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Prostate cancer invokes major shifts in gene transcription and metabolic signaling to
mediate alterations in nutrient acquisition and metabolic substrate selection when
compared to normal tissues. Exploiting such metabolic reprogramming is proposed to
enable the development of targeted therapies for prostate cancer, yet there are several
challenges to overcome before this becomes a reality. Herein, we outline the role of several
nutrients known to contribute to prostate tumorigenesis, including fatty acids, glucose,
lactate and glutamine, and discuss the major factors contributing to variability in prostate
cancer metabolism, including cellular heterogeneity, genetic drivers and mutations, as well
as complexity in the tumor microenvironment. The review draws from original studies
employing immortalized prostate cancer cells, as well as more complex experimental
models, including animals and humans, that more accurately reflect the complexity of the
in vivo tumor microenvironment. In synthesizing this information, we consider the feasibility
and potential l imitations of implementing metabolic therapies for prostate
cancer management.

Keywords: prostate neoplasia, lipid metabolism, obesity, metabolism, patient-derived xenograft, metabolic
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INTRODUCTION

Urological cancers accounted for 13.1% of 19.3 million new cancer incidence worldwide in 2020 (1).
Prostate cancer is the most commonly diagnosed urologic cancer, followed by bladder, kidney, testis,
and penile cancers (1) and frequently occurs in men over 65 years of age (2). More than 80% of men
are diagnosed with localized disease, and the majority of these patients will have indolent tumors that
are slow to progress, with low risk of experiencing prostate cancer-specific death (3). For these men,
active surveillance, curative intent surgery or radiotherapy, are mostly effective with 10-year disease-
specific survival rate of >90% (4). However, approximately one third of patients will experience disease
progression and develop metastases, most commonly to bone, but also to other soft tissues such as
liver and lung (5, 6). For these men, androgen deprivation therapy (ADT) is standard of care and while
initially effective at reducing tumor burden, residual cancer cells adapt to low systemic androgen levels
and therapy resistant metastatic castrate-resistant prostate cancer (mCRPC) develops, where
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tumorigenesis is driven by adaptive androgen receptor (AR)
changes and intra-tumoral steroid biosynthesis (7). There are
limited therapeutic options in managing this advanced stage
disease, necessitating the development of novel targeted
therapies and/or neo-adjuvant therapies that either prevent
progression or treat mCPRC (Figure 1).

The hallmarks of cancer, proposed by Hanahan and Weinberg
(8), comprise a series of biological capabilities acquired during the
multistep development of human tumors, of which ‘deregulated
cellular energetics’ is one. Cancer invokes an increase in energy
production to sustainproliferation, andmetabolic ‘rewiring’ is often
invoked to maintain this requirement. Alterations in metabolic
reprogramming include adaptation in nutrient acquisition,
preferential utilization of substrates, and transcriptional changes
that alter intracellular metabolic signaling pathways. Exploiting
such metabolic reprogramming is proposed to enable the
development of targeted therapies in cancers (9), leading to an
explosion of interest in the field of cancer metabolism.

Metabolic inhibitors have been used for cancer therapies for
many years, including the anti-metabolite class of chemotherapy
(10, 11), and other agents have been developed for the treatment
of advanced breast cancer, colorectal cancer, and hematological
malignancies (12). This firmly establishes the principle that
metabolic vulnerabilities can be effectively targeted for cancer
treatment. However, to date, there are no metabolic inhibitors
Frontiers in Oncology | www.frontiersin.org 2
approved for use in prostate cancer, which we posit is due to a
knowledge gap in understanding the molecular and cellular
reprogramming and associated changes in substrate utilization
in human tumors, and the marked heterogeneity of this disease.

Herein, we will discuss how metabolism is reprogrammed in
prostate cancer, in both localized and mCRPC, which likely have
different metabolic needs. We will focus on literature employing
studies in immortalized prostate cancer cells and expand to more
complex environments, including animal models and human
studies. We will then outline the factors contributing to
variability in prostate cancer metabolism, including genetic
drivers and alterations in the tumor microenvironment (TME),
and lastly discuss the feasibility of metabolic targeting in patients
and potential limitations in prostate cancer management.
PROSTATE CANCER METABOLISM

The prostate gland secretes large amounts of citrate (~1000-fold
than blood plasma) as the major constituent of prostatic fluid
(13). The accumulation of zinc within the prostate gland by ZIP1
(SLC39A1) competitively inhibits mitochondrial aconitase
(ACO2) activity, which hinders citrate oxidation and
Tricarboxylic Acid (TCA) cycle flux (14–16). Hence, unlike
other well-differentiated tissues, which rely on oxidative
FIGURE 1 | Prostate cancer progression and potential stages for intervention with metabolic therapies. The majority of patients (>80%) are diagnosed with localized
prostate cancer, with treatment including active surveillance (for low-risk tumors), or surgery/radiotherapy (for intermediate- and high-risk tumors). In one third of
patients, biochemical recurrence (defined as a rise in prostate specific antigen, PSA, and indicative of active tumor growth) occurs and metastases develop at distant
organs, and androgen-deprivation therapy (ADT) is administered. While initially effective, tumors eventually progress to metastatic castrate-resistant prostate cancer
(mCRPC) and treatments include abiraterone, enzalutamide and chemotherapy such as docetaxel or carboplatin. Clinical intervention with relevant metabolic
inhibitors, that are designed to slow tumor growth, could be applied (1) at the time of biochemical recurrence, thereby delaying the need for ADT, (2) in combination
with ADT to target metabolic vulnerabilities induced by androgen withdrawal or (3) to treat mCRPC in combination with, or after existing therapies.
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phosphorylation to produce ATP, normal prostate epithelium
depends on aerobic glycolysis with glucose and aspartate as the
primary carbon donors (17). In malignant prostate tissues, ZIP1
expression and citrate production are decreased, while ACO2
expression is increased, converting prostate cells from citrate‐
producing to a citrate‐oxidizing phenotype (18–22). These
changes enhance the capacity for energy production to support
proliferation and metastasis, and provide evidence that metabolic
adaptation occurs in prostate cancer (Figure 2).

