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Purpose: Given the higher precision accompanied by optimized sparing of normal tissue,
charged particle therapy was thought of as a promising treatment for pancreatic cancer.
However, systematic preclinical studies were scarce. We aimed to investigate the
radiobiological effects of charged particle irradiation on pancreatic cancer cell lines.

Methods: A systematic literature search was performed in EMBASE (OVID), Medline
(OVID), and Web of Science databases. Included studies were in vitro English publications
that reported the radiobiological effects of charged particle irradiation on pancreatic
cancer cells.

Results: Thirteen carbon ion irradiation and seven proton irradiation in vitro studies were
included finally. Relative biological effectiveness (RBE) values of carbon ion irradiation and
proton irradiation in different human pancreatic cancer cell lines ranged from 1.29 to 4.5,
and 0.6 to 2.1, respectively. The mean of the surviving fraction of 2 Gy (SF2) of carbon ion,
proton, and photon irradiation was 0.18 ± 0.11, 0.48 ± 0.11, and 0.57 ± 0.13, respectively.
Carbon ion irradiation induced more G2/M arrest and a longer-lasting expression of gH2AX
than photon irradiation. Combination therapies enhanced the therapeutic effects of
pancreatic cell lines with a mean standard enhancement ratio (SER) of 1.66 ± 0.63 for
carbon ion irradiation, 1.55 ± 0.27 for proton irradiation, and 1.52 ± 0.30 for photon
irradiation. Carbon ion irradiation was more effective in suppressing the migration and
invasion than photon irradiation, except for the PANC-1 cells.

Conclusions: Current in vitro evidence demonstrates that, compared with photon
irradiation, carbon ion irradiation offers superior radiobiological effects in the treatment
of pancreatic cancer. Mechanistically, high-LET irradiation may induce complex DNA
damage and ultimately promote genomic instability and cell death. Both carbon ion
irradiation and proton irradiation confer similar sensitization effects in comparison with
photon irradiation when combined with chemotherapy or targeted therapy.
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INTRODUCTION

Pancreatic cancer is one of the most aggressive cancers—of
which pancreatic ductal adenocarcinoma (PDAC) is the most
frequent type, accounting for 85% of all cases—and is associated
with the highest mortality rate (1). The efficacy of available
treatments is limited; only approximately 15–20% of all patients
can be treated with an R0 resection at the time of diagnosis (2).
However, even after resection, a high proportion of patients die
from local recurrence and/or distant metastasis (3). New
therapies or therapeutic combinations are therefore required to
improve outcomes from this cancer type, which are currently
very poor. Radiation therapy combined with chemotherapy is an
important treatment modality; however, pancreatic cancer is
extremely hypoxic, resulting in epithelial to mesenchymal
transition and resistance to low linear energy transfer (LET)
radiation (4). It has been reported that the 1-year local control
rates associated with conventional chemoradiotherapy (CRT) in
people with PDAC is just 40–60% (5). Moreover, in conventional
photon irradiation, the dose cannot be escalated owing to the risk
of toxicity in the surrounding radiosensitive organs, such as the
small bowel, liver, and kidneys.

The prevailing use of highly sophisticated, photon-based
external beam radiation techniques including stereotactic body
radiation therapy (SBRT), intensity-modulated radiotherapy
(IMRT) offers more conformal dose distributions and have
shed light to people with pancreatic cancer. A meta-analysis
estimated that in locally advanced pancreatic cancer (LAPC), the
2-year overall survival (OS) is 26.9% with SBRT and just 14.7%
for CRT (6).Charged particle (carbon ion and proton) represents
an emerging technological advance in oncology and yielded quite
encouraging outcomes. There are articles demonstrated the 2-
year OS of LAPC for carbon ion radiotherapy (CIRT) with
concurrent gemcitabine (GEM) was approximately 50%, and
the 1-year OS of proton radiotherapy (PRT) concurrent
chemotherapy was approximately 76%. In addition, CIRT and
PRT can significantly reduce toxicity in those who receive these
therapies (7–10).

Compared with conventional photon radiation, proton offers
the potential physical advantage of improved dose localization
offered by a spread-out Bragg peak (SOBP). It can deliver
equivalent doses to targets as photons would while sparing
integral dose to organs at risk (OARs), which could potentially
reduce toxicity (11). Compared with proton, carbon ion offers
comparable physical characteristics (12), but has substantially
different biological properties. Carbon ion is associated with an
enhanced relative biological effectiveness (RBE) due to higher
LET, which theoretically induce more direct DNA damage, and
double-strand breaks (DSBs). Carbon ion irradiation is also more
effective against hypoxic radioresistant tumors, due to its low
oxygen enhancement ratio. These characteristics make charged
particle therapy a very promising cancer treatment option,
however the exact radiobiological responses to charged particle
irradiation have not been fully elucidated. It is unclear what
modifications charged particle irradiation induces to the DNA
and to signal transduction events. Moreover, the effects of
Frontiers in Oncology | www.frontiersin.org 2
combining carbon ion/proton irradiation and drugs with
various mechanisms of action may differ from those of
photon irradiation.

Several in vitro publications have explored the radiobiological
effects of charged particle irradiation for pancreatic cancer.
However, these studies differed in the cellular origins, charged
particle type, radiation dose, dose rate, and therapeutic
combinations (13–15). Therefore, further investigation is
needed to combine and assess the current knowledge of this
topic offered by in vitro studies. This study is a systematic review
(SR) of published in vitro studies on the topic of carbon ion/
proton irradiation for pancreatic cancer. It includes a
comprehensive analysis of the cellular and molecular effects of
charged particle irradiation on pancreatic cancer cell lines to gain
insights into the mechanisms of particle therapy alone or as part
of combination therapies used to treat pancreatic cancer.
MATERIALS AND METHODS

This SR was developed according to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (16).

