grade
glioma
19 high
grade
glioma
49.2 years
old

• Cross-sectional
• Brain tumor
• After surgery

Multidimensional
fatigue inventory
(MFI-20)

Task on
attention
(analysis
during
phasic
alertness)

↓ of the deactivation of the DMN (left
and right lingual cortex; left and right
cuneus; right precuneus) for the three
groups.

The total score of fatigue do not
correlate with the signal change in the
CEN during phasic alertness while total
score of fatigue, but also general,
physical and mental fatigue correlate
with the signal change in the DMN for
each group.
Frontiers in On
cology | www
.frontiersin.org
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CHE, chemotherapy; RAD, radiotherapy; EORTC-QLQ-C30, European Organization for Research and Treatment of Cancer-Quality of Life Questionnaire-C30; POMS, Profile Of
Mood State.
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and white matter levels, which modifies functional brain
connectivity. Thus, cancer patients are no longer be able
to compensate.

In summary, chronic fatigue leads to the use of compensatory
mechanisms that are cognitively costly for cancer patients, which
might impact the decision to engage in or maintain PA. These
mechanisms have been reported as patterns of adaptation of
brain activity in studies examining the functional connectivity in
several chronic diseases such as chronic fatigue syndrome (69)
and multiple sclerosis (91). However, this hyperactivation is not
always correlated with the level of fatigue. In contrast, the
reduced deactivation of the DMN in the three studies
examined appears to correlate with the level of fatigue.
According to Shan et al. (69), deficits in DMN could be energy
expensive and may contribute to or cause the fatigue. This
abnormal activity of DMN might be a marker of fatigue
in cancer.

Three perspectives can be proposed. First, PA interventions
should increase immediate benefits to reduce the imbalance
between cost (chronic fatigue) and benefits (general wellbeing)
and facilitate engagement in effortful activities such as PA.
Interestingly, behavioral change techniques have been reported
Frontiers in Oncology | www.frontiersin.org 6
to be helpful interventions to increase immediate benefits such as
‘social rewards’, ‘prompts’, ‘nonspecific rewards’ and ‘graded
tasks’ in cancer (92, 93). Second, exploring other regions of
interest, such as the basal ganglia, may be more productive to
understand the role of motivation and reward in effort-based
decision-making among fatigued cancer patients (94). Decreased
activation in the basal ganglia in chronic fatigue syndrome has
been demonstrated to be correlated with increased mental
fatigue, general fatigue and reduced PA (95). Third, these
patterns of impaired brain connectivity in the case of chronic
fatigue can also be observed with perseverative cognition (89),
including worry, rumination and anticipatory stress, such as
sleep disturbance. These three perspectives should be
examined further.
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