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Purpose: Construction of radiomics models for the individualized estimation of multiple
survival stratification in glioblastoma (GBM) patients using the multiregional information
extracted from multiparametric MRI that could facilitate clinical decision-making for
GBM patients.

Materials and Methods: A total of 134 eligible GBM patients were selected from The
Cancer Genome Atlas. These patients were separated into the long-term and short-term
survival groups according to the median of individual survival indicators: overall survival
(OS), progression-free survival (PFS), and disease-specific survival (DSS). Then, the
patients were divided into a training set and a validation set in a ratio of 2:1. Radiomics
features (n = 5,152) were extracted from multiple regions of the GBM using
multiparametric MRI. Then, radiomics signatures that are related to the three survival
indicators were respectively constructed using the analysis of variance (ANOVA) and the
least absolute shrinkage and selection operator (LASSO) regression for each patient in the
training set. Based on a Cox proportional hazards model, the radiomics model was further
constructed by combining the signature and clinical risk factors.

Results: The constructed radiomics model showed a promising discrimination ability to
differentiate in the training set and validation set of GBM patients with survival indicators
of OS, PFS, and DSS. Both the four MRI modalities and five tumor subregions have
different effects on the three survival indicators of GBM. The favorable calibration and
decision curve analysis indicated the clinical decision value of the radiomics model.
The performance of models of the three survival indicators was different but excellent;
the best model achieved C indexes of 0.725, 0.677, and 0.724, respectively, in the
validation set.
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Conclusion: Our results show that the proposed radiomics models have favorable
predictive accuracy on three survival indicators and can provide individualized
probabilities of survival stratification for GBM patients by using multiparametric and

multiregional MRI features.

Keywords: multiparametric MRI, multi-survival indicators, glioblastoma, machine learning, radiomics analysis

INTRODUCTION

Glioblastoma (GBM) is the most common primary malignant
neoplasm in adults and is nearly uniformly fatal (1), with a
median survival time about 12-14 months (2). It is necessary to
establish a survival prediction model that is helpful to the
treatment decision-making and disease management for GBM
patients (3). In clinical studies for GBM, 5-year or 10-year
benchmark survival rates are often calculated to convey
prognostic information. A recent study pointed out that three
survival endpoints including overall survival (OS), progression-
free survival (PFS), and disease-specific survival (DSS) can be
used in the study of GBM with confidence (4). It is very
important to have a sufficiently long follow-up time to capture
the events of interest, and the minimum follow-up time needed
depends on both the aggressiveness of the type of endpoint (5).

As a noninvasive and preoperative routine examination for
GBM (6), the magnetic resonance imaging (MRI) can
comprehensively and macroscopically display the whole tumor
and provide fine tumor features, including tumor location, shape,
size, and heterogeneity (7). Currently, MRI techniques have great
potential for predicting the survival of GBM patients (6, 8, 9).
More recently, the field of radiomics has been introduced to
extract high-throughput quantitative imaging features from MR,
transform the features into minable data, and establish a
prediction or prognosis model connecting image features and
tumor phenotype (10, 11). In common MRI acquisitions, four
image sequences, i.e., T1-weighted gadolinium contrast-enhanced
(T1CE), T1-weighted (T1), T2-weighted (T2), and T2-weighted
fluid-attenuated inversion recovery (FLAIR) sequences, are
recommended for the diagnosis of a brain tumor (12). It is
widely believed that multiparametric MRI can improve the
diagnostic efficiency and performance of survival stratification
(13). Moreover, the heterogeneity of GBM is reflected in the fact
that it usually contains different heterogeneous subregions (such
as edema, enhanced and non-enhanced core); this inherent
heterogeneity is also reflected in its imaging phenotype because
its subregions are described by different intensity distributions of
multimodal MRI scanning, reflecting the differences in tumor
biology, which all contribute to prognosis prediction (8, 9, 14).
Although previous studies have explored the survival time of
GBM patients, most of them focus on OS, and the research on the
heterogeneity within the tumor is insufficient. Therefore, it is
necessary and feasible that a multiparametric MRI- and
multiregion-based radiomics approach may improve the
performance of the multi-survival stratification in GBM patients.