Search Strategy
We used database-specific subject headings and free-text terms
describing the populations or interventions to search Embase
(OVID), Medline (OVID), and Web of Science databases (dates
of inception to August 27, 2021). In addition, these terms were
also used to access any unpublished material using Google
search. Finally, the references of included studies were checked
manually to identify any initially omitted publications. The full
search strategy is described in the Supplementary Materials.

Study Selection
After independently screening the titles and abstracts, two
trained reviewers intensively read the full text to determine the
final inclusion. Disagreements were discussed with the
participation of a third reviewer.

The inclusion criteria for this research were:

1. In vitro studies of pancreatic cancer cell lines irradiated by
carbon ion/proton.

2. Reported at least one of the following outcomes:
2.1. Cell clonogenic survival.
2.2. DNA damage response (DDR): cell cycle

checkpoints, DNA repair, and apoptosis.
2.3. Migration or invasion.
2.4. The standard enhancement ratio (SER) evaluating

the therapeutic effects of combination therapy. For studies
that failed to report SER, we extracted data from published
plots using Web Plot Digitizer and then determined the SER
by calculating the ratio of doses in treated and control groups
for a given isoeffect (surviving fraction (SF)=0.1) (17).

3. Articles published in English.
January 2022 | Volume 11 | Article 775597
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The exclusion criteria were:

1. Artificially modified cells lines.
2. No corresponding outcome was reported.
3. Clinical and animal studies, case reports, reviews, commentary,

expert opinion, conference abstracts, correspondence.
4. Pilot studies and research projects.
5. Full-text articles were not available.
Data Extraction
Two trained reviewers independently extracted data using a pre-
established data extraction form. The following details were
collected: name of the first author and the publication year,
country, or region, type of particle irradiation, cell type (origin),
the carbon ion/proton irradiation schedule (initial energy,
average LET, SOBP, single doses, dose rate, and dose group),
combination therapy, type of photon radiation. The extracted
data were confirmed by a third reviewer.

Assessment of Risk of Bias
For in vitro studies, no standard risk of bias assessment
instrument exists now, so we produced these criteria ourselves,
detailed in the supplementary materials (Table S1). These
criteria evaluated the risk of bias induced by selection,
performance, detection, attrition, cell-related, and other bias.
The risk of bias was categorized into “Low”, “Moderate”, or
“High”. When a study lacked sufficient details to evaluate, the
risk of bias was categorized as “Risk Unknown”. In duplicate, two
reviewers assessed the risk of bias. Disagreements were solved by
the participation of a third reviewer.

Statistical Analysis
In general, we used descriptive statistics to summarize baseline
variables. The continuous data were presented as mean with
standard deviation (SD) or median with interquartile ranges
(IQR). All analyses were performed using R 4.0.3. A value of P <
0.05 was thought statistically significant.
RESULTS

Search Results
The electronic search resulted in 1029 unique citations. After
reference and full-text screening, a total of 20, including 13 on
carbon ion irradiation and seven on proton irradiation, met the
eligibility criteria. The screening and selection processes are
presented in Figure 1.

Study Characteristics
The characteristics of included (13–15, 18–34) studies are
summarized in Table 1. Briefly, 13 carbon ion irradiation and
seven proton irradiation studies were included in our final SR;
these studies were published between 2004 and 2021.They were
conducted in 7 different countries: Japan, Germany, Belgium, Italy,
Korea, the United States of America, and Lithuania. Of these
studies, almost all used human pancreatic cancer cell lines, such as
Frontiers in Oncology | www.frontiersin.org 3
AsPC-1, BxPc-3, MIA PaCa-2, PANC-1, and PK45, only one (18)
used transgenic mice cell lines (PDA30364/OVA). The studies
varied in the initial energy, averaged LET, SOBP, radiation doses,
and dose rates used. Two studies (14, 26) explored the effects of
carbon ion irradiation on human pancreatic cancer stem-like cells
(CSCs), using CD44+CD24+ESA+ and CD133+ as markers for
their identification (35, 36). Carbon ion/proton irradiation
combined with GEM was reported in three studies (20, 26, 29),
poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) in three
studies (24, 31, 33), B02 (a RAD51 inhibitor) in one study (33) and
camptothecin (CPT) in another study (27). In addition, one study
(19) combined carbon ion irradiation, magnetic nanoparticles
(MNPs), and hyperthermia (Hyp) as a new treatment
combination for pancreatic cancer. In total, 13 control groups
were treated using X-rays, one with g-rays, and the remaining six
control groups were not irradiated. Eleven studies reported RBE
values. The study by Hirai and colleagues (24) did not report the
RBE values, but they calculated the isoeffective doses of g-ray, LET
13 carbon ion, and LET 70 carbon ion irradiations that resulted
10% cell survival for their follow-up analyses.

Risk of Bias
The outcomes of the risk of bias evaluation are shown in Figure 2.
Among the 20 in vitro studies included in our SR, eight studies (13,
15, 19, 20, 22, 23, 27, 30) provided adequate information on
irradiation. Eleven of the studies failed to describe cell counting
methods. Seven studies (14, 15, 19, 23, 28, 29, 34) did not report
whether the experiments were repeated, resulting in attrition bias.
None of the publications stated whether the selection of treatment
was blinded, and only one paper (21) reported blinding the
outcomes assessors to minimize detection bias. All papers except
one (28) described the implementation process. Four publications
(19, 25, 28, 33) only partly described how results were measured;
the remaining 16 described these methods in detail. One study
(23) did not mention the conditions in which cells were cultured,
and four studies (18, 31, 33, 34) partly reported the cell origin and
cell type. Only one study (25) did not clear whether there was
industry sponsoring; the rest were reported to have no connections
with or employment at a company.