Glucose
Glucose is a primary substrate for most cells. Glucose is
transported into cells and undergoes glycolysis, resulting in the
production of pyruvate. A proportion of pyruvate undergoes
reduction to lactate, but the majority enters the mitochondria for
further processing in the TCA cycle for eventual oxidative
phosphorylation, which enables energy production. The
glycolytic intermediates generated in the breakdown of glucose
are also used for nucleotide, amino acid, and lipid biosynthesis
Frontiers in Oncology | www.frontiersin.org 3
(23). In contrast, most cancer cells utilize glucose differently,
producing lactate at high rates despite the presence of oxygen in a
phenomenon termed Warburg metabolism or aerobic
glycolysis (24).

Glucose utilization in increased in prostate cancer compared to
normal tissues, and actively contributes to the growth of prostate
cancer cells. Treatment of AR-positive LNCaP prostate cancer cells
with the synthetic steroid R1881 induced transcriptional
upregulation of glucose transporters (GLUT1, GLUT12) and
glycolytic enzymes (HK1/2, and PFKB2), increased glucose
uptake, glucose entry into glycolysis, and glucose storage into
lipids (de novo lipogenesis) (25–27). Meanwhile, studies conducted
in AR-negative cells (PC3 and DU145) reported higher glucose
uptake and increased lactate production compared to AR-positive
cells (LNCaP and 22Rv1) (28–30). These observations indicate that
AR signaling promotes the entry of glucose-derived pyruvate into
the TCA cycle for eventual complete oxidation, while aerobic
glycolysis is increased in the absence of AR signaling in
immortalized prostate cancer cells.
FIGURE 2 | Substrate utilization in prostate cancer. Normal prostate epithelial cells exhibit a glycolytic phenotype due to the inhibitory effect of mitochondrial zinc
accumulation in the TCA cycle (blue text). Malignant transformation of prostate epithelial cells leads to an increase in the uptake of exogenous nutrients (glucose,
glutamine, fatty acids, and lactate) and de novo synthesis of lipids (red text). These substrates are utilized for energy production in the mitochondria to accommodate
increasing energy demands in malignancy. In prostate cancer, glucose uptake is mediated by GLUT12 before it is catabolized into pyruvate. While a proportion of
glucose-derived pyruvate enters the TCA cycle for oxidation, a fraction of pyruvate is reduced to lactate and transported out of the cell by MCT4. The influx of
extracellular lactate is mediated by MCT1. In mitochondria, the outflow of citrate to cytosol provides substrate for de novo synthesis of fatty acids (i.e. lipogenesis).
ASCT2 supplies exogenous glutamine as a fuel source through deamination by glutaminase (GLS) before further conversion into ⍺-KG to feed the TCA cycle. Fatty
acid uptake is mediated by fatty acid translocase (FAT)/CD36 before transport into the mitochondria by CPT1. In mitochondria, fatty acids undergo b-oxidation,
producing acetyl-CoA that feeds into the TCA cycle. Pre-clinical treatments for prostate cancer are denoted by a blue symbol and corresponding number. 1) FASN
(e.g. TVB-2640, IPI-9119); 2) ACC (e.g. Firsocostat, PF-05175157); 3) CPT1 (e.g. Perhexiline); 4) GLS (e.g. CB-839); 5) CD36 (e.g. agents in development). ⍺-KG,
⍺-ketoglutarate; CPT1, carnitine palmitoyltransferase 1; FAs, fatty acids; GLS, glutaminase; MCT1, monocarboxylate transporter 1; MCT4, monocarboxylate
transporter 4; MUFAs, monounsaturated fatty acids; OAA, oxaloacetate.
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Enhanced aerobic glycolysis in response to androgen
withdrawal is also observed in in vivo models. A metabolomic
screen of an orthotopic xenograft model of TRAMP-C1 prostate
cancer demonstrated increased glycolysis in tumors following
androgen deprivation (31) while, in vivo and ex vivo metabolic
imaging using hyperpolarized 1-[13C]pyruvate in TRAMP
tumors also points towards elevated glycolysis and higher
lactate dehydrogenase (LDH) activity in the castrate setting (30).

Evidence from human studies similarly show different glucose
utilization across the spectrum of prostate cancer, which is best
illustrated by 18F-fluorodeoxyglucose (18F-FDG) cancer
diagnostic imaging in patients. 18F-FDG is taken up by tissues
and ‘trapped’, and its accumulation is reflective of the tissues
glycolytic activity (32). Notably, the diagnostic utility of 18F-FDG
imaging is limited to localized high-risk tumors and metastatic
disease, indicating increased glucose uptake in rapidly growing
malignant tissues and not indolent localized disease [as reviewed
in (33)]. In addition, proteins that regulate glucose metabolism
were increased in both localized and metastatic lesions of
prostate cancer, including HIF-1⍺, GLUT1, HK2, PFKFB3,
PFKFB4, PKM2, PDK1 (29, 34–37). Functional analysis of
glucose metabolism showed increased de novo lipogenesis in
localized prostate cancer tissues compared to patient-matched
benign tissues (38); however, this was not accompanied by
increased glucose oxidation, indicating that much of the
additional citrate produced in the TCA cycle is exported into
the cytosol for lipogenesis (38).