The aim of the present study was to develop and validate
radiomics models based on multiparameter and multiregion

MRI for the individualized estimation of the multiple survival
indicator stratification in GBM patients.

MATERIALS AND METHODS
Patient Population and Study Design

A total of 134 patients (i) with clinical information (such as OS of
patients) from The Cancer Genome Atlas (TCGA') GBM Project
and (ii) the corresponding MRI data from The Cancer Imaging
Archive (TCIA?) were retrospectively included, with the
following criteria, (i) including all four types of MRI sequences
(T1C, T1, T2, FLAIR); (ii) the MRI sequences were acquired
prior to surgery or biopsy; (iii) the MRI sequences were acquired
without excessive movement or artifacts; (iv) sufficient clinical
data on OS, PFS, or DSS. Additional clinical data for all patients,
including age, gender, race, and Karnofsky Performance
status (KPS), were obtained from TCGA-GBM Project (see
Supplementary Material E2).

In this paper, OS was defined as the time between the date of
pathological diagnosis and the date of death or the date of last
clinical follow-up. PFS was calculated from the date of initial
diagnosis to the new tumor event whether it was (a) a
progression of disease, (b) local recurrence, (c) distant
metastasis, or (d) new primary tumors at all sites or the time
the patient was last known to be alive. Similarly, DSS was
measured from the date of initial diagnosis until death from
the GBM or last follow-up examination. Then, these patients
were divided into long-term and short-term survival groups
respectively according to the median of OS, PFS, and DSS.
Next, all patients were randomly separated into a training
cohort (OS and PFS: n = 94; DSS: n = 90) and a validation
cohort (OS and PFS: n = 40; DSS: n = 37) at a ratio of 2:1. In this
retrospective study, the requirement for informed consent was
waived because all the patient data in TCGA were deidentified.

The main design idea of this paper is as follows: firstly, the
multimodal MRI (multiparameter) data of GBM patients are
preprocessed; next, the radiomics features are extracted from
different regions of interest (ROIs) (multiregions), and then the
analysis of variance (ANOVA) and least absolute shrinkage and
selection operator (LASSO) methods are used to analyze and
screen the extracted imaging features (i.e., radiomics signature)
related to the three kinds of survival endpoints. Finally,
combined with clinical risk factors such as age, gender, and

1 .
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KPS, the radiomics nomogram, which is based on a Cox
proportional hazards model, was analyzed. The overall
workflow of the proposed method is shown in Figure 1.

Imaging Data Acquisition and
Preprocessing

All 134 patients underwent four MRI modalities, i.e., T1C, T1,
T2, and FLAIR sequence. The range of image acquisition
parameters of the four MRI sequences is provided in
Supplementary Material E1, section S1. The matrix size of all
the MRI sequences was 128 x 128. Diverse parameters of
different MRI sequences were used during image acquisition,
which may have a great influence on three-dimensional (3D)
analyses; thus, two-dimensional (2D) preprocessing was
performed in this study. First, the four modalities of all
subjects are co-registered to the same anatomical template.
Next, the planar resolution of each modality was uniformly
resampled to 128 x 128. Finally, since the TCGA-GBM

database contains multisite data, the scanner model, pixel
spacing, slice thickness, and contrast vary within the selected
cohort. To consider these differences, all images were resampled
to a common voxel resolution of 1 mm?, and intensities within
each volume were normalized to the [0.1] range.