RBE Values
RBE is defined as the ratio of the amount of dose from test
radiation required to generate the same biological endpoint
(usually cell-killing) relative to reference radiation (usually 250
kVp X-rays or Co-60 g-rays) (37).

Four studies (15, 18) (20, 34) used a linear-quadratic model to
determine RBE values; the remaining 16 did not declare the
model used. Nine studies using six different human pancreatic
cancer cell lines in total reported RBE values for carbon ion
irradiation, ranging from 1.29 to 4.5 (Figure 3). Two of these
studies (14, 26) reported RBE values were higher for CSCs than
non-CSCs for the same cell line. Matsui and colleagues (25) used
three pancreatic cancer cell lines each irradiated with three
different LETs and demonstrated that RBE values increased
with increasing LET. Schlaich and colleagues (27) calculated
RBE values for carbon ion irradiation alone (2.4 ± 0.4) and in
combination with CPT (2.2 ± 0.2). Two studies (15, 28) reported
January 2022 | Volume 11 | Article 775597
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the RBE values for proton irradiation, which varied from 0.6 to
2.1 depending on the pancreatic cell line used. Details are shown
in Table 2.

Clonogenic Survival
We calculated the SF for carbon ion, proton, and photon
irradiation from radiation survival curves. The mean SF of 2 Gy
(SF2) of carbon ion, proton, and photon irradiation was 0.18 ±
0.11, 0.48 ± 0.11, and 0.57 ± 0.13, respectively. The SF values
associated with different radiation doses are shown in Table 3.
Frontiers in Oncology | www.frontiersin.org 4
Three studies (18, 20, 27) demonstrated that carbon ion
irradiation had an enhanced efficacy in the suppression of
clonogenic survival compared with standard photon irradiation
in human pancreatic cell lines and pancreatic adenocarcinoma cell
lines from transgenic mice. The presence of Olaparib (Ola, a PARP
inhibitor), MNPs, or Hyp can enhance this cytotoxic effect. The SF
for cancer stem cell-like CD44+/CD24+ or CD44+/ESA+ cells was
found to be significantly higher than non-cancer stem-like CD44–/
CD24– or CD44–/ESA– cells after treatment with either carbon ion
or photon irradiation. The number of tumor spheroids was
FIGURE 1 | PRISMA flow diagram.
January 2022 | Volume 11 | Article 775597
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significantly lower in carbon ion-irradiated CSCs than in those
that were irradiated with X-rays (14, 26). Matsui and colleagues
(25) concluded that the survival rates of pancreatic cell lines after
carbon ion irradiation were correlated with LET level and RBE
values. Görte and colleagues (15) revealed that proton irradiation
is associated with a greater reduction in PDAC tumoroid growth
than X-ray irradiation.

The Effects of DDR
Overall, ten studies investigated the DDR effects of carbon ion/
proton irradiation on pancreatic cancer cells. Two of these (18,
25) reported that carbon ion irradiation induced more G2/M
arrest compared with photon irradiation and that the intensity of
G2/M arrest was stronger with an increased LET level. Combined
GEM and carbon ion irradiation increased the expression of
senescence-related genes such as P21, P16, and P27 compared
Frontiers in Oncology | www.frontiersin.org 5
with carbon ion irradiation alone. The presence of Ola enhanced
G2/M phase arrest and reduced the level of histone H3
phosphorylation induced by photon or carbon ion/proton
irradiation. One study (29) confirmed proton irradiation can
induce significant cell cycle arrest in a dose-dependent manner in
both radiosensitive and radioresistant pancreatic cell lines.

Compared with unirradiated controls, Brero and colleagues
(19) found that carbon ion irradiation alone increased the
formation of gH2AX and 53BP1 foci, which were validated
markers of DNA DSBs. Oonishi and colleagues (14) reported
on the expression of gH2AX in human pancreatic CSCs after
irradiation. The number of gH2AX foci in CD44–/CD24– cells
were higher than that of CD44+/CD24+ cells after irradiation
with either carbon ion or X-rays, and the number of gH2AX foci
in CD44+/CD24+ cells irradiated with carbon ion persisted
significantly longer compared with those irradiated with
TABLE 1 | Overview of the included in vitro studies.

Author (year) Country Charged
particle

Cell type Initial energy Average LET SOBP Dose
rate

Dose
group

Combination
therapy

Control

Oonishi, K. 2012
(14)

Japan carbon ion MIA PaCa-2, BxPc-3* 290Mev/n 50KeV/mm 6cm – 1, 2, 3Gy – X ray

Hartmann, L.
2020 (18)

Germany carbon ion PDA30364/OVA†
– 103KeV/mm 8mm – 0.1, 0.4,

1.0, 3.1Gy
– X ray

Sai, S. 2015 (26) Japan carbon ion PK45, PANC1, MIA
PaCa-2, BxPc-3*

290MeV/n 50keV/mm 6cm – 1Gy GEM X ray

Fujita, M. 2015
(13)

Japan carbon ion MIA PaCa-2, AsPC-1,
BxPc-3, PANC-1*

290MeV/n 80keV/mm NR 1Gy/min 0.5, 1, 2,
4Gy

– X ray

Hirai, T. 2012 (24) Japan carbon ion MIA PaCa-2* 290MeV/n 13 and 70 keV/
mm

NR 1.2Gy/
min

– Ola g ray

Schlaich, F. 2013
(27)

Germany carbon ion PANC-1* – 103keV/mm NR 0.5Gy/
min

0.5, 1, 2,
3Gy

CPT X ray

El Shafie, R. A.
2013 (20)

Germany carbon ion AsPC-1, BxPc-3,
PANC-1*

– 103keV/mm NR – 0.125, 0.5,
1, 2, 3Gy

GEM X ray

Matsui, Y. 2004
(25)