Lactate is produced via the reduction of pyruvate and is
classically viewed as the by-product of excess glycolysis; however,
it is becoming increasingly recognized as an important mediator
of tumorigenesis in some cancers. Lactate is used to fuel the TCA
cycle in some malignancies (e.g., non-small cell lung cancer) (39)
and inhibiting lactate influx into cells through the
monocarboxylate transporter 1 (MCT1) reduces the metastatic
potential of melanoma (40). Serum lactate dehydrogenase (LDH)
is often increased in patients with high-grade prostate cancer and
is associated with increased risk of mortality and disease
progression in patients with metastatic prostate cancer (41,
42). Consistent with these observations, clinical studies
utilizing hyperpolarized 13C-pyruvate imaging reported a
positive correlation between prostate cancer Gleason grade and
the conversion of pyruvate to lactate (43). Interestingly,
monocarboxylate transporter 4 (MCT4), the protein
responsible for lactate efflux from cells, is increased in localized
and metastatic tumors (29) and RNAi-mediated silencing of
MCT1/4 in prostate cancer cells decreased cell growth (44),
suggesting lactate production and its intracellular utilization
are important for tumorigenesis. A more comprehensive
investigation of lactate metabolism in prostate cancer is clearly
warranted. Finally, the pentose phosphate pathway (PPP) is a
glucose catabolic pathway that appears to be important in
prostate tumor growth in AR/SREBP/6PGD-dependent
manner (45). However, whether PPP plays a significant role in
prostate cancer by generating nucleotide precursor or sustaining
the NADPH pool for lipogenesis and redox homeostasis is yet to
be elucidated.
Frontiers in Oncology | www.frontiersin.org 4
Glutamine
Glutamine is a nonessential amino acid and the most abundant
amino acid in the circulation (~500 µM). Glutamine functions as a
carbondonor for lipogenesis via reductive carboxylation, a nitrogen
donor for non-essential amino acid production and nucleotide
biosynthesis (46), and as a fuel source (47–51). Glutamine
anaplerosis starts with glutamine conversion into glutamate by
glutaminase (GLS) then further conversion into ⍺-ketoglutarate
(AKG) to feed the TCA cycle by the actions of glutamate
dehydrogenase (GLUD) and several transaminases, including
glutamate–oxaloacetate transaminase (GOT), glutamate–pyruvate
transaminase (GPT), and phosphoserine transaminase (PSAT)
(46). While fourteen proteins are known to transport extracellular
glutamine into cells, SLC1A5/ASCT2 is thought to be the major
transporter, and its expression is upregulated invarious cancers (52,
53). Glutamine can also donate its alpha nitrogen to serine, glycine,
alanine, or aspartate following deamidation to glutamate (54).
Serine feeds into one-carbon metabolism, which centrally
integrates many pathways that are dysregulated within prostate
cancer, strengthening the argument for targeting glutamine
metabolism (55, 56). Additionally, enhanced aspartate
metabolism has been implicated with epithelial to mesenchymal
transition while increased levels of alanine has been identified
within prostate cancer biopsies (57, 58).

Several lines of evidence demonstrate an important role for
glutamine in prostate cancer growth and progression. ASCT2 is
expressed in prostate cancer cells (e.g., LNCaP, VCaP, PC3, and
DU145) (53, 59, 60) and approaches that reduce ASCT2
expression/function suppress glutamine uptake and hamper
cell proliferation (53, 59). In a similar manner, GLS expression
is higher in prostate cancer cells (e.g., LNCaP, 22Rv1, DU145,
and PC-3) as compared with non-malignant prostate epithelial
cells (e.g., RWPE-1) (60–62), and selective inhibition of GLS
reduced proliferation and survival (60–63).

Key findings in cultured cells have been recapitulated in mouse
models. ASCT2mRNA expression is decreased upon castration and
increased in CRPC (59) and knockdown of ASCT2 suppresses
growth and metastatic burden in PC3 xenografts in mice (59),
although rates of glutamine uptake and downstream metabolism
were not assessed in this study. GLS expression is increased post-
castration in LNCaP and LAPC4 xenografts (61), and
pharmacological inhibition of GLS1 reduces the tumor burden in
PC3, but not LNCaP xenografts (61), highlighting the dependency
on glutamine metabolism in AR-negative, hormone-insensitive
prostate cancer (61). Consistent with this notion, analysis of
TRAMP tumors utilizing [U-13C] glutamine metabolic tracing
reported upregulation of glutaminolysis to replenish TCA cycle
intermediates and upregulation of GLS1 activity in castrate-resistant
compared to androgen-dependent tumors (30).

The importance of glutamine metabolism in human prostate
cancer is unknown. ASCT2 and GLS1 mRNA expression is high
in human prostate cancer (59, 63, 64) and ASCT2 expression is
significantly associated with shorter time to biochemical
recurrence in recurrent prostate cancer (64). Temporal ASCT2
expression is also observed in human tumors, with decreased
expression upon ADT treatment (1-6 months and 7-12 months)
January 2022 | Volume 11 | Article 778761
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and increased expression in recurrent tumors (59). In addition,
expression of the GLS1 enzyme undergoes a shift in isoform
from kidney-type glutaminase (KGA) to the more active isoform,
glutaminase C (GAC). This shift occurs progressively from
localized to mCPRC and neuroendocrine prostate cancer
(NEPC) (61). While these observations signal an important
role for glutamine metabolism in advanced stages of prostate
cancer (i.e., mCRPC and NEPC), studies evaluating glutamine
uptake, glutaminolysis and ATP production in human prostate
cancer are clearly needed.

Fatty Acids
Fatty acids are essential for the generation of structural cell
membranes, energy production, and cellular signaling. Fatty acids
are derived fromadipose tissue lipolysis or from triglycerides stored
in chylomicrons and very-low density lipoproteins, where they are
transported from the circulation into cells. Several cell types, most
notably hepatocytes and adipocytes, are capable of synthesizing
fatty acids using other substrates, such as glucose and acetate,
through a process called de novo lipogenesis. Fatty acids are the
dominant metabolic substrate in most tissues where they undergo
mitochondrialb-oxidation togenerate acetyl-CoA,which feeds into
the TCA cycle and oxidative metabolism.