Multiregional Labeling

In order to obtain information about the survival of patients with
GBM from multiple tissue types rather than a single tissue type
(15), five different heterogeneous regions were drawn (Figure 2).
Necrosis (NCR) and non-enhancing tumor (NET) region was
defined as ROI A, enhancing tumor (ET) core was defined as
ROI B, and edema area (ED) was defined as ROI C. Then, ROI D
was generated by merging enhancing tumor region and the first
ROL ROI E was generated by adding edema region to ROI D. We
also refer to tumor core (TC) as ROI D and whole tumor (WT) as
ROI E. Finally, these five regional contours were respectively
mapped to each MRI sequence for each patient.

I. Image Processing and
ROI Specification
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FIGURE 2 | Labeling of the multiple heterogeneous regions.
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Radiomics Feature Extraction and
Radiomics Signature Construction Related
to Survival Indicators

In order to extract high-throughput features, we obtained
the original image, eight corresponding Wavelet-filtered
images and five corresponding Laplacian of Gaussian (LoG)
filtered in each MRI sequence. A total of 5,152 radiomics
features were extracted for each patient. A detailed description
of the feature extraction is provided in Supplementary Material
E1, section S2. To reduce the dimension of radiomics features
and find out the features that have high evaluation on the
prognosis of GBM patients, the ANOVA and the LASSO
regression algorithm was adopted to select the survival state-
related features among the 5,152 radiomics features in the
training cohort.

We use a one-way ANOVA to screen out the characteristics
that are separately related to the three survival indicators and
have significant differences. Then, LASSO logistic regression
method was used to select the characteristics most related to
the three survival indicators. LASSO is an effective regression
analysis method to constrain the number of independent
variables. It can perform feature selection and regularization in
high-dimensional data to improve the prediction accuracy
through penalty estimation function. The L1 penalty term is
added to the ordinary linear model; for ordinary linear model,
LASSO estimate is as follows:

. d
wsso = arg  min(|| Y = XB|[*+A :
Bruwo=arg. minCI¥ - XBIP 43315

Where t corresponds to A one-to-one, which is the adjustment
coefficient. If A is large, it has no effect on the estimated
regression parameters, but as A decreases, the coefficients of
most covariates shrink to zero. It makes the model easier to
explain: when there are a large number of independent variables,
several important independent variables can be found, and the
information provided by these variables is the most important in
the model.

With the adjustment of A, the LASSO method can shrink all
the coefficients toward zero and set the coefficients of
uncorrelated features to zero. Then, 10-fold cross-validation
with a maximum area under the curve (AUC) criterion was
employed to find an optimal A, where the final value of A
produces the maximum AUC. The non-zero coefficient is used
to construct the regression model, and the corresponding non-
zero coefficient is defined as the Rad-score. The fitting formula is
generated using a linear combination of selected eigenvalues
weighted by their Rad-score. The formula was then used to
calculate the radiomics signature of each GBM patient to reflect
his or her long-term or short-term survival.

n
Radiomics signature = > (p;+v;)
=1

Where p; (i.e., Rad-score) is the coefficient of the i-th
characteristic, and v; is the i-th characteristic value of patients.

Construction and Assessment of the
Radiomics Model With the Training Cohort
The radiomics signature and each clinical factor were first
inserted into a Cox proportional hazards model to test whether
they were significantly independent prognostic factors for
survival stratification in the training cohort. The radiomics
signature and significant clinical factors were then utilized to
build the Cox proportional hazards model to discriminate the
short- and long-term survival outcome of the GBM patients. For
comparison, Cox proportional hazards models that used only the
significant clinical factors were also established. Finally, based on
Cox proportional hazards model, radiomics nomograms of the
three survival indicators are respectively constructed, which can
directly and individually indicate the probability of survival
stratification in the training queue.

The discriminative ability of the radiomics nomogram was
quantitatively measured using the C-index, which ranges from 0
to 1. The calibration curves were plotted using observed
probabilities and the nomogram-estimated probabilities.