Japan carbon ion MIA PaCa-2, SUIT2,
BxPc-3*

– 13/50/80 keV/
mm

6cm 0.85Gy/
min

– – X ray

Brero, F. 2020
(19)

Italy carbon ion BxPC3* 246-312 MeV/
u

45keV/mm 6cm – 0-2Gy – X ray

Fujita, M. 2012
(23)

Japan carbon ion MIA PaCa-2, AsPC-1,
BxPc-3, PANC-1*

290MeV/u 80 keV/mm NR 1Gy/min 0, 0.5, 1, 2,
4Gy

– X ray

Facoetti, A. 2018
(21)

Italy carbon ion AsPC-1* 246-312 MeV/
u

NR 1.39Gy/
min/cm2

– X ray

Fujita, M. 2014
(22)

Japan carbon ion MIA PaCa-2, PANC-1* 290MeV/u 80 keV/mm NR 1Gy/min 0.5, 1, 2,
4Gy

– No IR

Lee, S. H. 2021
(34)

Japan carbon ion MIA PaCa-2* 313.2/288.0/
261.5 MeV/u

12.5/26.4/48.8/
87.9 keV/mm

6cm – 0-5Gy – No IR

Lee, Min-Gu 2019
(32)

Korea proton Capan-1, PANC-1* 100MeV – 6cm – 2, 4, 8 or
16Gy

– No IR

Fujinaga, H. 2019
(28)

Japan proton MIA PaCa-2* 200MeV – NR – 8Gy – X ray

Wera, Anne-
Catherine 2019
(33)

Belgium proton KP4, PANC-1* 1.3MeV 25keV/mm NR 2Gy/min 0.5, 1 Gy Ola B02 X ray

Liubavičiūtė, A.
2015 (30)

Lithuania proton MIA PaCa-2* 20nA and 1.6-
MeV

– NR – 1.6Gy – No IR

Galloway, N. R.
2009 (29)

US proton PANC-1, MIA PaCa-2* 250MeV – NR 2.5/5/10/
15Gy/h

0-15Gy GEM No IR

Görte, J. 2020
(15)

Germany proton BxPC3, PANC-1, MIA
PaCa-2, Patu8902*

150MeV 3.7 keV/mm 26.3mm – 2, 4, 6Gy – X ray

Hirai, T. 2016 (31) Japan proton MIA PaCa-2* 160MeV 4.3KeV/mm NR 2.5Gy/
min

– Ola No IR
Janu
ary 2022 | Vo
lume 11 | Article
CPT, camptothecin; GEM, gemcitabine; NR, not reported; Ola, Olaparib; IR, irradiation.
*human pancreatic cancer cell lines; †pancreatic adenocarcinoma cell line from transgenic mice.
775597

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Particle Irradiation for Pancreatic Cancer

Frontiers in Oncology | www.frontiersin.org 6
X-rays. Meanwhile, the authors discovered that carbon ion
irradiation alone can also strongly increase in the size of
gH2AX foci (clustered DNA damage). Sai and colleagues (26)
confirmed that combined therapy with carbon ion irradiation
and GEM significantly increased the expression of DNA
damage and repair-related genes such as ARTEMIS, RAD51,
TP53BP1, and BRAC1. Compared with unirradiated cells, the
expression of gH2AX was significantly increased in Capan-1,
Panc-1, and MIA PaCa-2 cells after proton irradiation. Lee and
colleagues (32) demonstrated that the level of the DNA repair
protein RAD51 was dose-dependently decreased in Capan-1cells,
but not in Panc-1 cells. Two studies (24, 31) reported the
expression of gH2AX was increased and prolonged following
carbon ion/proton irradiation in the presence of Ola.

Sai and colleagues (26) reported that carbon ion irradiation
combined with GEM increased the level of apoptosis in PK45
cells, and the apoptosis-related gene expressions such as Bax,
cytochrome c, and Bcl2 were significantly elevated with combined
carbon ion irradiation/GEM and with GEM alone. One study
(25) demonstrated that carbon ion irradiation induced mitotic
death, rather than apoptotic death, in BxPC-3, MIAPaCa-2, and
SUIT2 cells. The effects of proton irradiation on apoptosis varied
according to cell type: in Capan-1 cells, proton irradiation
increased the expression of cleaved PARP, which is known as a
marker for apoptotic cell death (32). Proton irradiation alone
FIGURE 3 | Boxplot representing the RBE value of carbon ion irradiation for
the six human pancreatic cell lines.
FIGURE 2 | Results of the risk of bias assessment.
January 2022 | Volume 11 | Article 775597
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increased the levels of survivin in MIA PaCa-2 cells with little
apoptosis. However, combined proton and GEM therapy
induced robust apoptosis with a concomitant reduction in
survivin and XIAP (29). In radiation-resistant PANC-1cells,
two studies (29, 32) showed that proton irradiation increased
survivin levels with little apoptosis, even in combination with
GEM. Details are presented in Table 4.

Migration and Invasion Ability
There were five publications (13, 21–23, 26) involved migration,
invasion, or the expression of related genes (Table 5). Fujita and
colleagues (13, 22, 23) conducted a series of studies and
demonstrated carbon ion irradiation (2Gy) could repress the
migration of AsPC, BxPC-3, and MIAPaCa-2 cells, diminish
MIAPaCa-2 cell invasiveness via prevented the activity of Rac 1
and RhoA, and reduce the invasiveness of AsPC, BxPC-3 via
inhibited the activity of Rac 1 through Ub-mediated proteasomal
degradation. In contrast, 2Gy carbon ion irradiation promoted
the invasion of PANC-1 cells by activating of plasmin and
urokinase-type plasminogen activator, and nitric oxide also
played an important role in this process via activation of the
Frontiers in Oncology | www.frontiersin.org 7
PI3K-AKT and RhoA pathways. Facoetti and colleagues (21)
reported the migration of AsPC-1 cells is regulated by
components released by normal fibroblasts and tumor cells
through morphological analysis. Sai and colleagues (26)
demonstrated carbon ion or photon irradiation alone and/or in
combination with GEM in PK 45 cells could enhance the level of
tumor invasion-related genes like MMP-2, MMP-9, E-cadherin,
and b-catenin.