Emerging evidence demonstrates an important role for fatty acid
metabolism in prostate cancer. Fatty acid uptake is increased in
immortalized prostate cancer cells (38, 65), which is often
accompanied with increased energy production from fatty acid
oxidation (65, 66). Treatment of prostate cancer cells with etomoxir,
an inhibitor of fatty acid oxidation, reduces cell viability and
proliferation, reinforcing the importance of this metabolic
substrate for cancer progression (65, 67). Aside from the direct
energy-generating mitochondrial fatty acid oxidation, peroxisomal
fatty acid oxidation also supports prostate cancer growth (68, 69).

As mentioned above, prostate cancer is exceedingly lipogenic,
highlighted by accelerated de novo synthesis of fatty acids driven
by enhanced activity of sterol regulatory element-binding protein
(SREBP) (70, 71), which induces the transcription of many genes
involved in lipid metabolism, including ACLY, ACACA, FASN,
SCD1 and LDLR (72). Studies employing pharmacological and
genetic manipulation of key regulatory enzymes of lipid
metabolism in immortalized cell lines and xenografts have
demonstrated the importance of several lipid metabolism
pathways in prostate cancer progression including increased de
novo lipogenesis (i.e., via ACLY, ACC and FASN inhibition)
(73–76), triacylglycerol storage (DGAT1) (77), cholesterol
metabolism (SOAT1, HMGCS1, HMGCR, and SCARB1) (78–
80), lipolysis (MAGL) (81), and fatty acid elongation (ELOVL5
and ELOVL7) (82, 83). Similarly, 2,4-dienoyl-CoA reductase
(DECR1) and enoyl-CoA delta isomerase 2 (ECI2), auxiliary
enzymes responsible for the degradation of unsaturated fatty
acids, are also essential for prostate cancer growth and therapy
resistance (84–86). Finally, studies using tandem mass
spectrometry lipidomics have reported marked alterations in
the prostate lipidome with cancer (38, 82, 87, 88), indicating the
likelihood that other nodes of lipid metabolism are regulated in
prostate cancer development and metastasis.
Frontiers in Oncology | www.frontiersin.org 5
While studies in cells and mice provide a reasonably
compelling narrative that distinguishes lipid metabolism as a
hallmark of prostate cancer, studies in primary human tissue are
limited. Our team recently performed functional metabolic
analysis in freshly procured human prostate tissue. Fatty acid
uptake, fatty acid storage into complex lipids and cellular
membranes, and de novo lipogenesis were upregulated in
malignant compared to benign prostate tissues (38). Further
studies identified fatty acid translocase (FAT/CD36) as a key
fatty acid transport protein in prostate cancer while inhibition of
FAT/CD36 with a monoclonal antibody attenuated tumor
growth in a prostate patient-derived xenograft (PDX) and
PDX-derived organoids. While this study identified a role for
altered lipid metabolism in localized disease, further studies are
required to ascertain whether these, and other changes in lipid
metabolism, occur in metastatic disease. Additionally, whether
there are further alterations in fatty acid utilization in the setting
of mCRPC, where AR activity is amplified, is yet to be
determined. In this context, a recent study employing
transcriptomics and proteomics in prostate cancer cell lines
and patient samples identified several lipid-mediated
transporters and increased rates of fatty acid, cholesterol, and
low-density lipoprotein uptake with androgen stimulation (89).
Hence, any potential therapeutic benefit is likely to require
cotargeting of lipid supply.

Efforts to elucidate the metabolic landscape of prostate cancer
have highlighted the importance of glucose, glutamine, and fatty
acid in prostate cancer growth and progression, and it is evident
that there is a ‘metabolic switch’ from normal prostate epithelium
to prostate cancer (90). However, the differences in metabolic
regulation between localized and mCRPC tumors are less well
defined. This highlights the need for comprehensive studies
evaluating multiple substrates in a more complex system that
reflect clinical tumors. The current advancement in patient-
derived organoids (PDO) generation protocols (91, 92) and the
creation of several PDX collections (93–96) will enable complex
studies in identifying targetable metabolic vulnerabilities in
different disease stages. However, a limitation of all in vitro
studies is that metabolite concentrations in the TME are
unknown. A widely held view is that commonly used cell
culture medium (e.g. , RPMI, MEM, DMEM) contain
significantly higher concentrations of glucose and amino acids
than what is physiologically available, and often do not contain
free fatty acids. Acknowledgement of this limitation and a better
understanding of the constituents of the TME in different disease
stages is required to move the field forward (see Table 1).
FACTORS INFLUENCING PROSTATE
CANCER METABOLISM

Prostate cancer displays marked heterogeneity from a molecular,
morphological and clinical perspective and consideration of the
factors that influence metabolic selection is essential to better
understand the metabolic requirements of human prostate
tumors in their native environment (Figure 3).
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TABLE 1 | Methodological considerations.

Limitations of experimental models used to assess metabolism in prostate cancer

• Most studies assessing metabolic regulation have been conducted in immortalized prostate cancer cells, including PC3, DU145 and LNCaP, which facilitate simple
physiological and/or genetic manipulation and high throughput analysis, but bare limited resemblance to the complexity or heterogeneity of human tumors.
• Exposure of cells in vitro to supraphysiological nutrient levels in the culture medium unlikely recapitulate the condition in tumors, although it is noted that the
concentration of metabolic substrates in the tumor microenvironment (TME) are currently unknown.
• In vivo studies using genetically engineered mouse models of prostate cancer overcome some of these issues, however the mutations do not replicate the genomic
and phenotypic heterogeneity observed clinically.
• The use of human tissues or clinical studies are often impracticable due to limited access to patients under carefully controlled conditions and the technical difficulty in
assessing tissue-specific metabolism in vivo.
• To overcome this limitation, prostate cancer patient-derived xenografts (PDXs) capture the heterogenous nature of tumor of origin. However, despite its perceived
superiority over other approaches, PDXs lack stroma and immunological contribution.
• Combined approaches that integrate these complementary models are required to understand the metabolic landscape of prostate cancer and identify promising
therapeutic strategies.