External Validation of the Radiomics
Model on the Validation Cohort

The fitting formula that was constructed with the training cohort
was applied to all GBM patients in the validation cohort, and the
radiomics signature of each patient was calculated. The
radiomics nomogram was then validated in this cohort using
the radiomics signatures and clinical factors. Finally, the C-index
was implemented to evaluate the model results for survival group
stratification. Moreover, the calibration curve and the Kaplan-
Meier survival curve were also constructed.

Clinical Utility of the Radiomics Model

To estimate the clinical utility of the radiomics nomogram,
decision curve analysis (DCA) was performed by calculating
the net benefits at different threshold probabilities in the
combined training and validation cohorts.

Statistical Analysis

In this study, either Student’s ¢ tests or Mann-Whitney U tests
were applied to confirm whether intergroup differences in
continuous variables (such as age) existed between the short-
and long-term survival groups. Either chi-square tests or Fisher’s
exact tests were performed on the remaining categorical
characteristics to determine whether the constituent ratios
differed significantly between the groups. All statistical analyses
were performed with R software version 3.6.1 (R Foundation for
Statistical Computing; http://www.R-project.org, 2019) using
basic statistical functions or additional packages. The following
R packages were used: the glmnet package was used for the
LASSO logistic regression, the rms package was used for the
nomograms and calibration curves, the Hmisc package was used
for the comparisons between the C-indices, and the rmda
package was used to implement the DCA.

Ethics Statement

Ethical review and approval were not required for the study on
human participants in accordance with the local legislation and
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institutional requirements. Written informed consent for
participation was not required for this study in accordance
with the national legislation and the institutional requirements.

RESULTS

Clinical Characteristics of the Patients

The cohort of 40 patients ranged in age from 17 to 84 years with
amedian OS of 359.5 days, PFS of 195 days, and DSS of 376 days.
The clinical characteristics and corresponding results of the
statistical analyses comparing the long- and short-term
survival groups of OS, PFS, and DSS are summarized in Table 1.

LASSO Feature Selection and Radiomics
Signature Construction

To determine the optimal regulation weight A for the LASSO
algorithm, features with non-zero coefficients for survival

stratification were selected by 10-fold cross-validation from the
5,152 radiomics features. The illustration of feature selection
using the LASSO algorithm is provided in Supplementary
Material E1, section S3. A detailed description of the selected
non-zero-coefficient features is provided in Supplementary
Material E1, section S4.

The radiomics signatures for each GBM patient in the
training and validation cohorts are presented in Figure 3. The
prognostic label represented by the x-axis can clearly distinguish
the survival status of GBM patients. That is, the patients with
long-term survival generally displayed a significantly higher
radiomics signature than the patients with short-term survival
in both the training and validation cohorts.

Non-Zero-Coefficient Features Analysis

As mentioned above, according to different ROIs and survival
endpoints, the radiomics features with non-zero coefficients
corresponding to multiregion MRI and three survival periods

TABLE 1 | Characteristics of patients in the training and validation cohorts for OS, PFS, and DSS.

Training cohort

Short-term Long-term
oS Patient no. 47 47
Age, mean + SD 62.13 +12.72 54.64 + 12.69
Gender, no. (%)
Male 26 (55.3%) 35 (74.5%)
Female 21 (44.7%) 12 (25.5%)
KPS, median (1) 80 (40-100) 80 (60-100)
Race, no. (%)
White 40 (85.1%) 42 (89.4%)
Others 7 (14.9%) 5 (10.6%)
Hemisphere no. (%)
Unilateral 39 (83.0%) 40 (85.1%)
Bilateral 8 (17.0%) 7 (14.9%)
PFS Patient no. 47 47
Age, mean + SD 60.74 + 13.77 56.15 + 12.35
Gender, no. (%)
Male 31 (65.9%) 29 (61.7%)
Female 16 (34.1%) 18 (38.3%)
KPS, median (1) 80 (40-100) 80 (60-100)
Race, no. (%)
White 40 (85.1%) 42 (89.4%)
Others 7 (14.9%) 5 (10.6%)
Hemisphere no. (%)
Unilateral 38 (80.9%) 31 (65.9%)
Bilateral 9 (19.1%) 16 (34.1%)
DSS Patient no. 45 45
Age, mean + SD 60.58 + 13.70 55.44 +12.34
Gender, no. (%)
Male 24 (53.3%) 34 (75.6%)
Female 21 (46.7%) 11 (24.4%)
KPS, median (1) 80 (60-100) 80 (60-100)
Race, no. (%)
White 40 (88.9%) 41 (91.1%)
Others 5 (11.1%) 4 (8.9%)
Hemisphere no. (%)
Unilateral 41 (91.1%) 42 (93.3%)
Bilateral 4 (8.9%) 3(6.7%)