SER Evaluating the Therapeutic Effect
of Combination Therapy
Six studies reported on the therapeutic effects of combination
therapy in five different cell lines exposed to carbon ion/proton
irradiation (Table 6). SER values depended on the type of
irradiation, ranging from 1.02–2.81 for carbon ion, 1.30–1.98
for proton, and 1.07–2.10 for photon irradiation, respectively.
Two publications (24, 31) reported the SER associated with low
versus high LET radiation levels, confirming that the high LET
levels had an enhanced effect. Brero and colleagues (19)
demonstrated that combination of MNPs and Hyp substantially
enhanced the effects of irradiation, irrespective of the type of
TABLE 3 | The SF values of pancreatic cancer cells irradiated by carbon ion, proton, and photon.

Carbon ion irradiation Proton irradiation Photon irradiation

SF1 0.43 ± 0.15 0.70 ± 0.08 0.76 ± 0.09
SF2 0.18 ± 0.11 0.48 ± 0.11 0.57 ± 0.13
SF3 0.05 [0.03, 0.13] 0.33 ± 0.11 0.38 ± 0.15
SF4 0.04 ± 0.04 0.23 ± 0.11 0.22 [0.14,0.34]
SF5 0.02 ± 0.02 0.13 ± 0.08 0.13 [0.06,0.20]
SF6 0.01 [0.0008, 0.02] 0.05 [0.04,0.10] 0.08 [0.03,0.13]
SF7 – 0.02 [0.02,0.02] 0.04 [0.008,0.11]
SF8 – 0.008 [0.008,0.008] 0.03 [0.02,0.10]
January 2022 | Volume
SF, surviving fraction.
Data are mean ± SD or median (interquartile range).
TABLE 2 | RBE values comparing carbon ion/proton to photon irradiation effectiveness in pancreatic cancer cell lines.

Author, year RBE
Model

RBE values of different cell lines

Oonishi, K. 2012 (14) NR MIA PaCa-2 (Unsorted): 1.85; BxPc-3 (Unsorted): 2.10; MIA PaCa-2 (CD44+/CD24+): 2.01; MIA PaCa-2 (CD44-/CD24-): 1.47; BxPc-
3 (CD44+/CD24+): 2.19

Hartmann, L. 2020
(18)

L-Q
Model

PDA30364/OVA: 3.23-10.0

Sai, S. 2015 (26) NR PANC1 (Unsorted): 1.71; PK45 (Unsorted): 2.18; PANC1 (CD44+/ESA+): 2.43; PANC1 (CD44-/ESA-): 1.94; PK45 (CD44+/ESA+):
2.35; PK45 (CD44-/ESA-): 1.93

Schlaich, F. 2013 (27) NR PANC-1(no drug): 2.4 ± 0.4; PANC-1(CPT): 2.2 ± 0.2
El Shafie, R. A. 2013
(20)

L-Q
Model

Ranged from 1.5-4.5 depending on cell line and survival level

Matsui, Y. 2004 (25) NR MIAPaCa-2 (Carbon ion irradiation 13/50/80KeV/mm): 1.29/1.57/1.83; SUIT (Carbon ion irradiation 13/50/80KeV/mm): 1.16/1.42/
1.59; BxPC-3 (Carbon ion irradiation 13/50/80KeV/mm): 1.77/1.69/2.46

Brero, F. 2020 (19) NR BxPC3: 3.5
Fujita, M. 2012 (23) NR PANC-1: 2.2
Lee, S. H. 2021 (34) L-Q

Model
MIAPaCa-2: 1.38*

Fujinaga, H. 2019 (28) NR MIAPaCa-2: 1.3
Görte, J. 2020 (15) L-Q

Model
MIAPaCa-2: 1.2; Capan-1: 1.2; Panc-1: 1.7; BxPC-3: 0.6; Patu8902: 1.4; Colo357: 2.1
CPT, camptothecin; L-Q Model, linear quadratic model; NR, not reported; RBE, relative biological effectiveness.
*at the center of the target region (=120mm).
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irradiation used. CPT had a slight enhancing effect on both
carbon ion and photon irradiation (27). Wera and colleagues
(33) revealed that the combination of Ola and B02 further
sensitized KP4 cells, but not PANC-1 cells, to proton
irradiation. Taken together, the pooled analysis indicated that
combination therapies enhanced the therapeutic effects of
pancreatic cell lines with a mean SER of 1.66 ± 0.63 for carbon
ion, 1.55 ± 0.27 for proton, and 1.52 ± 0.30 for photon irradiation
(Figure 4). However, no significant differences compared with
Frontiers in Oncology | www.frontiersin.org 8
photon irradiation were observed for carbon ion or proton
irradiation (P > 0.05).
DISCUSSION

This SR aimed to evaluate the radiobiological effects of charged
particle irradiation on pancreatic cancer cell lines, including cell
survival, DDR, migration, and invasion ability. In total, 20 in
TABLE 5 | Migration and invasion of pancreatic cancer cells after carbon ion irradiation.

Author, year Migration and invasion ability

Sai, S. 2015 (26) Tumor invasion-related genes like MMP2, MMP9, E-cadherin and b-catenin were increased by either carbon ion or X-ray irradiation alone
and/or in combination with GEM.

Fujita, M. 2015 (13) The Ub-proteasome-mediated degradation of Rac1 and RhoA is a mechanism underlying the suppression of MIAPaCa-2 cell motility by
carbon ion irradiation.