Fidelito et al. Metabolic Targeting in Prostate Cancer
Genetic Drivers of Metabolism
Specific oncogenic mutations can promote metabolic
phenotypes in some cancers [as reviewed in (97)]. This is
unequivocally the case in melanoma, where BRAFV600E

mutations that account for ~80% of melanomas drive a
metabolic program with a preference towards Warburg
metabolism (98). Inhibition of oncogenic BRAF using drugs
such as vemurafenib, dabrafenib or encorafenib cause
Frontiers in Oncology | www.frontiersin.org 6
profound reductions in glucose uptake and improve patient
outcomes (99). While the use of oncogene-driven mouse
models has been helpful in linking specific genomic
alterations with aberrant metabolic phenotypes in some
tumor types (100–103), the profound number of molecular
aberrations and heterogeneity observed in human tumors
make it challenging to identify single DNA or gene
alterations that dictate metabolic regulation.
FIGURE 3 | Factors shaping prostate cancer metabolism. Prostate cancer metabolism is influenced by factors inside the cancer cell (intrinsic), immediately adjacent
to the cancer cell (extrinsic), and derived from multi-system perturbations (systemic). The intrinsic factors (red) represent intracellular changes regulated by androgen
receptor (AR) signaling activity, genetic alterations, and therapy resistance. The extrinsic factors (green) are extracellular signals derived from nearby cells that
influence cancer cell metabolism and adaptation. These include dysregulated vascularization, acidosis, hypoxia and cancer-associated fibroblasts (CAF), immune
cells and peri-prostatic adipose tissue (PPAT), which collectively contribute to the tumor microenvironment (TME). The systemic factors (blue) that regulate tumor
metabolism include alterations in the body’s metabolic and hormonal milieu, induced by short-term perturbations or long-term changes in metabolic state, including
exercise and obesity, respectively. These complexities should be considered when assessing metabolic changes in prostate cancer and highlight the multiple
challenges in implementing metabolic therapies into clinical practice.
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Acquisition of genomic alterations underpins prostate
tumorigenesis. Comprehensive genomic characterization of
prostate cancer has identified recurrent alterations in genes
involved in androgen signalling, DNA repair, and PI3K
signalling, such as TP53, SPOP, PTEN, AR, FOXA1, MYC,
ATM and APC. However, the incidence of significantly
mutated genes follows a long-tail distribution, where the
frequent alterations are only detected in ~5-10% of cases, and
many other genes are mutated in <3% of cases (104). This
underpins a complex genetic landscape in prostate cancer and
heterogeneous nature of the disease. There is limited evidence
showing induction of metabolic remodelling by individual
oncogenes, such as MYC amplification, which promotes fatty
acid synthesis and accelerates prostate cancer progression (105,
106). However, the absence of a dominant and frequent genetic
mutation in prostate cancer indicates that a ‘common’
oncogenic-driven metabolic phenotype is unlikely to exist,
although this remains to be fully explored.

Neuroendocrine Prostate Cancer
The prominent pathology in prostate cancer is adenocarcinoma;
however, in rare cases (<1%), NEPC tumors occur and present
with an AR-null phenotype. While these are uncommon at
diagnosis, there is increasing prevalence of therapy-induced
NEPC that develops as an aggressive form of mCRPC.
Treatment of NEPC presents an unmet clinical challenge in
managing advanced prostate cancer. Emergence of an AR-null,
NEPC phenotype is characterized by the expression of
neuroendocrine markers such as synaptophysin, CD56, and
chromogranin, with the absence of AR and AR-regulated gene
expression (107). The genomic loss of tumor suppressors,
dysregulation of specific transcription factors, and epigenetic
modifications have been linked to the gain of neuroendocrine-
like properties [as reviewed in (108)].

The metabolic regulation in NEPC disease states requires
independent investigation. A previous study identified the
requirement of increased serine biosynthesis following the loss
of PKCl/l to fuel the methionine salvage pathway, which in turn
augmented NEPC differentiation through DNA methylation
(56). This highlights the role of metabolism in epithelial cell
differentiation, beyond energy production. NEPC is
characterized by increased glucose uptake and glucokinase
expression compared to adenocarcinoma, despite the
suppression of GLUT12 (109). Transcriptomic analysis of
NEPC PDX and patient specimens identified elevated
glycolysis and lactate production as the metabolic feature of
NEPC (110); however, these and other metabolic processes in
NEPC are ye t to be quant ified us ing appropr ia te
tracer methodologies.