P Validation cohort P
Short-term Long-term
15 25
0.003 62.53 + 17.08 51.54 + 14.36 0.045
0.052 0.870
8 (63.3%) 14 (56.0%)
7 (46.7%) 11 (44%)

0.050 80 (60-100) 80 (60-100) 0.068
0.536 0.414
11 (73.3%) 21 (84.0%)

4 (26.7%) 4 (16.0%)

0.778 0.680
8 (63.3%) 15 (60.0%)

7 (46.7%) 10 (40.0%)

17 23
0.056 59.64 + 20.34 5491 + 11.47 0.234
0.668 0.676
10 (58.8%) 12 (52.2%)

7 (41.2%) 11 (47.8%)

0.008 80 (60-100) 80 (60-100) 0.171
0.536 0.201
12 (70.6%) 20 (87.0%)

5 (29.4%) 3 (13.0%)

0.102 0.622
15 (88.2%) 19 (82.6%)

2 (11.8%) 4(17.4%)

15 22
0.034 50.13 + 15.61 52.18 + 14.58 0.066
0.028 0.729
8 (63.3%) 13 (69.1%)

7 (46.7%) 9 (40.9%)

0.055 80 (60-100) 80 (60-100) 0.035
0.725 0.890
12 (80.0%) 18 (36.4%)

3 (20.0%) 4 (63.6%)

0.694 0.417
9 (60.0%) 16 (72.7%)

6 (40.0%) 6 (27.3%)

P values <0.05 are shown in italics.

DSS, disease-specific survival; KPS, Karnofsky Performance Scale; OS, overall survival; PFS, progression-free survival.
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are selected by LASSO algorithm. The number of different
features extracted from each survival indicator and each region
is also distinct. According to Figure 4, for different survival
indicators and different ROIs, the number of non-zero-
coefficient radiomics features is inconsistent. As for OS, ROI B
has the largest number of features (30 features). For PFS, ROI C
has the largest number of features (31 features). Finally, for DSS,
ROI A and ROI D have the most features (30 features).

In addition, selected features from different MRI sequences
have different coefficients, which can be seen as the importance

of one for survival stratification. The results show that T1
sequence and FLAIR sequence account for more than the other
sequences. A detailed description of the selected non-zero-
coefficient features is provided in Supplementary Material E1,
section S4.

The Evaluation of the Radiomics Signature
and/or Clinical Risk Factors

The radiomics signature, age, gender, and KPS were identified as
independent predictors of survival stratification in GBM

40-

Characteristic number

os PFS

progression-free survival; ROI, region of interest.
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ROIC
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ROI E

BO0000

Categorical Survival and Regions

FIGURE 4 | The number of radiomics features corresponding to different ROl and survival time. DSS, disease-specific survival; OS, overall survival; PFS,

DSS
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patients. The Cox proportional hazards model was applied based
on three clinical predictors and/or the radiomics signature.
According to Table 2, the C-index that resulted from the
combined use of the radiomics signature and three clinical
predictors for survival stratification was increased significantly
for each item in both training cohort and validation cohort.