Fujita, M. 2012 (23) Carbon ion irradiation is effective in suppressing the invasive potential of MIAPaCa-2, BxPC-3 and AsPC-1cells; Carbon ion irradiation
increased the invasiveness of PANC-1 through the activation of plasmin and urokinase-type plasminogen activator.

Facoetti, A. 2018 (21) The migratory behavior of Aspc-1 cells is modulated by factors released by normal fibroblasts and tumor cells, and this is in turn modulated
by both the radiation dose and the radiation quality.

Fujita, M. 2014 (22) Nitric oxide increases the invasion of PANC-1 cells via activation of the PI3K–AKT and RhoA pathways after carbon ion irradiation.
GEM, gemcitabine.
TABLE 4 | DDR of pancreatic cancer cells after carbon ion/proton irradiation.

Author, year Treatment Outcome
assessed

Finds

Oonishi, K. 2012
(14)

Carbon ion irradiation DNA repair The number of gH2AX foci in CD44-/CD24- cells was higher than that of CD44+/CD24+ cells; ↑ the
size of gH2AX foci

Hartmann, L. 2020
(18)

Carbon ion irradiation Cell cycle
checkpoints

G2/M arrest by a transient and dose-dependent manner

Sai, S. 2015 (26) Carbon ion irradiation +
GEM

Cell cycle
checkpoints

↑ senescence-related genes such as p21, p16 and p27 expression

DNA repair ↑ the number and the size of gH2AX foci; ↑ DNA damage and repair-related genes such as ARTEMIS,
Rad51, TP53BP1, BRAC1

Apoptosis Induce the apoptosis of CSCs and non-CSCs; ↑ apoptosis-related gene expressions such as Bax,
cytochrome c and Bcl2

Hirai, T. 2012 (24) Carbon ion irradiation +
Ola

Cell cycle
checkpoints

G2/M arrest; ↓ phosphorylated histone H3

DNA repair ↑ levels of g-H2AX
Matsui, Y. 2004 (25) Carbon ion irradiation Cell cycle

checkpoints
G2/M arrest

Apoptosis Irradiation induced mitotic death rather than apoptotic death
Brero, F. 2020 (19) Carbon ion irradiation DNA repair ↑ the number of DSBs markers (gH2AX and 53BP1)
Lee, Min-Gu 2019
(32)

Proton irradiation Cell cycle
checkpoints

↑ p21 protein expression; ↓ Phosphorylated STAT3

DNA repair ↑ phosphorylation of H2A.X; ↓ the expression of RAD51 protein in Capan‐1 cells
Apoptosis ↑ survivin gene and protein expression in Panc-1 cells; ↑ cleaved PARP in Capan-1 cells

Liubavičiūtė, A.
2015 (30)

Proton irradiation Cell cycle
checkpoints

Temporary G1/0 cell cycle arrest

DNA repair The cells expressing the gH2AX at 1 h, 3 h, 6 h, 24 h, 48 h, and 72 h after Proton irradiation was 97%,
93.43%, 83.47%, 62.3%, 23.1%, and 3.78%, respectively

Apoptosis The percentage of apoptotic cells 24 h after irradiation was 45%; after 48 h, 60%, and after 72 h, 79%
Galloway, N. R.
2009 (29)

Proton irradiation +
GEM

Cell cycle
checkpoints

G2/M arrest*; G0/G1 arrest†

Apoptosis Robust apoptotic induction; ↓ survivin and XIAP in the MIA PaCa-2 cells
Hirai, T. 2016 (31) Proton irradiation + Ola Cell cycle

checkpoints
↑ p-p53; S phase arrest with a subsequent G2/M arrest

DNA repair ↑ the number of gH2AX foci/nucleus
CSC, cancer stem-like cells; DDR, DNA damage response; DSB, double-strand break; GEM, gemcitabine; Ola, Olaparib; PARP, poly (ADP-ribose) polymerase; XIAP, X-linked inhibitor of
apoptosis protein.
*sequential treatments that used proton irradiation as the first modality in the treatment regimen; †GEM as the first modality; ↑: increase; ↓: reduction.
January 2022 | Volume 11 | Article 775597

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Particle Irradiation for Pancreatic Cancer
vitro studies, including 13 on carbon ion irradiation and seven on
proton irradiation, were included. Our results revealed that
carbon ion irradiation had superior radiobiological effects on
pancreatic cancer cells when compared with photon irradiation.
The lack of a direct comparison between proton and photon
irradiation across the studies included here prevents any similar
conclusions for proton irradiation. Both carbon ion irradiation
and proton irradiation confer similar sensitization effects in
Frontiers in Oncology | www.frontiersin.org 9
comparison with photon irradiation when combined with
chemotherapy or targeted therapy.

RBE is a complex quantity that depends on physical
parameters, such as particle type and energy, LET and dose, as
well as biological parameters, including tissue/cell type, cell cycle
phase, oxygen level, and endpoint (38). Acceptable RBE values
are generally considered to be approximately 1.1 for protons and
2.5– 3 for carbon ions (39), which is generally in line with the
reported RBE values included in this SR. However, Gorte and
colleagues (15) showed that the RBE value associated with
proton irradiation in pancreatic cancer cell lines varied from
0.6 in BxPC-3 cells to 2.1 in Colo357 cells. The considerable
uncertainty and great variability in the determination of absolute
RBE values have long been recognized (40, 41). Furthermore,
some hold the perspective that the RBE is a clinically relevant
parameter, the clinical RBE involves a medical decision based on
empirical data and clinical information. So it should be
determined under in vivo growth conditions such as animal
models, which enable simulation of clinical treatments, especially
in late tissue vascular and fibrotic complications (42). Further
research is needed to obtain accurate RBE values for carbon ion/
proton irradiation, and thus to understand the mechanisms
underpinning the enhanced effectiveness of high LET
irradiations and apply them in a clinical setting.