Prostate Metabolism and the Tumor
Microenvironment
Prostate tumor cells reside in close proximity to neighboring cells
within the tumor microenvironment (TME). The major
components of the TME include cancer-associated fibroblasts
(CAFs), endothelial cells, mesenchymal cells, as well as immune
Frontiers in Oncology | www.frontiersin.org 7
cells such as mast cells, T cells, macrophages and monocytes.
Each of these cell types secrete metabolites, hormones,
extracellular vesicles and cytokines that could impact local
metabolism. Several characteristic changes in the TME can
impact metabolism, including dysregulated vascularization that
involves disorganized and leaky blood vessels with low pericytes
coverage, which in turn creates a hypoxic and acidic
environment. Hypoxia has been implicated in the metabolic
reprogramming of cancer cells, and upregulation of HIF-1a
plays an important role in the regulation of glycolysis (111).
Additionally, CAFs themselves undergo a significant shift from
oxidative phosphorylation to aerobic glycolysis, altering
substrate availability for nearby cancer cells (112). There are
also remarkable alterations in immune responses and the
inflammatory environment in the TME, creating an
immunosuppressive milieu. Interestingly, this relationship is
likely to be bidirectional, with evidence that the low pH
induced by excess lactate production in cancer cells reduces T
cell infiltration. In addition, the microbiome is an important
modulator of various host processes such as metabolism and
immunity, and microbiome dysbiosis is associated with tumor
development, disease progression, and treatment response and
resistance in prostate cancer (113). The complexity of intra-
tumoral paracrine signaling is exacerbated by remarkable
heterogeneity in the cellular composition between individual
human tumors, as demonstrated by single-cell transcriptomic
analysis (114). These findings highlight the need to develop
methods to sample and define the components of the
prostate TME, with a view to understanding the factors
controlling tumor metabolism and, perhaps, determining
targetable metabolic vulnerabilities.

Prostate Cancer Metabolism and Obesity
Obesity is a global epidemic affecting 281 million men (115) and
more than 40% of men aged between 45-74 are obese (116), an
age when the majority of prostate cancer diagnoses occur (117).
While there is limited evidence that obesity is an initiator of
prostate cancer (118, 119), epidemiologic evidence indicates that
obese patients develop aggressive tumors with poor clinical
outcomes (120, 121), although there is some conjecture with
respect to mCRPC (122). Studies in rodents mostly confirm
progression towards an aggressive phenotype in obesity [as
reviewed in (123)] and many plausible mechanisms have been
proposed to explain the link between obesity and aggressive
prostate cancer (123), including increased free fatty acid supply,
hyperinsulinemia, hypertriglyceridemia, altered endocrine
signaling and low-grade inflammation (123). Notably,
definitive evidence supporting these putative obesity-related
drivers of prostate cancer progression is lacking. While not
directly related to obesity, higher dietary saturated fat intake is
associated with prostate cancer lethality (105) and raises the
possibility that dietary interventions that reduce saturated fat
intake and/or interventions to desaturate fatty acids might be
efficacious in managing prostate cancer.

Periprostatic adipose tissue (PPAT) covers the prostate
anteriorly and patients with more PPAT have worse cancer
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prognosis (124), leading to the view that PPAT secreted factors
stimulate tumorigenesis, particularly in obesity (123). Studies
employing co-culture of prostate cancer cell lines and adipocytes
(125), or the addition of PPAT secreted factors to prostate cancer
cells (126, 127) support this possibility; however, co-grafting of
patient-matched PPAT and localized prostate cancer PDX did
not enhance prostate cancer tumorigenesis in mice (126).
Nevertheless, changes in fatty acid delivery or adipose-secreted
proteins (i.e., adipokines) from PPAT are factors that may
impact prostate cancer metabolism.

Exercise and Prostate Cancer
Observational studies indicate that exercise and physical activity
are associated with decreased risk of prostate cancer incidence,
and lower overall prostate cancer mortality. Notably, vigorous
activity is associated with a reduced risk of advanced, high
Gleason grade group, or fatal prostate cancer in men over 65
years of age (128). While the mechanisms underlying potential
anti-tumorigenic effects of exercise remain elusive, several have
been proposed and include reduced circulating insulin, insulin-
like growth factor 1 and proinflammatory cytokines, reduced
tumor vascularization, AR adaptations, reduced cholesterol,
production of unknown ‘exercise circulating factors’ contained
in exosomes and reprogramming of metabolic and
immunological dysregulation (129, 130). Overall, local,
systemic and external influences play a significant role in
metabolic regulation and prostate tumorigenesis, although
there remains much to be learnt in this space.
SYSTEMIC THERAPIES FOR
PROSTATE CANCER

Hormone therapy is standard of care for patients with advanced
prostate cancer, involving the use of gonadotropin-releasing
hormone (GnRH) agonists or antagonists to suppress testicular
testosterone synthesis. The use of androgen-targeted agents, such
as enzalutamide (AR antagonist) and abiraterone (inhibitor of
cytochrome P450 (CYP) C17 to block androgen synthesis), are
used clinically to treat mCRPC (131). Meanwhile, Rucaparib
(132) and Olaparib (133) (PARP inhibitor) have been recently
approved for men with mCRPC harboring deleterious mutation
of homologous recombination repair genes. While these
discoveries improve current management of prostate cancer,
the need for new therapeutics or adjuvant therapies continues
as mCRPC remains lethal, and NEPC tumors are refractory to
hormone therapy.

Metabolic changes, including insulin resistance, dyslipidemia,
diabetes, and cardiovascular morbidity have been associated with
ADT (134). Recent studies examining metabolomic profiles of
men receiving ADT reported a reduction in acyl-carnitines and
ketone bodies, indicating ADT-induced systemic changes in fatty
acid metabolism (135, 136). Meanwhile, low-carbohydrate diets
reversed this alteration in fatty acid metabolism while slightly
increasing androgen suppression (137). This emphasizes the
importance of diet in maximizing ADT therapeutic activity
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while minimizing its effects on altering metabolism. In
addition, patients are often prescribed with exercise, anti-
hypertensive, anti-hyperlipidemic and anti-hyperglycemic
medications to attenuate the effects of ADT, and it is possible
that these interventions induce metabolic changes that improve
cancer outcomes, although the evidence for this is limited
(discussed below).