In addition, it can be seen from Table 2 that tumor
subregions have different manifestations in the three survival
indicators in the validation set. For different heterogenous
regions, the C-index of ROI B was 0.725 (95% CI, 0.590-0.859)
for OS, higher than those of the other subregions. However, for
PFS, the C-index of ROI C was 0.678 (95% CI, 0.540-0.814), and
for DSS, the C-index (0.724, 95% CI, 0.594-0.854) of ROI A is
the highest. Furthermore, the results on the whole dataset are
shown in Supplementary Material E1, Section S7, for a more
comprehensive assessment.

Radiomics Nomogram Construction

and Validation

Based on the multivariate Cox regression, the radiomics
nomogram that incorporated the radiomics signature and the
three clinical factors was constructed (Figure 5). Figures 5A-C
respectively represent the prediction models with the highest C-
index of OS, PES, and DSS for GBM patients. Figure 6 illustrates
the calibration curve of the proposed nomogram based on the
training cohort. Moreover, favorable calibrations (Figure 6) and
Kaplan-Meier survival curves (Figure 7) confirmed the three
optimal models (with the highest C-index) of the validation
cohort. The Kaplan-Meier survival curves of the model
corresponding to other subregions is shown in the
Supplementary Material E1, section S5.

Clinical Utility of the Radiomics
Nomogram

The decision curve for the radiomics nomogram indicates that
the use of the radiomics nomogram (Figure 8) to stratify the
survival of GBM patients was beneficial at all threshold
probabilities in our study.

DISCUSSION

This study investigated the prediction of multiple survival of GBM
patients based on multiparametric MRI. The radiomics signature
involving multiscale texture features, combined with clinical risk
factors, could precisely predict the individualized probability of
survival stratification for each GBM patient. The performance
differs from GBM patients in OS, PFS, and DSS. Furthermore,
different tumor subregions and different modalities of MRI play a
significant role in the prognosis of GBM patients.

The Radiomics Signature Combined With
MultiScale Texture Features Increased the
Fit and Accuracy of the Model

Significantly

In our study, the incremental value when adding the radiomics
signature to the clinical factor-based nomogram was assessed.
According to the C-index and Decision curves, the combination
of the radiomics signature and clinical predictors demonstrated
an enhanced stratification efficacy in both the training and
validation cohorts of the three survival indicators. The results
suggested that the radiomics signature was more robust than the
traditional clinical risk factors, in accordance with many
previous studies focusing on radiomics nomogram (16-19).

To develop the radiomics signature, more features are added
from original and derived images. More features result from the
features based on Wavelet transform and LoG transform and have
coefficients of higher importance that influenced the radiomics
signature model in terms of survival. Previous studies have shown
that multiscale texture analyses of MRI based on feature
extraction can automatically predict the survival time (OS and
PES) with a precision and speed beyond the scope of human
visual analysis (10, 19, 20). For example, texture features based on
gray-level co-occurrence matrix (GLCM) and LoG filter extracted
from relative cerebral blood volume maps in contrast-enhancing
and non-enhancing regions of GBM tumors were found to predict
survival outcomes of GBM patients (21). As demonstrated in
this study, more radiomic features need to be added to various
survival predictions of GBM (19, 22).

TABLE 2 | The Cox C-index of radiomics signature and clinical factors used for different clinical endpoints of glioblastoma patients in the training cohort and validation cohort.