Our SR revealed greater growth inhibition with carbon ion/
proton irradiation compared with photon irradiation, which is
attributed to the capacity to cause damage to cellular
macromolecules, particularly DNA. Radiation-induced DNA
damage is classified as direct (ionizing radiation interacts
directly with the DNA) and indirect [mediated through
reactive oxygen species (ROS)]. With increased LET, and thus
increasing ionization density, the proportion of direct damage,
the complexity of the DNA damage pattern, and the release of
DNA fragments are also increased, and the repairability of the
managed site is decreased (43, 44). This is consistent with the
phenomenon observed among the studies we included in this SR,
FIGURE 4 | Boxplot representing the SER value of combined effects of
chemotherapy or target therapy with the carbon ion, proton, and photon
irradiation. B02, a RAD51 inhibitor; CPT, camptothecin; GEM, gemcitabine;
MNPs, magnetic nanoparticles; Hyp, hyperthermia; Ola, Olaparib.
TABLE 6 | SER values determined from combination therapy.

Author, year Combination therapy (Dose) Cell line SER

Carbon ion irradiation Proton irradiation Photon irradiation

Hirai, T. 2012 (24) Ola 1 mM MIA PaCa-2 1.2; 1.4* – 1.4
Ola 5 mM MIA PaCa-2 1.5; 2.5* – 1.7

Schlaich, F. 2013 (27)† CPT 25 nM PANC-1 1.02 – 1.07
El Shafie, R. A. 2013 (20) GEM 10 nM AsPC-1 1.24 – 1.27

GEM 50 nM AsPC-1 1.27 – 1.66
GEM 10 nM PANC-1 – – 1.56
GEM 50 nM PANC-1 – – 1.35

Brero, F. 2020 (19)† MNPs BxPC-3 1.98 – 1.60
MNPs+Hyp BxPC-3 2.84 – 2.10

Wera, Anne-Catherine 2019 (33) Ola 0.5mM KP4 – 1.3 –

B02 10mM KP4 – 1.3 –

Ola 0.5mM + B02 0.5mM KP4 – 1.8 –

Ola 0.5mM PANC-1 – 1.3 –

B02 10mM PANC-1 – 1.6 –

Hirai, T. 2016 (31) Ola 5 mM MIA PaCa-2 – 1.59; 1.98‡ –
January 2022 | Volume
CPT, camptothecin; GEM, gemcitabine; Hyp, hyperthermia; MNP, magnetic nanoparticles; Ola, Olaparib; SER, standard enhancement ratio.
*Cells treated with LET 13 keV/mm and LET 70keV/mm, respectively; †Data extracted from cell survival curves; ‡Cells treated at entrance region (ER) and at Bragg peak (BP), respectively.
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which found a strong increase of clustered DNA damage in
carbon ion irradiated cells, which are difficult to repair (14, 26).
Meanwhile, the less reliance on indirect DNA damage mediated
by ROS makes charged particles more effective in treating
pancreatic cancers, which is very hypoxic. The complexity of
the DNA damage and the lower efficiency of DNA repair leads to
increased effectiveness and tolerable toxicity levels with CIRT/
PRT in the treatment of cancers (7, 45). The energy absorption of
photons and carbon ions/protons are fundamentally different:
photons lose their energy exponentially, with higher values at the
physical entry point and lower values in deeper tissues (46), while
carbon ions/protons deposit most of their energy at the end of
the physical range of the particles and reaches the peak, forming
the so-called Bragg-peak. After the Bragg-peak, the delivered
dose drops rapidly with increased depth. This enables charged
particles to target tumors more precisely while reducing the dose
and irradiated portion of normal tissue. Compared with IMRT,
both intensity-modulated carbon ion therapy and intensity-
modulated proton therapy can reduce the OARs integral dose
substantially in paraspinal sarcomas, locally recurrent
nasopharyngeal carcinoma, and other cancer types in clinical
settings (47, 48).

Cell cycle arrest can be induced in the G1/0 or S phase, in
which DNA repair occurs via the non-homologous end joining
(NHEJ) pathway, or the G2 phase, in which repair occurs via the
homologous recombination (HR) pathway (49). Previous studies
have demonstrated that HR is relatively low after photon
irradiation in PDAC cells (50). Our results showed that,
compared with photon, carbon ion irradiation induced greater
G2/M arrest and longer-lasting expression of gH2AX as well as
an increase in gH2AX clusters, indicating a high level of DNA
damage. These clustered DNA lesions are difficult to repair and
may induce different signaling pathways compared with photon
irradiation, such as DNA repair, type I interferon signaling, and
cell cycle pathways (51, 52). Unrepaired or misrepaired damage
can inhibit cell proliferation via checkpoints; cells may therefore
stay in the G2/M phase, undergoing genomic instability or cell
death by several mechanisms, including apoptosis, mitotic
catastrophe, or senescence. This is consistent with the results
in a study by Gerelchuluun and colleagues, who used Chinese
hamster cell lines (ovary AA8 and lung fibroblast V79), which
demonstrated that the primary DNA repair pathway after both
proton and carbon ion radiation is NHEJ, but activity in the HR
pathway is greater with carbon ion (53).

In PDAC, mutations in four genes predominate: KRAS, TP53,
SMAD4, and CDKN2A, each of which is mutated in >50% of
different but mostly overlapping patients (54), but a mutation
in the KRAS oncogene is present in >90% of cases (55), which
may lead to resistance to photon irradiation. One included
study (32) demonstrated that increased P21 expression after
proton irradiation is correlated with inhibition of STAT3
phosphorylation, indicating that proton irradiation is likely to
induce cell cycle arrest and/or cell death via the regulation of
STAT3 signaling, irrespective of radiosensitivity. Correspondingly,
another study (25) demonstrated carbon ion irradiation arrested
cell cycle progression in an LET-dependent manner, independent
Frontiers in Oncology | www.frontiersin.org 10
of gene mutation status. This finding is supported in other
research (56, 57). We therefore hypothesize that charged particle
irradiation with high-LET may induce widely and densely
distributed, irreparable DNA breaks and subsequent cell death.