Aside from the impact of ADT on systemic metabolism, it has
been postulated that ADT induces metabolic vulnerabilities in
the tumor itself that can be therapeutically targeted using
combination approaches. The use of metabolic inhibitor(s) as
an adjuvant therapy have improved the efficacy of existing
therapies and prevented the development of resistance in
several tumors (138). In prostate cancer, metabolic adaptations
occur in prostate cancer cells following ADT, as well as
androgen-targeted therapies, including enzalutamide or
abiraterone, suggesting the possibility of co-treatment strategies
(139, 140) (Figure 1). This was exemplified in prostate cancer
PDXs where a synergistic effect was demonstrated following
treatment of ADT (through castration) plus metformin (141).
Thus, the possibility of metabolic targeting in combination with
ADT should be further explored.
PUTATIVE METABOLIC TARGETING IN
PROSTATE CANCER

Effective targeting of cancer metabolism relies on suppressing or
modulating metabolic pathways identified as cancer ‘dependent’
and the use of metabolic agents is thereby limited by the defined
therapeutic window of efficacy and toxicity in cancerous and
non-cancerous cells. While there are no metabolic inhibitors
approved for clinical use in patients with prostate cancer, several
agents targeting de novo lipogenesis, fatty acid oxidation and
glutamine oxidation are in pre-clinical or early phase
clinical trials.

De Novo Lipogenesis Inhibitors
The lipogenic phenotype of prostate cancer raises the possibility
of targeting de novo lipogenesis. In this context, fatty acid
synthase (FASN) is a rate-limiting enzyme in this process, and
several FASN inhibitors, including TVB-3166 and TVB-2640,
suppressed tumor growth by 15% in 22Rv1 xenografts (142), and
notably, induced up to 97% tumor growth inhibition in
combination with paclitaxel (142). Another FASN inhibitor,
IPI-9119, showed anti-tumorigenic activity in human mCRPC
organoids and 22Rv1 and LNCaP-95 xenograft models (143).
Phase I studies of TVB-2640, the first FASN inhibitor to enter
clinical trials for prostate cancer, indicated a favorable
tolerability profile as either monotherapy or in combination
with taxane in four heavily pre-treated prostate cancer patients
(144). Clinical studies are warranted to evaluate the clinical
utility of FASN inhibitors in mCRPC.

Moreover, several drugs that target other enzymes in the de
novo lipogenesis pathway are in clinical trials for other diseases,
such as the ACC inhibitors Firsocostat (Gilead) and PF-
January 2022 | Volume 11 | Article 778761

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fidelito et al. Metabolic Targeting in Prostate Cancer
05175157 (Pfizer) for non-alcoholic fatty liver disease (145), and
derivatives of these compounds could conceivably be adopted for
treatment of prostate cancer. Indeed, PF-05175157 showed
promising results in reducing proliferation and inducing
apoptosis in localized prostate cancer patient-derived
explants (88).

Fatty Acid Oxidation Inhibitors
Etomoxir is an irreversible inhibitor of carnitine palmitoyl
transferase 1, which is the protein that transports fatty acids
into the mitochondria for eventual oxidation. Treating mice
with etomoxir reduced tumor growth in VCaP xenografts,
without changing body weight or inducing systemic toxicity
(67); however, etomoxir caused hepatotoxicity in patients with
heart failure leading to the premature termination of a phase II
clinical trial (146). While etomoxir is unlikely to progress to
clinical trials for prostate cancer, two angina medications,
ranolazine and perhexiline, may prove to be efficacious.
Ranolazine is an FDA-approved partial inhibitor of fatty acid
oxidation (147), while perhexiline is an TGA-approved
competitive inhibitor of CPT1 (148). While neither drug
reduces tumor growth alone, combining either compound
with enzalutamide significantly decreased tumor growth in
vitro and in vivo (149). Moreover, perhexiline alone showed
no anti-tumorigenic activity in patient-derived explants, while
cotreatment of perhexiline with the HSP90 inhibitor, AUY922,
significantly reduced proliferation and increased apoptosis
(150). These observations indicate that inhibitors of fatty acid
oxidation may sensitize prostate cancer to other therapies,
albeit through unknown mechanisms, and could be rapidly
translated to the clinic.

Glutaminolysis Inhibitors
CB-839, an oral glutaminase inhibitor, showed encouraging safety
and tolerability results in a phase 1 study conducted in patients
with advanced and/or treatment-refractory solid tumors,
including breast cancer, lung cancer, renal cell carcinoma and
mesothelioma (151). Preclinical studies in DU145 cells and
xenografts indicated a synergistic effect of CB-839 in
combination with talazoparib (PARP inhibitor) (152), leading to
an upcoming phase II open label study of CB-839 and talazoparib
in patients with mCRPC (NCT04824937).

HMG-CoA Reductase Inhibitors
Statins are a class of drugs that inhibit the activity of HMG-CoA
reductase and are widely used to treat patients with
hypercholes tero lemia . Whi le observat iona l s tudies
demonstrate that statin use is associated with reduced cancer-
specific mortality in patients with mCRPC receiving ADT (153),
the results from one randomized trial indicates that short-term
statin use does not impact tumor proliferation or serum
prostate-specific antigen (PSA) compared to placebo (154).
Similarly, statins alone did not reduce tumor burden in LNCaP
xenograft and PDX trials; however, combination therapy with a
re-purposed SREBP2 inhibitor, dipyridamole, significantly
reduced tumor growth (155). Future studies exploring the
Frontiers in Oncology | www.frontiersin.org 9
safety and efficacy of this, and other combinations, in clinical
studies are yet to be seen.