Cohort ROI os

Training ROI A 0.850 (0.794-0.905)
ROI B 0.834 (0.777-0.891)
ROI C 0.812 (0.751-0.873)
ROI D 0.827 (0.773-0.882)
ROI E 0.814 (0.759-0.870)
Clinical 0.662 (0.580-0.744)

Validation ROI A 0.681 (0.538-0.824)
ROI B 0.725 (0.590-0.859)
ROI C 0.723 (0.579-0.870)
ROI D 0.675 (0.528-0.821)
ROI E 0.685 (0.540-0.830)
Clinical 0.645 (0.538-0.732)

PFS

0.812 (0.756-0.869)
0.792 (0.731-0.853)
0.787 (0.751-0.823)
0.801 (0.744-0.857)
0.780 (0.722-0.838)
0.580 (0.489-0.670)
0.655 (0.516-0.793)
0.676 (0.540-0.811)
0.678 (0.540-0.814)
0.670 (0.533-0.805)
0.668 (0.528-0.807)
0.606 (0.527-0.705)

DSS

0.845 (0.789-0.901)
0.844 (0.793-0.894)
0.784 (0.714-0.855)
0.851 (0.797-0.904)
0.828 (0.771-0.885)
0.631 (0.547-0.715)
0.724 (0.594-0.854)
0.710 (0.585-0.836)
0.710 (0.582-0.838)
0.700 (0.565-0.833)
0.706 (0.586-0.825)

( )

0.611 (0.560-0.692

The 95% confidence interval is indicated in ().

DSS, disease-specific survival; OS, overall survival; PFS, progression-free survival; ROI, region of interest.
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FIGURE 5 | Radiomics nomogram for the three survival indicator stratification of GBM patients. The shaded part indicates the distribution status and probability
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Performance Scale; OS, overall survival; PFS, progression-free survival; ROI, region of interest.

The Distinct Performance for the Three outcome indicators in this study, OS is an important and

Survival Endpoints of Glioblastoma
Patients

In order to evaluate and predict the survival status of GBM
patients comprehensively and systematically, we examined three
different survival indicators: OS, PFS, and DSS, which are the
appropriate clinical endpoints for GBM (4). Among the three

commonly used clinical endpoint, with the advantage that it is
convenient to record, because it is not difficult to confirm the date
of death and there is minimal ambiguity in defining an OS event
(23, 24). However, using OS as an endpoint may weaken a clinical
study, as deaths because of non-cancer causes do not necessarily
reflect tumor biology, aggressiveness, or responsiveness to therapy.
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ROV, region of interest.

DSS can respond to clinical benefits in a targeted manner, and its
enhancement can well reflect the clinical benefits of specific
diseases, and the deaths caused by specific diseases are reduced
or increased. PFS increased node of “deterioration,” and
“deterioration” is often earlier than death, so the follow-up time
of PFS is often shorter than OS and DSS. In view of the relatively
short clinical follow-up records of some patients, PFS is generally
considered to be a better choice of clinical endpoint than OS and
DSS (4). The improvement of PES includes “no deterioration” and
“no death,” which indirectly and directly reflect the clinical
benefits. Some cancer-related prognostic studies have also shown
that OS, PFS, and DSS are important survival indicators, which are
closely related to the prediction of clinical benefits (25-29).

Our results showed that the OS and DSS results of GBM
patients were relatively consistent, which may be due to the

definition of DSS as death caused by a specific disease. And this
study focused on glioblastoma multiforme and illustrated that
GBM has fewer complications and high mortality. However, in
the process of evaluating PFS, it is found that the result of PES was
biased. It is probably due to the large differences between individual
patients and the greater changes in imaging characteristics for the
progression of tumors. This finding is consistent with another
previous study of GBM showing that the stratification of the PFS
resulted in worse performance than OS (30).

Tumor Subregions Have Different
Manifestations in the Three Survival
Indicators

Our approach is based on comprehensive quantitative
information from four different MRI sequences and six
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heterogeneous regions that enable a multiparametric three-
dimensional characterization of the entire tumor. The selected
radiomics features were from different heterogeneous regions
and sequences of MRI. According to our research, the absolute
values of coefficients obtained by the LASSO algorithm indicate
the contribution of specific features for survival stratification.