The mammalian Rho family of GTPases consists of 22
members. Rho functions as a molecular switch in cellular
processes such as cell morphogenesis, adhesion, migration, and
cell cycle progression including cytokinesis (58). Rho-associated
coiled-coil forming kinase (ROCK) is a serine/threonine kinase
that can phosphorylate a variety of substrates and is one of the
major effectors for Rho GTPases. During migration, tumor cells
display a great variety of morphological changes; the modalities
of single-cell migration can be subdivided into amoeboid and
mesenchymal (59). Cells in the amoeboid mode are regulated by
ROCK, while cells in the mesenchymal mode depend on the
proteolytic activity of matrix metalloproteinases (MMPs), which
permit penetration of the extracellular matrix (ECM). As shown
by the studies included in this SR, carbon ion irradiation can
suppress the invasive potential of pancreatic cells via Rho/ROCK
signaling, except in PANC-1 cells. However, the combination of
serine protease inhibitors (SerPI) and ROCK inhibitors may
suppress the invasion of PANC-1 cells. Aspc-1 cells were
preponderant in mesenchymal phenotypes following carbon
ion irradiation; this effect could be inhibited by MMP
inhibitors (23). Studies on the mechanism underlying the effect
of carbon ion/proton irradiation on invasion and migration of
pancreatic cancer cells remains limited, and mainly focus on the
Rho/ROCK signaling pathway, which is known to be associated
with metastasis (60, 61). More in-depth research on this topic is
required; moreover, carbon ion/proton irradiation combined
with MMP or ROCK inhibitors may suppress invasion
and migration.

All the included studies demonstrated the enhanced
therapeutic effect of combined therapies. Similarly, Waissi and
colleagues (51) confirmed that a combination of GEM, Ola, and
proton irradiation can significantly improve local control of
pancreatic cancer in vivo. A phase I trial (62) of PARPi in
combination with GEM and photon radiotherapy in LAPC has
shown that this regimen is safe and tolerable, with a median OS
of 15 months. No clinical studies on particle therapy with PARPi
have been published until now, but DNA damage induced by
charged particles is more complicated than that induced by
photons, and this damage is mainly repaired by base excision
repair—in which PARP plays a significant and predominant role
(63, 64). Thus, charged particle therapy in combination with
PARPi may benefit pancreatic cancer patients, and further
clinical studies should therefore be prioritized. One clinical
trial (9) demonstrated that the 2-year OS in people with LAPC
who received CIRT and concurrent GEM therapy was 35%;
another phase I/II study (7) of PRT with concurrent GEM
therapy for LAPC revealed a 1-year OS of 76.8%, this supports
the theory that a combination of GEM chemotherapy and
irradiation could benefit people with LAPC. The presence of
MNPs and Hyp have been shown to have the strongest
sensitization effect on both carbon ion and photon irradiation
in this SR; similarly, Ma and colleagues (65) suggested that the
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combination of MNPs and Hyp has a similar effect on human
nasopharyngeal and lung cancer cells, which may be related to
their inhibition of DNA repair and induction of apoptosis.

As far as we know, this is the first SR of in vitro studies to
evaluate the radiobiological responses of charged particle
irradiation on pancreatic cancer cell lines. First, we
systematically reviewed published studies on the radiobiological
effects of carbon ion/proton irradiation on pancreatic cancer cell
lines, including RBE, cell survival, DDR, invasion, migration, and
the combined effects of chemotherapy and targeted therapy; this
provided a comprehensive overview and avenues for further
study. Second, we conducted a radiation-related risk of bias
assessment tool for in vitro studies after reference to the
Cochrane risk-of-bias tool (66), and the SYstematic Review
Center for Laboratory animal Experimentation (SYRCEL) risk-
of-bias tool for animal studies (67). This provides a reference for
future radiation-related in vitro SRs. However, there are several
limitations to this SR. First, searching only English databases may
result in certain language bias. Second, the limited number of
publications evaluating radiobiological responses in pancreatic
cancer, and the heterogeneity of outcome assessment tools, mean
that the strength of our findings may also be limited. However, we
retrieved and obtained all available data, together representing the
latest evidence for carbon ion/proton irradiation on pancreatic
cancer in vitro; with the increasing application of carbon ion/
proton irradiation worldwide, this review may provide at least a
starting point to improve guidance for clinical practice. Third, the
endpoints we selected are common and important indicators of
the radiobiological effects of charged particle irradiation; however,
other endpoints are equally important, for example the
production of ROSs, which could provide insights into indirect
DNA damage, or the expression of immunomodulatory
molecules, which may help improve understanding of the
effects of radioimmunotherapy. However, these other endpoints
have been only rarely reported now; updates to this review may
therefore be warranted in future.
CONCLUSIONS

Current in vitro evidence demonstrates that, compared with
photon irradiation, carbon ion irradiation offers superior
radiobiological effects in the treatment of pancreatic cancer.
Mechanistically, high-LET irradiation may induce complex
DNA damage and ultimately promote genomic instability and
cell death. Carbon ion irradiation can also effectively suppress the
invasion andmigration of most pancreatic cancer cell lines, but the
mechanism is not well understood. The lack of direct comparisons
Frontiers in Oncology | www.frontiersin.org 11
between proton and photon irradiation prevents similar
conclusions from being reached for this therapeutic option. Both
carbon ion irradiation and proton irradiation confer similar
sensitization effects in comparison with photon irradiation when
combined with chemotherapy or targeted therapy.
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