Metformin
Metformin is the current first-line treatment of type 2 diabetes.
While the exact mechanisms of action of metformin are still
incompletely resolved, the anticancer potential of metformin is
indicated through the capacity to activate AMPK and inhibit
the cell cycle and epithelial-mesenchymal transition [as
reviewed in (156)]. However, epidemiology studies showed no
effects in reducing prostate cancer incidence and minimal
improvement in overall survival (157). Multiple clinical trials
are currently underway to assess the therapeutic utility of
metformin as a monotherapy, or in combination with
androgen targeted agents (enzalutamide and abiraterone) in
managing CRPC.
PROSPECTS AND CHALLENGES FOR
IMPLEMENTING METABOLIC THERAPIES
IN PROSTATE CANCER

Prostate cancer is slow growing by nature, providing sufficient
time to implement therapies to delay progression or manage
aggressive disease. For patients with intermediate risk disease,
the median time to biochemical recurrence is ~4.25 years (158),
necessitating the need for initiation of ADT, and in some
patients, radiotherapy. Current clinical practice is to combine
ADT with androgen-targeted therapy or chemotherapy, as this
approach has been shown to increase overall survival (159).
While effective in the short term, CPRC inevitably develops in
~5-8 years (160), which is then associated with a median survival
ranging from 13-30 months (161–163). Overall, the time from
diagnosis to end-stage disease for most patients is ~10-15 years,
providing ample time for therapeutic intervention (Figure 1).
This makes prostate cancer distinct to other more rapidly
progressing cancers.

Of course, the overarching challenge in developing and
utilizing ‘metabolic therapies’ for prostate cancer is to
determine the appropriate strategy for the appropriate patient
at the appropriate time, which as outlined above will vary
between localized, metastatic and CRPC (see Prostate Cancer
Metabolism section). We are, however, some way off
implementing precise, actionable therapies as the focus of
current research in cancer metabolism is predominantly pre-
clinical and there is an urgent need for clinically based metabolic
research. One emerging methodology, not yet applied to prostate
cancer, is the use of intraoperative 13C metabolic tracer infusions
in human cancer patients, which overcomes limitations of ex vivo
studies and by integrating systemic, TME and spatial parameters
that shape metabolic phenotypes (164).

The clinical trajectory described above is generalized for
patients with intermediate-risk prostate cancer, although in
reality, each patient has individual prognostic features that
dictate disease progression. Risk-stratification for prostate
cancer is critical to guide appropriate treatment decision-
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making. Towards this, it is worth considering whether there are
subsets of patients who might benefit from metabolic therapies,
either based on the reliance of an essential metabolic substrate, or
specific tumor subtypes with common genomic aberrations or
pathology. However, this has not been demonstrated, likely
because of the remarkable heterogeneity of prostate cancer,
diversity in metabolic substrate fluxes described in human
tumors, and lack of appropriate biomarkers. In this context,
mass spectrometry metabolic imaging is being refined to detect
‘metabolic signatures’ of prostate cancer, with evidence
indicating that such imaging may aid in understanding
biological processes and to help cancer diagnosis, prognosis
and monitor response to therapies (165, 166).

A major challenge for the field is to define when metabolic
therapies could be clinically applied. One option is during early-
stage disease, following curative intent surgery or radiation when
PSA levels are beginning to slowly rise, indicative of residual
disease that is progressing. It is envisaged that metabolic
therapies designed to reduce nutrient supply and/or ATP
production could slow growth and delay the need for ADT.
Alternatively, there is interest in the potential for metabolic
therapies to be used to treat CRPC, because significant energy
is required for the growth of highly aggressive therapy resistant
tumors (Figure 1). More generally, it has been suggested that a
better understanding of the association between metabolism and
prostate cancer may lead to cancer prevention, although such
strategies are opaque.

Overall, there is very little evidence from preclinical models or
clinical studies that targeting a single metabolic pathway will be
sufficient to slow prostate tumor progression. Firstly, this requires
modulation of a single substrate, enzyme or metabolic pathway to
limit tumor growth or increase tumor susceptibility to an adjunct
therapy. In this context, metabolic inhibition, commonly leads to
compensatory upregulation of other fuel utilization pathways to
maintain pro-tumorigenic energy demands. For example, our
work showed that this was the case with fatty acid transport
inhibition, whereby blocking FAT/CD36 induced an increase in de
novo lipogenesis in localized disease (38). Similarly, others showed
that inhibition of FASN led to the upregulation of genes involved
in steroid biosynthesis and increased intracellular cholesterol (143,
167). Thus, we posit that targeting dual processes will most likely
be required for effective metabolic intervention in prostate cancer.
Further to this, most tissues in the body readily utilize each of the
substrates commonly used in prostate cancer, with evidence of
dependencies in some tissues (e.g. glucose for red blood cells and
brain). Hence, approaches that direct metabolic therapies to the
tumor will be essential to minimize the likelihood of off-target
effects. Such approaches are feasible as evidenced by the
implementation of radioligand-therapy targeted to prostate-
specific antigens in the clinic.
CONCLUSIONS

Prostate cancer invokes major shifts in gene transcription and
metabolic signaling to mediate alterations in nutrient
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acquisit ion and metabolic substrate selection when
compared to normal tissues. Exploiting such metabolic
reprogramming is proposed to enable the development of
targeted therapies for prostate cancer, yet there are several
challenges to be overcome before this becomes a reality.
Firstly, several metabolic substrates have been identified in
prostate cancer, including (but not limited to) fatty acids,
glucose, lactate and glutamine, all of which are ‘required’
substrates in prostate cancer. Thus, identifying the most
appropriate substrate to be targeted, and in which type of
prostate cancer, remains unclear. Somewhat related, there is a
gap in our knowledge of metabolism in human tumors. The
majority of studies that have defined metabolic regulation of
prostate cancer have been limited to cell culture or genetically
modified mouse models, which does not accurately reflect the
complexity of the in vivo tumor microenvironment and the
impact that this induces on prostate metabolism (Table 1).
Thirdly, prostate cancer is notoriously heterogeneous and
there is currently insufficient evidence to indicate that
subgroups of patients or tumor subtypes, based on genomic
aberrations or pathology, share common metabolic
vulnerabilities. Hence, there is an urgent need for these gaps
to be addressed before metabolic therapies can be designed
and incorporated into clinical practice.
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