Concerning different heterogeneous regions, the features
from the enhancing tumor core (ROI B) contributed more to
the OS stratification than did the features from other subregions.
Most GBM prognosis-related studies indicated the association
between poor prognosis and radiomics features from contrast-
enhanced regions (22, 31). For PFS, our results show that ROI C
has the highest C-index, which was the edema area. Some recent
studies also revealed the role of features from peritumoral brain
edema (3, 32). As for DSS, the C-index of region A is the highest,
that is, NCR core and NET region. Previous studies have
confirmed that the non-enhancement area of GBM patients is
associated with their survival (9). Some recent studies also
revealed the role of features from central NCR (17, 33). These
results further suggested the role of information contained in
non-contrast-enhanced subregions and sequences for GBM
prognosis. Our study therefore suggests that subregions of
GBM may complement disease stratification of patients with
GBM and thereby potentially improve clinical.

Multiparametric MRI Contributed
Differently to Predict Survival Stratification
of Glioblastoma Patients

In addition, our results show that the selected features based on
T1 sequence and FLAIR sequence account for more proportion
(see Supplementary Material E1, section S4), which is also
confirmed in previous studies (30). A comprehensive imaging-

genomic analysis of human GBM by using quantitative MRI
volumetrics and large-scale genetic and microRNA expression
profiles demonstrated the potential for molecular subtyping
based on FLAIR (or NER) signal intensity abnormality (34). In
another study of high-grade gliomas, Pope et al. (35) analyzed 15
imaging variables obtained from T1-weighted MR images and
showed that the presence of non-contrast-enhancing tumor was
one of the three variables associated with OS.

In order to more concretely analyze the performance of
single-modality and multiparameter MRI, we supplemented
the comparison of their C-index of model obtained by each
modality on the training set and validation set, respectively (see
Supplementary Material E1, section S6). The experimental
results show that the survival prediction model based on T1 or
FLAIR sequence is indeed better than other single modality.
However, the performance is not as good as that of
multiparameter MRI. When comparing our results with those
of older studies, it must be pointed out that radiomics analysis
may reveal new insights into the underlying heterogeneity of
cancers, driving a valuable prospect to noninvasively delve into
GBM heterogeneity (32).

Several Limitations

Some limitations of this study need to be further investigated.
First, the number of enrolled subjects is relatively small in our
study, and 134 subjects in TCGA-GBM dataset were used,
resulting in low robustness results. This is because we have
adopted relatively strict exclusion criteria such as patients with
incomplete OS, PES, and DSS data will be excluded. However, to
solve this problem, we use cross-validation in the training
process of building the model, which makes our result
generalizable to the population. Second, the 2D manual
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segmentation used in this study may induce bias about tumor
slice selection and manual ROI delineation. Furthermore, Hainc
et al. (36) have investigated that the variation of slices and ROI
delineation method could affect the radiomics features. These
findings could be the guidance for our future work. Finally,
although with high efficiency and sparsity, LASSO regression
method may be less stable when a large number of features were
included in the model. Other feature selection methods should be
investigated in the future work.

Imaging-related limitations may result from the limited
through-plane resolution of the T2 and FLAIR data compared
to the higher-resolution T1 data. As a result, the assessment of
fine structural details in one of the three spatial dimensions on
the FLAIR data was hampered by some degree of blurring.

In conclusion, this study provides reasonable evidence of
radiomics based on multiparametric MRI in assessing OS, PFS,
and DSS of GBM patients. The features based on diverse regions
correlate significantly with GBM survival. Disparate MRI
modalities and subregions can provide distinctive but
supplemental information. Compared to several survival
analysis studies of GBM patients (22, 30, 32), the focus of this
study was on the proposed radiomics model, which integrated
radiomics signature of heterogeneous regions and three clinical
predictors, and can visually and individually estimate the
probability of multiple survival stratification for each GBM
patient, which suggests its great potential for clinical
application. In the future, prognostic research on GBM could
consider focusing on the tumor regions mentioned in this paper
that have a significant impact on the three survival indicators.
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